Exposé:
An Ontology for Data Mining Experiments

Joaquin Vanschoren! and Larisa Soldatova?

! Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium,
joaquin.vanschoren@cs.kuleuven.be
2 Aberystwyth University, Llandinum Bldg, Penglais, SY23 3DB Aberystwyth, UK,
1lss@aber.ac.uk

Abstract. Research in machine learning and data mining can be speeded
up tremendously by moving empirical research results out of people’s
heads and labs, onto the network and into tools that help us structure
and filter the information. This paper presents Exposé, an ontology to
describe machine learning experiments in a standardized fashion and
support a collaborative approach to the analysis of learning algorithms.
Using a common vocabulary, data mining experiments and details of
the used algorithms and datasets can be shared between individual re-
searchers, software agents, and the community at large. It enables open
repositories that collect and organize experiments by many researchers.
As can been learned from recent developments in other sciences, such a
free exchange and reuse of experiments requires a clear representation.
We therefore focus on the design of an ontology to express and share
experiment meta-data with the world.

1 Introduction

Research in machine learning is inherently empirical. Whether the goal is to de-
velop better learning algorithms or to create appropriate data mining workflows
for new sources of data, running the right experiments and correctly interpreting
the results is crucial to build up a thorough understanding of learning processes.

Running those experiments tends to be quite laborious. In the case of eval-
uating a new algorithm, pictured in Figure 1, one needs to search for datasets,
preprocessing algorithms, (rival) learning algorithm implementations and scripts
for algorithm performance estimation (e.g. cross-validation). Next, one needs to
set up a wide range of experiments: datasets need to be preprocessed and al-
gorithm parameters need to be varied, each of which requires much expertise.
This easily amounts to a large range of experiments representing days, if not
weeks of work, while only averaged results will ever be published. Any other
researcher willing to verify the published results or test additional hypothesis
will have to start again from scratch, repeating the same experiments instead of
simply reusing them.
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Fig. 1. A typical experimental workflow in machine learning research.

1.1 Generalizability and Interpretability

Moreover, in order to ensure that results are generally valid, the empirical eval-
uation also needs to cover many different conditions. These include various pa-
rameter settings and various kinds of datasets, e.g. differing in size, skewness,
noisiness, and various workflows of preprocessing techniques. Unfortunately, be-
cause of the amount of work involved in empirical evaluation, many studies
will not explore these conditions thoroughly, limiting themselves to algorithm
benchmarking. It has long been recognized that such studies are in fact only
‘case studies’ [1], and should be interpreted with caution.

Sometimes, overly general conclusions can be drawn. In time series analy-
sis research, many studies were shown to be biased toward the datasets being
used, leading to contradictory results [16]. Moreover, it has been shown that
the relative performance of learning algorithms depends heavily on the amount
of sampled training data [23,29], and is also easily dominated by the effect of
parameter optimization and feature selection [14].

As such, there are good reasons to thoroughly explore different conditions, or
at least to clearly state under which conditions certain conclusions may or may
not hold. Otherwise, it is very hard for other researchers to correctly interpret
the results, thus possibly creating a false sense of progress [11]:

...no method will be universally superior to other methods: relative su-
periority will depend on the type of data used in the comparisons, the
particular data sets, the performance criterion and a host of other fac-
tors. [...] an apparent superiority in classification accuracy, obtained in
laboratory conditions, may not translate to a superiority in real-world
conditions...



1.2 A collaborative approach

In this paper, we advocate a much more dynamic, collaborative approach to ex-
perimentation, in which all experiment details can be freely shared in repositories
(see the dashed arrow in Fig. 1), linked together with other studies, augmented
with measurable properties of algorithms and datasets, and immediately reused
by researchers all over the world. Any researcher creating empirical meta-data
should thus be able to easily share it with others and in turn reuse any prior
results of interest. Indeed, by reusing prior results we can avoid unnecessary
repetition and speed up scientific research. This enables large-scale, very gen-
eralizable machine learning studies which are prohibitively expensive to start
from scratch. Moreover, by bringing the results of many studies together, we can
obtain an increasingly detailed picture of learning algorithm behavior. If this
meta-data is also properly organized, many questions about machine learning
algorithms can be answered on the fly by simply writing a query to a database
[29]. This also drastically facilitates meta-learning studies that analyze the stored
empirical meta-data to find or useful patterns in algorithm performance [28].

1.3 Ontologies

The use of such public experiment repositories is common practice in many other
scientific disciplines. To streamline the sharing of experiment data, they created
unambiguous description languages, based on a careful analysis of the concepts
used within a domain and their relationships. This is formally represented in
ontologies [5,13]: machine manipulable domain models in which each concept
(class) is clearly described. They provide an unambiguous vocabulary that can
be updated and extended by many researchers, thus harnessing the “collective
intelligence” of the scientific community [10]. Moreover, they express scientific
concepts and results in a formalized way that allows software agents to interpret
them correctly, answer queries and automatically organize all results [25].

In this paper, we propose an ontology designed to adequately record ma-
chine learning experiments and workflows in a standardized fashion, so they can
be shared, collected and reused. Section 2 first discusses the use of ontologies
in other sciences to share experiment details and then covers previously pro-
posed ontologies for data mining. Next, we present Exposé, a novel ontology for
machine learning experimentation, in Section 3. Section 4 concludes.

2 Previous work

2.1 e-Sciences

Ontologies have proven very successful in bringing together the results of re-
searchers all over the world. For instance, in astronomy, ontologies are used to
build Virtual Observatories [7,27], combining astronomical data from many dif-
ferent telescopes. Moreover, in bio-informatics, the Open Biomedical Ontology



(OBO) Foundry?® defines a large set of consistent and complementary ontologies
for various subfields, such as microarray data?, and genes and their products [2].

As such, they create an “open scientific culture where as much information
as possible is moved out of people’s heads and labs, onto the network and into
tools that can help us structure and filter the information” [20].

Ironically, while machine learning and data mining have been very successful
in speeding up scientific progress in these fields by discovering useful patterns in
a myriad of collected experimental results, machine learning experiments them-
selves are currently not being documented and organized well enough to engender
the same automatic discovery of insightful patterns that may speed up the design
of new data mining algorithms or workflows.

2.2 Data mining ontologies

Recently, the design of ontologies for data mining attracted quite a bit of atten-
tion, resulting in many ontologies for various goals.

OntoDM [22] is a general ontology for data mining with the aim of providing
a unified framework for data mining research. It attempts to cover the full width
of data mining research, containing high-level classes, such as data mining tasks
and algorithms, and more specific classes related to certain subfields, such as
constraints for constraint-based data mining.

EXPO [26] is a top-level ontology that models scientific experiments in gen-
eral, so that empirical research can be uniformly expressed and automated. It
covers classes such as hypotheses, (un)controlled variables, experimental designs
and experimental equipment.

DAMON (DAta Mining ONtology) [4], is a taxonomy meant to offer domain
experts a way to look up tasks, methods and software tools given a certain goal.

KDDONTO [8] is an OWL-DL ontology also built to discover suitable KD
algorithms and to express workflows of KD processes. It covers the inputs and
outputs of the algorithms and any pre- and postconditions for their use.

KD ontology [31] describes planning-related information about datasets
and KD algorithms. It is used in conjunction with an Al planning algorithm: pre-
and postconditions of KD operators are converted into standard PDDL planning
problems [18]. It is used in an extension of the Orange toolkit to automatically
plan KD workflows [32].

The DMWTF ontology [17] also describes all KD operators with their in- and
outputs and pre- and postconditions, and is meant to be used in a KD support
system that generates (partial) workflows, checks and repairs workflows built by
users, and retrieves and adapts previous workflows.

DMOP, the Data Mining Ontology for Workflow Optimization [12], models
the internal structure of learning algorithms, and is explicitly designed to support
algorithm selection. It covers classes such as the structure and parameters of
predictive models, the involved cost functions and optimization strategies.

% http://www.obofoundry.org/
4 http://www.mged.org/ontology



3 The Exposé ontology

In this section, we describe Exposé, an ontology for machine learning experi-
mentation. It is meant to be used in conjunction with experiment databases (Ex-
pDBs) [3,29,28]: databases designed to collect the details of these experiments,
and to intelligently organize them in online repositories to enable fast and thor-
ough analysis of a myriad of collected results. In this context, Exposé supports
the accurate recording and exchange of data mining experiments and workflows.
It has been ‘translated’ into an XML-based language, called ExpML, to describe
experiment workflows and results in detail [30]. Moreover, it clearly defines the
semantics of data mining experiments stored in the experiment database, so that
a very wide range of questions on data mining algorithm performance can be an-
swered through querying [29]. Many examples can be found in previous papers
[29,30]. Finally, although we currently use a relational database, Exposé will
clearly be instrumental in RDF databases, allowing even more powerful queries.
It thus supports reasoning with the data, meta learning, data integration, and
also enables logical consistency checks.

For now, Exposé focuses on supervised classification on propositional datasets.
It is also important to note that, while it has been influenced and adapted by
many researchers, it is a straw-man proposal that is intended to instigate dis-
cussion and attract wider involvement from the data mining community. It is
described in the OWL-DL ontology language [13], and can be downloaded from
the experiment database website (http://expdb.cs.kuleuven.be).

We first describe the design guidelines used to develop Exposé, then its top-
level classes, and finally the parts covering experiments, experiment contexts,
evaluation metrics, performance estimation techniques, datasets, and algorithms.

3.1 Ontology design
In designing Exposé, we followed existing guidelines for ontology design [21, 15]:

Top-level ontologies It is considered good practice to start from generally
accepted classes and relationships (properties) [22]. We started from the
Basic Formal Ontology (BFO)® covering top-level scientific classes and the
OBO Relational Ontology (RO)® offering a predefined set of properties.

Ontology reuse If possible, other ontologies should be reused to build on
prior knowledge and consensus. We directly reuse several general machine
learning related classes from OntoDM [22], experimentation-related classes
from EXPO [26], and classes related to internal algorithm mechanisms from
DMOP [12]. We wish to integrate Exposé with existing ontologies, so that
it will evolve with them as they are extended further.

Design patterns Ontology design patterns’ are reusable, successful solutions
to recurrent modeling problems. For instance, a learning algorithm can some-
times act as a base-learner for an ensemble learner. This is a case of an

® http://www.ifomis.org/bfo

% http://www.obofoundry.org/ro/
" http://ontologydesignpatterns.org
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Fig. 2. An overview of the top-level classes in the Exposé ontology.

agent-role pattern, and a predefined property, ‘realizes’, is used to indicate
which entities are able to fulfill a certain role.

Quality criteria General criteria include clarity, consistency, extensibility and
minimal commitment. These criteria are rather qualitative, and were only
evaluated through discussions with other researchers.

3.2 Top-level View

Figure 2 shows the most important top-level classes and properties, many of
which are inherited from the OntoDM ontology [22], which in turn reuses classes
from OBI® (i.e., planned process) and IAOY (i.e. information content entity). The
full arrows symbolize an ‘is-a’ property, meaning that the first class is a subclass
of the second, and the dashed arrows symbolize other common properties. Double
arrows indicate one-to-many properties, for instance, an algorithm application
can have many parameter settings.

The three most important categories of classes are information content en-
tity, which covers datasets, models and abstract specifications of objects (e.g.
algorithms), implementation, and planned process, a sequence of actions meant
to achieve a certain goal. When describing experiments, this distinction is very
important. For instance, the class ‘C4.5’ can mean the abstract algorithm, a spe-
cific implementation or an execution of that algorithm with specific parameter
settings, and we want to distinguish between all three.

8 http://obi-ontology.org
% http://code.google.com/p/information-artifact-ontology
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Fig. 3. Experiments in the Exposé ontology.

As such, ambiguous classes such as ‘learning algorithm’ are broken up accord-
ing to different interpretations (indicated by bold ellipses in Fig. 2): an abstract
algorithm specification (e.g. in pseudo-code), a concrete algorithm implementa-
tion, code in a certain programming language with a version number, and a
specific algorithm application, a deterministic function with fixed parameter set-
tings, run on a specific machine with an actual input (a dataset) and output
(a model), also see Fig. 3. The same distinction is used for other algorithms
(for data preprocessing, evaluation or model refinement), mathematical func-
tions (e.g. the kernel used in an SVM), and parameters, which can have different
names in different implementations and different value settings in different ap-
plications. Algorithm and function applications are operators in a KD workflow,
and can even be participants of another algorithm application (e.g., a kernel or
a base-learner), i.e. they can be part of the inner workflow of an algorithm.

Finally, there are also qualities, properties of a specific dataset or algorithm
(see Figs. 6 and 7), and roles indicating that an element assumes a (temporary)
role in another process: an algorithm can act as a base-learner in an ensemble,
a function can act as a distance function in a learning algorithm, and a dataset
can be a training set in one experiment and a test set in the next.

3.3 Experiments

Figure 3 shows the ontological description of experiments, with the top-level
classes from Fig. 2 drawn in filled double ellipses. Experiments are defined as
workflows, which allows the description of many kinds of experiments. Some
(composite) experiments can also consist of many smaller (singular) experiments,
and can use a particular ezperiment design [19] to investigate the effects of
various experimental variables, e.g. parameter settings.
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We will now focus on a particular kind of experiment: a learner evaluation
(indicated by a bold ellipse). This type of experiment applies a specific learning
algorithm (with fixed parameters) on a specific input dataset and evaluates the
produced model by applying one or several model evaluation functions, e.g. pre-
dictive accuracy. In predictive tasks, a performance estimation technique, e.g.
10-fold cross-validation, is applied to generate training- and test sets, evaluate
the resulting models and aggregate the results. After it is executed on a specific
machine, it will output a model evaluation result containing the outcomes of all
evaluations and, in the case of predictive algorithms, the (probabilistic) predic-
tions made by the models. Models are also generated by applying the learning
algorithm on the entire dataset.

Finally, more often than not, the dataset will have to be preprocessed first.
Again, by using workflows, we can define how various data processing appli-
cations preprocess the data before it is passed on to the learning algorithm.
Figure 4 illustrates such a workflow. The top of the figure shows that it con-
sists of participants (operators), which in turn have inputs and outputs (shown
in ovals): datasets, models and model evaluation results. Workflows themselves
also have inputs and outputs, and we can define specialized sub-workflows. A
data processing workflow is a sequence of data processing steps. The center of
Fig. 4 shows one with three preprocessors. A learner evaluation workflow takes
a dataset as input and applies performance estimation techniques (e.g. 10-fold
cross-validation) and model evaluation functions (e.g. the area under the ROC
curve) to evaluate a specific learner application. Of course, there are other types
of learner evaluations, both finer ones, e.g. a singular train-test experiment, and
more complex ones, e.g. doing an internal model selection to find the optimal
parameter settings.
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Fig. 5. Learner evaluation measures in the Exposé ontology.

3.4 Experiment context

Although outside the scope of this paper, Exposé also models the context in
which scientific investigations are conducted. Many of these classes are origi-
nally defined in the EXPO ontology [26]. They include authors, references to
publications and the goal, hypotheses and conclusions of a study. It also defines
(un)controlled or (in)dependent ezperimental variables, and various experimental
designs [19] defining which values to assign to each of these variables.

3.5 Learner evaluation

To describe algorithm evaluations, Exposé currently covers 96 performance mea-
sures used in various learning tasks, some of which are shown in Fig. 5. In some
tasks, all available data is used to build a model, and properties of that model
are measured to evaluate it, e.g., the inter-cluster similarity in clustering. In
binary classification, the predictions of the models are used, e.g., predictive ac-
curacy, precision and recall. In multi-class problems, the same measures can be
used by transforming the multi-class prediction into ¢ binary predictions, and
averaging the results over all classes, weighted by the number of examples in each
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Fig. 6. Datasets in the Exposé ontology.

class. Regression measures, e.g., root mean squared error (RMSE) can also be
used in classification by taking the difference between the actual and predicted
class probabilities. Finally, graphical evaluation measures, such as precision-recall
curves, ROC-curves or cost-curves, provide a much more detailed evaluation.
Many definitions of these metrics exist, so it is important to define them clearly.

Although not shown here, Exposé also covers several performance estimation
algorithms, such as k-fold or 5z2 cross-validation, and statistical significance
tests, such as the paired t-test (by resampling, 10-fold cross-validation or 5x2
cross-validation) [9] or tests on multiple datasets [6].

3.6 Datasets
Figure 6 shows the most important classes used to describe datasets.

Specification. The data specification (in the top part of Fig. 6) describes the
structure of a dataset. Some subclasses are graphs, sequences and sets of
instances. The latter can have instances of various types, e.g., tuples, in
which case it can have a number of data features and data instances. For
other types of data this specification will have to be extended. Finally, a

dataset has descriptions, such as name, version and download url to make it
easily retrievable.



Roles. A specific dataset can play different roles in different experiments (top
of Fig. 6). For instance, it can be a training set in one evaluation and a test
set in the next.

Data properties. As said before, we wish to link all empirical results to theo-
retical metadata, called properties, about the underlying datasets to perform
meta-learning studies. These data properties are shown in the bottom half
of Fig. 6, and may concern individual instances, individual features or the
entire dataset. We define both feature properties such as feature skewness
or mutual information with the target feature, as well as general dataset
properties such as the number of attributes and landmarkers [24].

3.7 Algorithms

Algorithms can perform very differently under different configurations and pa-
rameter settings, so we need a detailed vocabulary to describe them. Figure 7
shows how algorithms and their configurations are expressed in our ontology.
From top to bottom, it shows a taxonomy of different types of algorithms, the
different internal operators they use (e.g. kernel functions), the definition of algo-
rithm implementations and applications (see Sect. 3.2) and algorithm properties
(only two are shown).

Algorithm implementations. Algorithm implementations are described with all
information needed to retrieve and use them, such as their name, version, url,
and the library they belong to (if any). Moreover, they have implementations of
algorithm parameters and can have qualities, e.g. their susceptibility to noise.

Algorithm composition. Some algorithms use other algorithms or mathemati-
cal functions, which can often be selected (or plugged in) by the user. These
include base-learners in ensemble learners, distance functions in clustering and
nearest neighbor algorithms and kernels in kernel-based learning algorithms.
Some algorithm implementations also use internal data processing algorithms,
e.g. to remove missing values. In Exposé, any operator can be a participant of
an algorithm application, combined in internal workflows with in- and outputs.
Depending on the algorithm, operators can fulfill (realize) certain predefined
roles (center of Fig. 7).

Algorithm mechanisms. Finally, to understand the performance differences be-
tween different types of algorithms, we need to look at the internal learning
mechanisms on which they are built. These include the kind of models that are
built (e.g. decision trees), how these models are optimized (e.g. the heuristic
used, such as information gain) and the decision boundaries that are generated
(e.g. axis-parallel, piecewise linear ones in the case of non-oblique decision trees).
These classes, which extend the algorithm definitions through specific properties
(e.g. has model structure), are defined in the DMOP ontology [12], so they won’t
be repeated here.
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4 Conclusions

We have presented Exposé, an ontology for data mining experiments. It is com-
plementary to other data mining ontologies such as OntoDM [22], EXPO [26],
and DMOP [12], and covers data mining experiments in fine detail, including
the experiment context, evaluation metrics, performance estimation techniques,
datasets, and algorithms. It is used in conjunction with experiment databases
(ExpDBs) [3, 29, 28], to engender a collaborative approach to empirical data min-
ing research, in which experiment details can be freely shared in repositories,
linked together with other studies, and immediately reused by researchers all
over the world. Many illustrations of the uses of Exposé to share, collect and
query for experimental meta-data can be found in prior work [3,29, 30].
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