Skip to main content
The present review work elaborates the behaviour of aluminium matrix composites (AMCs) under various kinds of thermal stresses. AMCs find a number of applications such as automobile brake systems, cryostats, microprocessor lids, space... more
The present review work elaborates the behaviour of aluminium matrix composites (AMCs) under various kinds of thermal stresses. AMCs find a number of applications such as automobile brake systems, cryostats, microprocessor lids, space structures, rocket turbine housing, and fan exit guide vanes in gas turbine engines. These applications require operation at varying temperature conditions ranging from high to cryogenic temperatures. The main objective of this paper was to understand the behaviour of AMCs during thermal cycling, under induced thermal stresses and thermal fatigue. It also focuses on the various thermal properties of AMCs such as thermal conductivity and coefficient of thermal expansion (CTE). CTE mismatch between the reinforcement phase and the aluminium matrix results in the generation of residual thermal stress by virtue of fabrication. These thermal stresses increase with increasing volume fraction of the reinforcement and decrease with increasing interparticle spac...
Carbon fibre reinforced polymer (CFRP) composites a perfect structural material due to their outstanding malleable strength, great rigidity, light mass and pronounced thermal resistance. But their inferior out-of-plane properties which... more
Carbon fibre reinforced polymer (CFRP) composites a perfect structural material due to their outstanding malleable strength, great rigidity, light mass and pronounced thermal resistance. But their inferior out-of-plane properties which are controlled by the matrix–fibre interface restrict the use of CFRP composites in critical applications. Amalgamation of nanofiller in the CFRP composites has found to improve the matrix-fibre interface and there by out-of-plane response. Though matrix modification has contributed to the improvement of interface, fibre modification has a scope for higher levels of nanofiller incorporation and proper fibre nanofiller adhesion. Out of several methods available for fibre modification electrophoretic deposition (EPD) is an eye-catching method for monitoring as well for nanofiller deposition. In recent ages, Graphene has grabbed wonderful consideration Among the graphene based functionalised nanofillers Carboxyl functionalized Graphene (G-COOH) modified ...
The exceptional and distinctive properties of the allotropes of carbonaceous nanomaterials like carbon nanotubes and graphene have attracted many researchers and engineers to enhance the performance of fibrous polymeric composites. This... more
The exceptional and distinctive properties of the allotropes of carbonaceous nanomaterials like carbon nanotubes and graphene have attracted many researchers and engineers to enhance the performance of fibrous polymeric composites. This article extrapolates the synergetic impact of carbon nanotube (CNT) and multi-layered graphene (MLG) reinforcement onto the mechanical performance of glass fiber/epoxy composites. Magnetic stirring and ultra-sonication process have been carried out under optimized parameters for incorporation of CNT-MLG into the epoxy polymer. Incorporation of 0.1wt% of carbon nanotube to the glass fiber/epoxy composites enhances a flexural strength of 10% and addition of 0.1 wt. % of multi layered graphene to the glass fiber/ epoxy composites enhances a flexural strength of 6% when differentiated with neat GE. Embodiment of 0.1 wt. % CNT and MLG to the glass fiber/epoxy composites in three different ratios like 1:1, 1:2 and 2:1 showcases a 13%, 12.25% and 14.7% enha...
The present study focuses on the intriguing enhancement in the mechanical properties of an epoxy-based composite structure resulting from the incorporation of in-house synthesized functionalized graphene nanosheets (f-GNSs) as... more
The present study focuses on the intriguing enhancement in the mechanical properties of an epoxy-based composite structure resulting from the incorporation of in-house synthesized functionalized graphene nanosheets (f-GNSs) as nanofillers. The f-GNSs were obtained by anionic electrochemical intercalation and exfoliation with 2 M H2SO4, HClO4, and HNO3 protic electrolytes. The structural properties of the as-synthesized GNSs were analyzed by XRD and Raman spectroscopy. The (002) and (001) lattice planes of graphene and graphene oxide are observed at around 24.5° and 11° (2θ), respectively, in the XRD spectra. The characteristic peaks at around 1345, 1590, and 2700 cm(-1) correspond to the D, G, and 2D bands of the GNSs in the Raman spectra. Quantification of the functional groups and sp(2) contents in the GNSs were further analyzed by XPS. Morphological characterization of the f-GNSs reveals that the exfoliated carbon sheets consist of 2-8 layers. The composites are then fabricated b...
The environmental durability of polymer based composites has always been a critical concern over its short- and long-term performances. The degree of environmental degradation is supposed to have different mechanisms and kinetics at the... more
The environmental durability of polymer based composites has always been a critical concern over its short- and long-term performances. The degree of environmental degradation is supposed to have different mechanisms and kinetics at the polymer/reinforcement interfaces in comparison to the bulk polymer matrix. Differential degradation could possibly attribute a stressed state in the material, especially at the interfaces. Present review is focused on the roles of reinforcing CNT on the performance of the polymeric nanocomposites in different in-service environments (the environmental parameters include temperature, moisture, UV light, low earth orbit space environment, electromagnetic waves). It is essential to understand how the addition of CNTs in polymeric material alters the microstructure at micro- and nano-scale, and how these modifications influence the overall macroscopic behaviour, not only in its as fabricated form, but also its continuous alteration with time in the in-se...
Copper-alumina nanocomposites of 0.5, 1, 3, 5, 7 vol.% alumina (average size <50 nm) reinforced in copper matrix were fabricated using spark plasma sintering (SPS) technique. Another set of microcomposites containing 1, 5, 20 vol.% of... more
Copper-alumina nanocomposites of 0.5, 1, 3, 5, 7 vol.% alumina (average size <50 nm) reinforced in copper matrix were fabricated using spark plasma sintering (SPS) technique. Another set of microcomposites containing 1, 5, 20 vol.% of alumina (average size ∼10 μm) had been fabricated to compare the physical as well as mechanical attributes of composites with variation of reinforcement particle size. These micro- and nano-composites have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) followed by microhardness, nanoindentation hardness, and wear measurements. It has been found that hardness values are higher for nanocomposites as compared to microcomposites. It is also found that wear resistance increases with increasing alumina content. The microcomposites show better wear resistance than nanocomposites for the same composition. The interaction of copper and alumi...
FRP composite materials exhibit superior mechanical properties. The most promising properties include strength to density ratio, anti-corrosion property, high toughness and strength etc. During their service period they are exposed to... more
FRP composite materials exhibit superior mechanical properties. The most promising properties include strength to density ratio, anti-corrosion property, high toughness and strength etc. During their service period they are exposed to various severe environmental conditions which include high temperature, low temperature, thermal shock, thermal spike, UV radiation, high humidity, sea water, alkaline fluids etc. The present review focuses on in-service performance of FRP composites in diversified environmental conditions as mentioned above. Subjecting the composite to high temperature may lead to significant mass loss and material shrinkage. Generation of residual stresses at low temperature accelerates delamination, debonding and matrix hardening. Thermal shock leads to sudden debonding of fibre/matrix interface due to catastrophic fluctuation in temperature. Decolourisation of composite is resulted under exposure to UV radiation. Moisture and sea water exposure cause swelling in ma...
Research Interests:
ABSTRACT In the present study, an emphasis has been laid on evaluation of the microstructural morphologies and their implications on mechanical performance of the composites by varying the reinforcement particle size. Nanocomposites of... more
ABSTRACT In the present study, an emphasis has been laid on evaluation of the microstructural morphologies and their implications on mechanical performance of the composites by varying the reinforcement particle size. Nanocomposites of 0.5, 1, 3, 5, 7 volume % alumina (average size < 50 nm) and microcomposites of 1, 5, 20 volume % of alumina (average size ~ 10 μm) reinforced in aluminium matrix were fabricated by spark plasma sintering technique at a temperature of 773 K and pressure of 50 MPa. These micro- and nano-composites have been characterized using X-ray diffraction, scanning electron microscopy and transmission electron microscopy followed by density, microhardness and nanoindentation hardness measurements. The alumina nanoparticles revealed appreciable physical intimacy with the aluminium matrix than that of alumina microparticles. The highest nanohardness recorded 0.85 GPa and 99% densification for 7 and 1 vol.% Al–Al2O3 nancomposites respectively. Spark plasma sintering imparts enhanced densification and matrix-reinforcement proximity which have been corroborated with the experimental results.

And 39 more