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Abstract: With the recent climate changes, investors and policy-makers are paying close attention
to the green bond market. This study intends to analyze the dynamic effects of shock transmission
between climate policy uncertainty and the green bond market and to offer some new perspectives on
analysis of green bond volatility over the previous years. To investigate time-varying effects of climate
policy uncertainty on green bond market volatility, we applied a TVP-VAR model. And the impact of
three important time points is tested, which are the Paris Association convening in December 2015,
the 2017 annual Report on Policies and Actions of China on Climate Change in October 2017 and
the “double carbon” policy in September 2020. The finding is that: (1) This impact of climate policy
uncertainty on the volatility of the green bond market is time-varying, with short-term overreactions
or underreactions as well as medium and long-term inversions. (2) This impact is also time-varying
at different time points and has a certain degree of sustainability.

Keywords: climate policy uncertainty; green bonds; market volatility; TVP-VAR model

1. Introduction

We investigated the effect of climate policy uncertainty on green bond market volatility
at the level of time-series. Global climate change and socially responsible investment
behavior have become important topics in academia (see Liu [1], Tian et al. [2]). As the
global warming trend becomes increasingly severe, output and labor productivity may
be severely affected [3]. Moreover, as climate change mitigation policies are implemented
one after another, prices, productivity, employment, and output will all be affected, and
monetary policy is no exception. Thus, the great uncertainty of climate-related events and
policies may dampen investment and other economic activities. In the event of extreme
weather conditions such as heavy rainstorms, the government may introduce relevant
climate policies, and with climate policies constantly being adjusted, the impact of climate-
related policies on the green bond market cannot be ignored, considering the purpose
of green bond creation. Further, the formulation, implementation, and adjustment of
climate policies are influenced by the objective natural environment, human awareness,
and emergencies, and it is difficult to predict the possibility of future climate events
when climate policies change. Because of the “bond” nature of green bonds, the impact
of monetary policies such as interest rates is also crucial, and monetary policy is also
potentially influenced by climate policy. Therefore, this study explores the time-varying
impact of climate policy uncertainty (CPU) on green bond market volatility.

CPU may affect financial markets [4,5], so does CPU increase green bond price volatil-
ity and exacerbate the risk in the market? As a debt asset, changes in the green bond
price will also be more influenced by market behavior, such as changes in interest rates
and investor sentiment. Therefore, in the short term, green bond price volatility is more
likely to be noticed by investors due to the impact of CPU by investors and may trigger
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an overreaction; however, considering the impact of investor sentiment, a high level of
investor sentiment and a weakened perception of risk in a bull market may also trigger an
underreaction. At the same time, as climate policy changes will affect monetary policy, for
example, changes in interest rates will also inevitably affect green bond price volatility, and
investor sentiment toward green bond price volatility can also change during periods of eas-
ing or tightening interest rates, leading to an overreaction or underreaction to green bond
market risk. In the medium and long term, if the increasing severity of climate problems
and the introduction and adjustment of climate policies are generally supportive of green
development, then the long-term implications of green bond market price volatility from
CPU are likely to be negative. Combining these characteristics, for the lower trading rate in
the green bond market, more information may be accumulated in pricing to be released in
the next transaction, and the price volatility at the time of trading may be greater.

Green bonds are sustainable debt instruments created to mitigate climate problems,
and as an important emerging financial market, the green bond market has shown char-
acteristics of “a bull market is more bullish and a bear market is more bearish”, and its
volatility-related studies have begun to receive academic attention [1,6,7].Therefore, to clar-
ify whether CPU affects the volatility of the green bond market and whether the impact has
a dynamic effect, this paper adopted the TVP-VAR model to investigate, and its academic
contributions are as follows: First, it demonstrates theoretical analysis of what climate
policy uncertainty affects volatility of the green bond market, which provides theoretical
support for regulators to respond to climate policy adjustments, thus promoting green
bond market supervision and management. Second, it is the first empirical study of how
CPU affects the price volatility of green bonds in China, enriching the scope of research on
climate finance and providing an important basis for investors in green bonds to make risk
management decisions and regulators to respond to climate risks.

The remainder of this study is structured as follows: Section 2 reviews the institutional
background in China; Section 3 reviews the relevant literature; Section 4 describes the
research design, including method and data; Section 5 is empirical results and discussion,
and finally, some results are summarized.

2. Background in China

With the frequent occurrence of extreme weather and severe environmental problems,
China has reshaped its development philosophy, continuously promoted a comprehensive
green transformation of the economy and society, and strived to build a beautiful China
where people and nature coexist in harmony. As shown in Figure 1, China has introduced
numerous climate policies to mitigate climate problems in recent years, and President Xi
proposed for the first time that China should achieve “peak carbon” by 2030 and “carbon
neutral” by 2060 in September 2020. This is an important step in the process of transition to
a low-carbon economy in China. Green development is inseparable from financial support;
in addition to government financial support and enterprise self-financing, green bonds are
an important funding channel.

The General Plan for the Reform of Ecological Civilization System and the Catalogue of Green
Bond Support Projects (2015 Edition) defined the classification criteria of green bonds for
the first time. As shown in Figure 2, since the Chinese green bond market began to boom
in 2016, China’s labeled green bond issuance has increased rapidly, and although there
may have been a brief pullback in 2020 due to the epidemic and other impacts, China’s
total green bond issuance in 2021 bucked the trend by 140%, achieving the largest annual
increment to nearly USD 110 billion. As the projects supported by green bonds generally
have longer maturities, their maturities tend to be longer than ordinary bonds as well. The
credit ratings of green bonds are also generally concentrated in high ratings. It can be seen
that its activity level is low. In July 2022, the document “China Green Bond Principles” was
released, which became the first policy document stipulating uniform standards for green
bond issuance. With the introduction of various guiding policies, the green bond market
has flourished and increased rapidly in size.
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Figure 2. Annual issuance in China’s green bond market. Data come from the annual “Green Bond
Market Report” and manually compiled by authors.

The booming development of the green bond market is evident worldwide. As shown
in Figure 3, according to a related report released by the Climate Bonds Initiative in 2021,
the cumulative issue volume of China’s green bonds was the second in the world, which
also fully illustrates the importance of China’s green bond market in the global green bond
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market. As a result, research on the green bond market has also been pursued by a number
of scholars.
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3. Literature Review

The green bond market has emerged as an important part of China’s capital market,
and more and more scholars are focusing on its development and growth. Studies about
green bond pricing [8–11], the impact on issuing firms [9,12,13], and the connection between
the green bond market and other financial markets [14–17], among others, have been
emerging, contributing to an in-depth understanding of the operation of the green bond
market and providing theoretical support for its supervision and guidance. Meanwhile, the
risk of the green bond market is a very important topic that has received much attention
from scholars and the practical community.

3.1. Green Bond Market

Several scholars have enriched the risk of green bonds from the perspectives of credit
spreads and risk premiums. Wang et al. [18] studied the influence of macro and micro
factors on the green bond risk premium in China and found that third-party certification,
ratings, etc., tend to reduce green bond yield, thus reducing the financing cost of issuers.
Zerbib [11] found a negative green premium of 2 basis points between the yield spread of
green bonds and matching conventional bonds through a matching method study. Tang
and Zhang [9] had a negative premium of 6.94 basis points in the green bond market for the
full sample, but not when issuer characteristics were considered. Later, MacAskill et al. [19]
found that a green premium exists in 56% of primary market studies and 70% of secondary
market studies by summarizing the relevant green premium research literature.

Some scholars have also studied the risk through its volatility from the viewpoint of the
green bond market. Pham [6] first discovered that green bond volatility is characterized by
volatility clustering, heteroskedasticity, and non-normal distribution. Pham and Huynh [7]
found that green bond volatility is affected by investor attention over time. Subsequently,
Xia et al. [20] proposed two novel heteroskedasticity integration models to predict green
bond market volatility. In the meantime, Liu [1] examined how COVID-19 affected green
bond volatility and indicated significant volatility as well as significant negative abnormal
returns in the green bond under the epidemic shock. Relatively few studies have examined
green bond market risk from a volatility standpoint.

In fact, quite a few scholars analyze the market price risk of green bonds by studying
the correlation between the green bond market and other financial and commodity markets.
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Reboredo [15] pointed out that the green bond market is highly correlated with the bond
market and the money market, but has a weak link with the stock and energy markets [16].
In addition, some scholars have found that green bonds are negatively correlated with WTI
and Brent crude oil prices [21], and there is also a negative correlation with carbon futures
returns [14]. Since 2020, affected by COVID-19, the asset market has fluctuated dramatically.
Many scholars have begun to study the risk spillover effect between green bonds and
different assets based on this background. For example, Naeem et al. [22] examined the
risk spillover effects of green bonds and stocks and bonds based on quantitative methods.
He believed that green bonds have a substitution effect with traditional bonds, and in
low-risk periods, green bonds can provide diversified investment. Tiwari et al. [23] used
the TVP-VAR method to study the asset price pass-through effect of green bonds and
clean energy stocks, and found that the linkage between asset prices is heterogeneous
and changes over time and that green bonds are often the recipients of other asset price
shocks [24].

3.2. Climate Change and Financial Markets

Climate risk, as a new type of macroeconomic risk, is also of interest to scholars in
terms of its impact on financial markets. The complexity of the climate system makes the
metrics of climate risk not yet uniform, and most scholars measure climate risk by using
data such as temperature and drought [3,25,26]. In recent years, scholars have studied
the relationship between climate risk and financial markets from different perspectives.
Painter [27] found that initial yields and underwritten costs were higher for long-term local
government bonds related to climate change. Seltzer et al. [28] empirically analyzed and
found that climate transition risk affects the risk assessment and pricing of corporate bonds.
Huynh and Xia [29] found that corporate bonds that are positively correlated with the
climate news index have lower yields. Given the difficulty of predicting climate risk and
the frequent and unpredictable adjustment of related policies, the risks induced by CPU
in the capital market are gaining attention. Barnett et al. [30] argued that CPU will lead
to changes in investor subjective discount rates in response to climate change. Barro [31]
argued that optimal environmental investment increases as the effectiveness of the CPU
increases and decreases. Bouri et al. [4] found that CPU has a more significant impact on
green energy stocks compared to brown energy stocks and that the effect of CPU on green
energy stocks is positive.

The main elements of earlier literaturesliterature are summarized in Table 1. Overall,
the impact of CPU on financial markets cannot be ignored. Academics have also begun to
extensively study the impact of climate policy changes on financial markets. Adjustments
to climate policy changes are systematic and uncertain, and can significantly affect asset
prices in equity and bond markets, but there is little literature on how climate policy
uncertainty affects green bond markets, especially the risk of green bond markets. Therefore,
this study innovatively analyzes how climate policy uncertainty affects green bond price
volatility to provide theoretical support for the stable and healthy development of the green
bond market.

Table 1. A summary of earlier studies.

Issues of Research References Main Contents

Green bond market

Wang et al., 2019 [18] Factors influencing the risk premium of green bonds
Zerbib, 2019 [11]

Green bond pricingLarcker and Watts, 2020 [8]
Tang and Zhang, 2020 [9]

Wang et al., 2020 [10]
Green bond issuance affects corporate valueJakubik and Uguz, 2021 [13]

Flammer, 2021 [12]
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Table 1. Cont.

Issues of Research References Main Contents

Reboredo, 2018 [15]
Connection between the green bond market and other

financial markets
Reboredo and Ugolini, 2020 [16]

Jin et al., 2020 [14]
Saeed et al., 2021 [17]

Pham, 2016 [6] Green bond volatility
Pham and Huynh, 2020 [7] Investor attention affects green bond volatility

Xia et al., 2020 [20] Forecasting green bond volatility

MacAskill et al., 2021 [19] Green premium literature review
Liu, 2022 [1] COVID-19 and green bond market volatility

Climate change and
financial markets

Barro, 2015 [31] Uncertainty about the effectiveness of climate policy and
environmental investors

Choi et al., 2020 [25] Temperature affects stock prices
Painter, 2020 [27] Climate change on municipal bonds

Seltzer et al., 2020 [28] Climate regulatory risk affects corporate bonds
Barnett et al., 2020 [30] Pricing uncertainty caused by climate change

Huynh and Xia, 2021 [29] Climate change news risk affects corporate bond returns
Somanathan et al., 2021 [3] Temperature affects business labor productivity

Bouri et al. 2022 [4] Climate policy uncertainty affects energy stocks

4. Research Design
4.1. Methodology

From the previous analysis, it is clear that the impact of CPU on green bond volatility
varies in different periods, so this study chooses the vector autoregressive (TVP-VAR)
approach with time-varying parameters to study the time-varying impact of CPU on bond
price volatility. The existing vector autoregressive (VAR) models are mainly used to predict
and analyze the magnitude and direction of unconstrained stochastic perturbations on
system shocks and their durations. Later, a large number of scholars successively proposed
structural VAR (SVAR) models based on VAR models. SVAR models reduce the parameters
to be estimated by adding constraints, which can alleviate the problem of dimensional
catastrophe caused by VAR models when there are too many objects under study. Prim-
iceri [32] introduced the characteristics of time-varying parameters into the SVAR model
and proposed the TVP-SV-VAR model, which was introduced by Nakajima [33], who
derived the construction process of the TVP-VAR model in detail on this basis and set the
precondition of stochastic fluctuation of model variance to make it more consistent with the
logic of economic operation. Since then, related scholars began to use the model to conduct
empirical studies on macroeconomic issues [34,35].

Before building the TVP-VAR model, a VAR model needs to be constructed, which
has the basic form of

Ayt = F1yt−1 + · · ·+ Fsyt−s + µt, t = s + 1, · · · , n (1)

Among them, the yt is the k× 1 dimensional time series observation column vectors,
the A, F1, · · · , Fs are k× k dimensional parameter matrix, and the perturbation term µt are
k× 1 dimensional structural shock column vector, assuming µt ∼ N(0, ΣΣ), where

Σ =


σ1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 σk


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Based on the recursive identification of synchronization relations in structural shocks,
the lower triangular matrix A can be obtained:

A =


1 0 · · · 0

a21
. . . . . .

...
...

. . . . . . 0
ak1 · · · ak,k−1 1


Thus, by transferring the matrix A to the other side of the equation, the SVAR model

can be obtained in short form as follows:

yt = B1yt−1 + · · ·+ Bsyt−s + A−1Σεt, εt ∼ N(0, Ik) (2)

where Bi = A−1Fi, i = 1, · · · , s, the β is a k2s× 1 dimensional column vector, obtained by Bi
obtained by superimposing all the row elements in Define Xt = Is⊗ (yt−1, · · · , yt−3

)
, where

⊗ denotes the Kronecker product, which gives a more simplified form of the model as:

yt = Xtβ + A−1Σεt (3)

If all the parameters in the above assumptions are made to be able to change with
time, then we can obtain:

yt = Xtβt + A−1
t Σtεt, t = s + 1, · · · , n (4)

Equation (4) above is the basic form of the TVP-VAR model, where the coeffi-
cients βt, the joint parameter matrix At and the covariance matrix of the stochastic
fluctuations Σt are time-varying. According to Primiceri [32], Nakajima [33], and
Vuong et al. [36], the definition at = (a21, a31, a32, a41, · · · , ak,k−1)

′ , ht = (h1t, · · · , hht)
′ ,

where hit = log σ2
it, i = 1, · · · , k; t = s + 1, · · · , n. Similarly, we assume that the parameters

in (4) follow the following random wandering process:

βt+1 = βt + µβt, αt+1 = αt + µαt, ht+1 = ht + µht
εt

µβt
µαt
µht

 ∼
0,


1 0 0 0
0 Σβ 0 0
0 0 Σα 0
0 0 0 Σh


, t = s + 1, · · · , n

where, βs+1 ∼ N
(
µβ0, Σβ0

)
, αs+1 ∼ N

(
µ00, Σβ0

)
, hs+1 ∼ N(µh0, Σh0).

According to the algorithm of Nakajima [33], this study uses MCMC sampling method
to estimate the model, such that y = {yt}n

t=1, ω =
(
Σβ, Σα, Σh

)
, set π(ω) be the ω the

prior probability density. For the given data y, the posterior distribution of π(β, α, γ, ω | y)
is sampled.

4.2. Variables

Climate policy uncertainty indicator. Climate Policy Uncertainty refers to the difficulty
in predicting the likelihood of future climate events when climate policy changes. Gavri-
ilidis [37] constructed a CPU index with the help of big data methods based on keywords
such as “uncertainty”, “environment”, “climate change”, “climate risk”, “policy”, “legal”,
and “regulatory”. Figure 4 shows the CPU annotated index, which includes the U.S–China
Joint Statement on Climate Change, the UN Climate Action Summit (China’s position and actions),
etc. It contains many international climate policy changes, and China has been actively
cooperating with the global community to address climate change in the past decade, and
Ren et al. [38] used this index to study total factor productivity in China. For this reason,
this index was selected to measure climate policy uncertainty (CPU) and examine its impact
on green bond price volatility.
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Figure 4. CPU index.

Green Bond Index. This study selected the China Bond Green Bond Index to measure
the green bond market. The China Bond Green Bond Index is jointly compiled by the China
Bond Financial Valuation Center and Hengyun Technology Services (Beijing) Co., Ltd. The
constituent bonds of the index are mainly bonds that meet one of the criteria of the Green
Bond Support Project Catalogue (2021 Edition), Green Bond Principles GBP 2021, and Climate
Bond Standard. In addition, this study also selects the China Bond climate-related bond
index as a proxy variable for robustness testing. The constituent bonds of the China Bond
Climate Related Bond Index are bonds that mainly satisfy one of the criteria of the Green
Bond Support Project Catalogue and the Climate Bond Classification Scheme.

Green bond volatility. For the calculation of volatility, this study refers to the method
of Aye et al. [39] and Gkillas et al. [40] to calculate the volatility of green bonds for the
current month by calculating their daily returns with the mathematical expression:

RVt =
Nt

∑
i=1

r2
i,t

where RVt is the volatility in month t, ri,t is the daily return on day i of month t, and Nt
denotes the number of trading days in month t.

4.3. Data

In this study, the sample interval was set from January 2010 to December 2021, which
includes 12 years of monthly sample data, covering important climate policy-related events
from the Paris Agreement meeting in 2015 to the recent introduction of China’s “double
carbon” target. The two green bond price indices and the CPU index were obtained from
the Wind and Economic Policy Uncertainty Index, respectively. In addition, this paper is
a time series study, and the climate policy uncertainty index was logarithmically treated
to prevent the pseudo-regression phenomenon due to non-stationary time series from
affecting the accuracy of the empirical results and leading to errors in statistical inference.

The trends of the main variables are shown in Table 2 and Figure 5. Although the
volatility of the China Bond Climate Bond Index is more dramatic, the volatility changes
of the two indices are more synchronized, and the China Bond Climate Bond Index is
more appropriate as a robustness test. CPU has been oscillating slightly over the sample
period, which is consistent with the fact that China has continuously introduced policies to
address climate change since 2015 (the “Double Carbon” target in September 2020, etc.).
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How climate policy uncertainty affects green bond price volatility is difficult to conclude
from simple trend changes and needs to be further tested.

Table 2. Descriptive statistics results.

Variable Observations Mean Std. dev. Min P25 P50 P75 Max

CPU 144 2.027 0.291 1.071 1.837 2.017 2.245 2.799
GB 144 0.034 0.048 0.0010 0.0090 0.019 0.040 0.372
QH 144 0.060 0.092 0.0010 0.0090 0.033 0.068 0.591

Note: GB and QH denote China Bond Green Bond Index price volatility and China Bond Climate Bond Index
price volatility, and CPU is the logarithmic value of the climate policy uncertainty index, respectively.
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Figure 5. Descriptive statistics of main indicators.

5. Empirical Results

The TVP-VAR model requires the variables to be smooth series, and the ADF test
is used to determine their smoothness in this study. The test results of each variable are
shown in Table 3. The ADF test statistics of all variables are significant at the 1% level,
indicating that each variable is a smooth series and meets the model requirements.

Table 3. Augmented Dickey–Fuller test.

Variables ADF p-Value Result

CPU −5.896 *** 0.000 Stationary series
GB −8.579 *** 0.000 Stationary series
QH −8.351 *** 0.000 Stationary series

Note: *** denotes significant at 1% confidence level.

It is also necessary to determine the optimal lag order before conducting empirical
analysis with the TVP-VAR model. In this study, the information criterion was used to
determine the number of lags, and the optimal lag order was not determined by the LL
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criterion, while lag 1 should be selected according to the SBIC criterion, and lag 2 should be
selected according to the LR, FPE, AIC, and HQIC criteria. However, because the too-small
lag order cannot guarantee that the random disturbance terms are white noise distributed,
the lag period of the model was finally determined to be 2 periods in this study. The specific
results are shown in Table 4.

Table 4. Selection of model lags.

lag LL LR FPE AIC HQIC SBIC

0 445.85 NA 3.6 × 10−7 −6.32643 −6.30082 −6.2634
1 488.582 85.464 2.2 × 10−7 −6.80832 −6.70586 −6.55618 *
2 505.797 34.429 * 2 × 10−7 * −6.92567 * −6.74636 * −6.48442
3 513.268 14.943 2 × 10−7 −6.90383 −6.64768 −6.27348
4 517.526 8.516 2.2 × 10−7 −6.83609 −6.50309 −6.01663

Note: * indicates the optimal hysteresis order determined by the corresponding method.

5.1. MCMC Simulation

For the parameters in the model, this study refers to the initial parameter settings of Naka-
jima [33] in the empirical study; uβ0 = uα0 = uh0 = 0, σβ0 = σα0 = σh0 = 10× I,

(
σβ

)−2
i ∼

Gamma(40, 0.02) , (σα)
−2
i ∼ Gamma(40, 0.02), (σh)

−2
i ∼ Gamma(40, 0.02). After 10,000 simu-

lations by the MCMC method, the first 1000 samples were discarded as aging values, and the
posterior distribution of the parameters was estimated using the last 9000 samples. Figures 6–8
and Table 5 report the estimation results for selected parameters of the TVP-VAR model for the
variable set.
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Table 5. Estimation results of selected parameters in the TVP-VAR model.

Parameter Mean Stdev 95%L 95%U Geweke Inef.(
∑ β

)
1

0.0227 0.0026 0.0183 0.0284 0.071 8.99(
∑ β

)
2

0.0229 0.0027 0.0183 0.0288 0.760 8.13

(∑ a)1 0.0442 0.0078 0.0315 0.0612 0.885 25.23
(∑ a)2 0.0403 0.0070 0.0293 0.0560 0.000 22.82
(∑ h)1 0.2653 0.0996 0.1163 0.4957 0.733 69.45
(∑ h)2 0.6211 0.1255 0.4078 0.8989 0.466 65.66

As shown in Figure 6, the autocorrelation coefficient of the sample shows a stable
decreasing trend, which indicates that the sample data are smooth. The autocorrelation
coefficient of parameter samples decreases gradually, and its fluctuation tends to zero after
500 times of MCMC. Figure 7 represents the smoothness of the sample fetching path, and it
can be seen from Figure 7 that the sample path shows an overall up-and-down fluctuation
with fewer extreme values, i.e., the sample fetching path is smooth. In addition, the graph
in Figure 8 resembles posterior densities, indicating that the samples obtained by MCMC
sampling with predefined parameters are valid. In addition, the inefficiency factors are
quite low and the 95% confidence intervals include the estimated posterior mean for each
of the parameters estimated. Therefore, the results show that posterior draws are efficiently
produced by the MCMC algorithm.

Table 5 presents the estimation results computed using the MCMC algorithm, in-
cluding the posterior means, standard deviation, and 95% credible intervals, Geweke
convergence diagnostics statistics (Geweke), and inefficiency (Inef.). Among them, Geweke
and the null factor are important for judging whether the MCMC sampling results are
reasonable. Geweke is used to detect whether the sampling results of the model conform to
the posterior distribution characteristics, while the null factor is the ratio of the variance
of the posterior sample means to the variance of the uncorrelated serial sample means.
The Geweke probabilities in Table 5 are significant at the 5% significance level (all Geweke
values are less than 1.96), and all the inefficiency factors are less than 100, indicating that
the sampled samples are valid for the posterior estimates of the TVP-VAR model.

5.2. Stochastic Volatility Estimation

Figure 9 reflects the stochastic volatility of CPU, GB and QH, from which it can be
seen that there is a wave of a peak in CPU between 2013–2014, as well as a small peak in
2019–2020, which is to some extent also related to the intensity of relevant policies. The
volatility of GB, on the other hand, is mainly reflected before 2012, which may also be
related to the imperfect growth of the green bond market at this time.
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5.3. Time-Varying Impulse Response Estimation

The biggest advantage of the TVP-VAR model over the traditional VAR model is that
the impulse responses of the variables can be estimated at various time points.

Figure 10 shows the simultaneous relation posterior estimates, and it indicates that the
synchronization relationship of the structural shocks is time-varying. Figure 11 represents
the time-varying impulse responses for a 0-month horizon, a 2-month horizon, and a
6-month horizon, respectively.
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Figure 11 shows the impulse response results of CPU on green bond price volatility.
The impulse response function image oscillates up and down around the 0 point for the
same time constraint and varies for different time constraints, indicating that the impact
of CPU on green bond price volatility has a significant time-varying effect. This is mainly
due to the fact that the domestic green bond market was not formally established at this
stage, and the international green bond was also in its initial stage. By 2012, the green bond
market was gradually recognized by various international financial organizations. From
2012 onwards, with the further development of the green bond market, CPU gradually
shows a significant impact on the price volatility of the green bond market.

Between 2012 and mid-2015, the impact was mainly characterized by a small “up-
down” process and reached its lowest point in mid-2015. This is mainly related to the
development process of China’s green bond market. The period 2013–2014 saw rapid
development of the international green bond market, with the growth rate of issuance
remaining above 200%, which to a certain extent promoted the development of green
bonds in China. At the same time, starting from the Eleventh Five-Year Plan, China began
to formulate specific requirements for energy conservation and emission reduction in
its development plan, and by the end of 2015, China’s green bond market was formally
established. During this period, China continuously introduced various policies to address
climate change, such as the incorporation of ecological civilization construction into the
overall layout of the Five Branches of the Socialist Cause with Chinese Characteristics in
the 18th Party Congress in May 2013. Green development has received wide attention and
importance, such as the introduction of the Action Plan for Low Carbon Development of
Energy Conservation and Emission Reduction in 2014–2015 in May 2014, among the overall
layout of the five socialist undertakings. Therefore, the impact of CPU on GB also shows a
small peak.

After 2016, China’s green bond market began to flourish. At the same time, national
policies on addressing climate change were continuously introduced, as shown by the
degree of the shock of CPU on green bond price volatility that began to gradually expand
and reached extreme values after 2018. Whereas the trend of the impulse response function
images under the 2-month and 6-month time constraints is generally opposite to the
0-month trend, a possible reason for this is the adjustment to short-term over- or under-
reaction. A positive and increasing short-term shock during the 2016–2017 bond bear
market would indicate increased green bond price volatility as CPU increased, while a
negative medium-term shock suggests a possible overreaction to the increased green bond
price volatility triggered by the short-term shock over a longer period, with a pullback
in subsequent time. Green bond price volatility becomes less volatile and less risky in
this scenario, with expected returns consistent with a bear market becoming more bearish.
During the 2018–2020 bond bull market, short-term shocks quickly fall back and turn
negative, likely due to high investor sentiment and underreaction to CPU, while medium-
term shocks climb rapidly and turn positive, peaking near 2020, indicating an adjustment
to an underreaction to shocks over a longer period. In this case, green bond prices become
more volatile and riskier, with expected returns consistent with a more bullish bull market.
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Thus, the impact of CPU on the green bond price volatility provides a plausible explanation
for the “bear market and bull market”. Long-term shocks have a similar impact as in the
medium-term, but they are smaller. In addition, from a medium- to long-term perspective,
the impact of CPU on green bond volatility is smaller because green bonds are mainly
invested in green projects, supported by national policies, and held by investors for a long
time. The overall impact is negative because climate policy adjustment is generally to
support green development due to the growing climate problem.

To examine the impact of CPU on green bond price volatility at different points in time,
the period of the Paris Agreement meeting in December 2015, the period of the release of
the “China’s Policies and Actions to Address Climate Change 2017 Annual Report” (hereinafter
referred to as the “Annual Report”) in October 2017 and the period of the “Double Carbon”
in September 2020 were selected.

Figure 12 gives the impulse response plots of the shocks of CPU on green bond price
volatility at the three-time points. There is some variability in the response patterns of
CPU on the shocks to green bond price volatility at the three-time points, and the degree
of impact of CPU on green bond price volatility is greatest in the short term, after which
the impact fades away. This conclusion is in accordance with the previous finding on the
time-varying impulse response of CPU. In December 2015, the impact of CPU on green
bond price volatility is positive in the first 2 periods, becomes negative in period 2, and
then gradually weakens, oscillates, and converges to 0. In October 2017, the extent of the
impact is greatest in period 0, and changes from a positive shock to a negative shock after
period 1. In September 2020, the impact is weaker, with a more pronounced negative shock
in period 1, and then gradually converges to 0. China’s green bond market has developed
rapidly since 2016, and thanks to China’s policy of strongly supporting the development
of the green bond market, green bonds are popular in the financial market, and green
bonds have shown good risk tolerance at this time, enabling them to effectively support
the green transition and hedge against climate policy uncertainty. From December 2015 to
September 2020, China has always attached importance to the response to and governance
of climate change, and at this time investors are bullish about the prospects of China’s
green bond market and tend to buy more green bonds [2].

Sustainability 2023, 15, x FOR PEER REVIEW 15 of 18 
 

and green bonds have shown good risk tolerance at this time, enabling them to effectively 
support the green transition and hedge against climate policy uncertainty. From 
December 2015 to September 2020, China has always attached importance to the response 
to and governance of climate change, and at this time investors are bullish about the 
prospects of China’s green bond market and tend to buy more green bonds [2]. 

 
Figure 12. Impact of CPU on GB at different points in time. 

5.4. Robustness Check 
In the VAR model, the choice of indicators will have an impact on the empirical 

results. To improve credibility, the volatility (QH) of the China Bond climate-related bond 
index was used as a proxy variable for the robustness test in this study. The constituent 
bonds of the China Bond Climate Related Bond Index are bonds that mainly satisfy one 
of the criteria of the Green Bond Support Project Catalogue and the Climate Bond 
Classification Scheme. 

Comparing Figures 11 and 13, the trends of the shocks of CPU on climate bond price 
volatility remain largely consistent with the previous section, especially in the short and 
medium term, where the results are very similar. Taking the short-term (0-month) 
constraint as an example, the price volatility affected by CPU of both climate bonds and 
green bonds reaches its extreme value around 2018, with an overall “up-down” trend in 
all three phases. Comparing Figures 12 and 14, the impact of CPU on climate bond price 
volatility at three points in time is also largely consistent with the impact on green bond 
price volatility. 

 
Figure 13. Time-varying impulse response of CPU to QH. 

Figure 12. Impact of CPU on GB at different points in time.

5.4. Robustness Check

In the VAR model, the choice of indicators will have an impact on the empirical results.
To improve credibility, the volatility (QH) of the China Bond climate-related bond index
was used as a proxy variable for the robustness test in this study. The constituent bonds of
the China Bond Climate Related Bond Index are bonds that mainly satisfy one of the criteria
of the Green Bond Support Project Catalogue and the Climate Bond Classification Scheme.

Comparing Figures 11 and 13, the trends of the shocks of CPU on climate bond price
volatility remain largely consistent with the previous section, especially in the short and
medium term, where the results are very similar. Taking the short-term (0-month) constraint
as an example, the price volatility affected by CPU of both climate bonds and green bonds
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reaches its extreme value around 2018, with an overall “up-down” trend in all three phases.
Comparing Figures 12 and 14, the impact of CPU on climate bond price volatility at three
points in time is also largely consistent with the impact on green bond price volatility.
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6. Conclusions

This study takes green bond price volatility as the research object and adopts the
TVP-VAR model to explore the relationship between the impact of CPU on green bond
volatility over time. The empirical results show that: (1) The impact of CPU on green
bond price volatility is time-varying. In the short term, the impact is dramatic, and in the
medium and long term it decreases green bond price volatility and the impact is reversed.
From a behavioral finance perspective, this phenomenon may be caused by short-term
overreaction or underreaction and is tempered in the medium to long term. From an
investment specificity perspective, this phenomenon may be due to the overall direction
of climate policy adjustment toward supporting the development of green bond markets
and reducing price volatility. (2) By analyzing the impulse responses of CPU and shocks to
green bond price volatility at different points in time, we found that CPU in the period of
the Paris Agreement meeting in December 2015 and the release of the Annual Report in
October 2017 had a positive impact on green bond price volatility from the beginning to a
negative one after two periods. CPU on green bond price volatility during the period of
the “double carbon” policy is generally negative and gradually stabilizes, and the impact is
somewhat persistent.

This study mainly discusses that investors in the green bond market are rational
people who will change their investment strategies as climate policies change. However, in
reality there are still many “green” investors in the market, namely sustainable investors.
When climate policy changes, the investment sentiment of rational investors may change,
but for those green investors, they are more concerned about the “green” benefits of green
bonds themselves and believe that green bonds have “green” core values, that is, green
bonds can well resist the uncertainty caused by climate policy changes. They seem not
to be so sensitive to climate policy changes, and the degree of uncertainty seems to be
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reduced. At this time, there may be some deviations in the applicability and universality of
the conclusion that CPU affects green bond price fluctuations through investor sentiment.
Moreover, to address climate change problems, Vuong [41] suggested embracing a new
cultural core value centered around environmental protection. These are also possible
limitations of this study. Therefore, our future studies can examine the specific research
and analysis of investor behavior in different markets and corporate culture.

In fact, this paper mainly examines the relationship between climate policy uncertainty
and green bond price volatility in a macro context, and fits more from the perspective of
model regression to analyze the relationship between climate policy uncertainty and green
bond volatility. Therefore, on the basis of the above findings, this study makes the following
policy recommendations: (1) Conduct climate risk stress tests. By simulating various
possible extreme weather scenarios and transition risks, climate change risk exposure can
be analyzed prospectively, potential losses can be predicted, and countermeasures can be
taken, thus reducing the impact of future climate policy adjustments and improving the
resilience of the financial system; (2) Cultivate long-term “green” investors. For “green”
speculators in the market, the relevant departments should guide them to become long-term
“green” investors, and try to avoid the situation of short-term violent price fluctuations
in the green bond market caused by investor panic due to the failure of climate policy;
(3) strengthen the regulatory mechanism of the green bond market. Since climate policy
uncertainties can significantly affect green bond price fluctuations in the short term, relevant
regulatory authorities should strengthen the supervision of green bond market operations
and pay timely attention to investor sentiment and the introduction of relevant policies, so
as to alleviate green bond market turbulence.
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