ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Piriform Spider Silk Sequences Reveal Unique Repetitive Elements

View Author Information
Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 821071-3944, United States, Laboratory of Molecular Biology, EMBRAPA Western Amazonia, Manaus, AM, Brazil, and Laboratory of Gene Transfer, Biotechnology Unit, EMBRAPA Genetic Resources and Biotechnology, Brasilia, DF, Brazil
* To whom correspondence should be addressed. Tel.: 307-766-5534. Fax: 307-766-5098. E-mail: [email protected]
†University of Wyoming.
‡EMBRAPA Western Amazonia.
§EMBRAPA Genetic Resources and Biotechnology.
Cite this: Biomacromolecules 2010, 11, 11, 3000–3006
Publication Date (Web):October 18, 2010
https://doi.org/10.1021/bm1007585
Copyright © 2010 American Chemical Society

    Article Views

    782

    Altmetric

    -

    Citations

    47
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (3)»

    Abstract

    Abstract Image

    Orb-weaving spider silk fibers are assembled from very large, highly repetitive proteins. The repeated segments contain, in turn, short, simple, and repetitive amino acid motifs that account for the physical and mechanical properties of the assembled fiber. Of the six orb-weaver silk fibroins, the piriform silk that makes the attachment discs, which lashes the joints of the web and attaches dragline silk to surfaces, has not been previously characterized. Piriform silk protein cDNAs were isolated from phage libraries of three species: A. trifasciata, N. clavipes, and N. cruentata. The deduced amino acid sequences from these genes revealed two new repetitive motifs: an alternating proline motif, where every other amino acid is proline, and a glutamine-rich motif of 6−8 amino acids. Similar to other spider silk proteins, the repeated segments are large (>200 amino acids) and highly homogenized within a species. There is also substantial sequence similarity across the genes from the three species, with particular conservation of the repetitive motifs. Northern blot analysis revealed that the mRNA is larger than 11 kb and is expressed exclusively in the piriform glands of the spider. Phylogenetic analysis of the C-terminal regions of the new proteins with published spidroins robustly shows that the piriform sequences form an ortholog group.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Partial cDNA sequences from which the piriform silk protein sequences were deduced (Figure S1), the alignment of the piriform protein C-terminal amino acid sequences (Figure S2) that were used to construct the phylogenetic tree in Figure 6, and the complete amino acid analysis of the N. clavipes piriform silk (Table SI). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 47 publications.

    1. Xue Li, Jing-song Fan, Mengqi Shi, Chong Cheong Lai, Jiaxin Li, Qing Meng, Daiwen Yang. C-Terminal Domains of Spider Silk Proteins Having Divergent Structures but Conserved Functional Roles. Biomacromolecules 2022, 23 (4) , 1643-1651. https://doi.org/10.1021/acs.biomac.1c01513
    2. Pamela A. Zobel-Thropp, Sandra M. Correa, Jessica E. Garb, and Greta J. Binford . Spit and Venom from Scytodes Spiders: A Diverse and Distinct Cocktail. Journal of Proteome Research 2014, 13 (2) , 817-835. https://doi.org/10.1021/pr400875s
    3. Wei Lu, Run Shi, Xue Li, Sanyuan Ma, Daiying Yang, Deli Shang, Qingyou Xia. A review on complete silk gene sequencing and de novo assembly of artificial silk. International Journal of Biological Macromolecules 2024, 264 , 130444. https://doi.org/10.1016/j.ijbiomac.2024.130444
    4. Clemens F. Schaber, Ingo Grawe, Stanislav N. Gorb. Attachment discs of the diving bell spider Argyroneta aquatica. Communications Biology 2023, 6 (1) https://doi.org/10.1038/s42003-023-05575-7
    5. Daniela Matias de C. Bittencourt, Paula Oliveira, Valquíria Alice Michalczechen-Lacerda, Grácia Maria Soares Rosinha, Justin A. Jones, Elibio L. Rech. Bioengineering of spider silks for the production of biomedical materials. Frontiers in Bioengineering and Biotechnology 2022, 10 https://doi.org/10.3389/fbioe.2022.958486
    6. Megija Šede, Jēkabs Fridmanis, Martins Otikovs, Jan Johansson, Anna Rising, Nina Kronqvist, Kristaps Jaudzems. Solution Structure of Tubuliform Spidroin N-Terminal Domain and Implications for pH Dependent Dimerization. Frontiers in Molecular Biosciences 2022, 9 https://doi.org/10.3389/fmolb.2022.936887
    7. Frank Y.C. Liu, Jessica Y.X. Liu, Xiu Yao, Boxiang Wang. Hybrid sequencing reveals the full-length Nephila pilipes pyriform spidroin 1 (PySp1). International Journal of Biological Macromolecules 2022, 200 , 362-369. https://doi.org/10.1016/j.ijbiomac.2021.12.078
    8. Yue Zhao, Lin Liang, Yanrong Li, Khuat Thi Thu Hien, Goro Mizutani, Harvey N. Rutt. Sum frequency generation spectroscopy of the attachment disc of a spider. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021, 263 , 120161. https://doi.org/10.1016/j.saa.2021.120161
    9. Xiaoli Tang, Xiaogang Ye, Xiaoxiao Wang, Shuo Zhao, Meiyu Wu, Jinghua Ruan, Boxiong Zhong. High mechanical property silk produced by transgenic silkworms expressing the spidroins PySp1 and ASG1. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-00029-8
    10. Fan Li, Chao Bian, Daiqin Li, Qiong Shi. Spider Silks: An Overview of Their Component Proteins for Hydrophobicity and Biomedical Applications. Protein & Peptide Letters 2021, 28 (3) , 255-269. https://doi.org/10.2174/0929866527666200907104401
    11. Keiji Numata. Structure. 2021, 57-88. https://doi.org/10.1016/B978-0-12-820555-6.00005-7
    12. Yunqing Gu, Lingzhi Yu, Jiegang Mou, Denghao Wu, Peijian Zhou, Maosen Xu. Mechanical properties and application analysis of spider silk bionic material. e-Polymers 2020, 20 (1) , 443-457. https://doi.org/10.1515/epoly-2020-0049
    13. Zaroug Jaleel, Shun Zhou, Zaira Martín-Moldes, Lauren M. Baugh, Jonathan Yeh, Nina Dinjaski, Laura T. Brown, Jessica E. Garb, David L. Kaplan. Expanding Canonical Spider Silk Properties through a DNA Combinatorial Approach. Materials 2020, 13 (16) , 3596. https://doi.org/10.3390/ma13163596
    14. Hongnian Zhu, Anna Rising, Jan Johansson, Xiaohua Zhang, Ying Lin, Lei Zhang, Tuo Yi, Junpeng Mi, Qing Meng. Tensile properties of synthetic pyriform spider silk fibers depend on the number of repetitive units as well as the presence of N- and C-terminal domains. International Journal of Biological Macromolecules 2020, 154 , 765-772. https://doi.org/10.1016/j.ijbiomac.2020.03.042
    15. Jan Zidek, Andrey Milchev, Josef Jancar. Dynamic Responsive Formation of Nanostructured Fibers in a Hydrogel Network: A Molecular Dynamics Study. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00120
    16. Nobuaki Kono, Hiroyuki Nakamura, Rintaro Ohtoshi, Daniel A. Pedrazzoli Moran, Asaka Shinohara, Yuki Yoshida, Masayuki Fujiwara, Masaru Mori, Masaru Tomita, Kazuharu Arakawa. Orb-weaving spider Araneus ventricosus genome elucidates the spidroin gene catalogue. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-44775-2
    17. Sandra M. Correa-Garhwal, Thomas H. Clarke, Marc Janssen, Luc Crevecoeur, Bryce N. McQuillan, Angela H. Simpson, Cor J. Vink, Cheryl Y. Hayashi. Spidroins and Silk Fibers of Aquatic Spiders. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-49587-y
    18. Ashutosh Bandyopadhyay, Suvro Kanti Chowdhury, Souradeep Dey, Joseph Christakiran Moses, Biman B. Mandal. Silk: A Promising Biomaterial Opening New Vistas Towards Affordable Healthcare Solutions. Journal of the Indian Institute of Science 2019, 99 (3) , 445-487. https://doi.org/10.1007/s41745-019-00114-y
    19. Kangkang Wang, Rui Wen, Qiupin Jia, Xiangqin Liu, Junhua Xiao, Qing Meng. Analysis of the Full-Length Pyriform Spidroin Gene Sequence. Genes 2019, 10 (6) , 425. https://doi.org/10.3390/genes10060425
    20. Marina Wirth, Jonas O. Wolff, Esther Appel, Stanislav N. Gorb. Ultrastructure of spider thread anchorages. Journal of Morphology 2019, 280 (4) , 534-543. https://doi.org/10.1002/jmor.20962
    21. S.M. Correa‐Garhwal, R.C. Chaw, T. Dugger, T.H. Clarke, K.H. Chea, D. Kisailus, C.Y. Hayashi. Semi‐aquatic spider silks: transcripts, proteins, and silk fibres of the fishing spider, Dolomedes triton (Pisauridae). Insect Molecular Biology 2019, 28 (1) , 35-51. https://doi.org/10.1111/imb.12527
    22. Rui Wen, Kangkang Wang, Xiangqin Liu, Xue Li, Junpeng Mi, Qing Meng. Molecular cloning and analysis of the full-length aciniform spidroin gene from Araneus ventricosus. International Journal of Biological Macromolecules 2018, 117 , 1352-1360. https://doi.org/10.1016/j.ijbiomac.2017.12.090
    23. Sandra M. Correa-Garhwal, R. Crystal Chaw, Thomas H. Clarke, Liliana G. Alaniz, Fanny S. Chan, Rachael E. Alfaro, Cheryl Y. Hayashi, . Silk genes and silk gene expression in the spider Tengella perfuga (Zoropsidae), including a potential cribellar spidroin (CrSp). PLOS ONE 2018, 13 (9) , e0203563. https://doi.org/10.1371/journal.pone.0203563
    24. Rui Wen, Xiangqin Liu, Qing Meng. Characterization of full-length tubuliform spidroin gene from Araneus ventricosus. International Journal of Biological Macromolecules 2017, 105 , 702-710. https://doi.org/10.1016/j.ijbiomac.2017.07.086
    25. Ali D. Malay, Kazuharu Arakawa, Keiji Numata, . Analysis of repetitive amino acid motifs reveals the essential features of spider dragline silk proteins. PLOS ONE 2017, 12 (8) , e0183397. https://doi.org/10.1371/journal.pone.0183397
    26. Sandra M. Correa-Garhwal, R. Crystal Chaw, Thomas H. Clarke, Nadia A. Ayoub, Cheryl Y. Hayashi. Silk gene expression of theridiid spiders: implications for male-specific silk use. Zoology 2017, 122 , 107-114. https://doi.org/10.1016/j.zool.2017.04.003
    27. Ro Crystal Chaw, Christopher A. Saski, Cheryl Y. Hayashi. Complete gene sequence of spider attachment silk protein (PySp1) reveals novel linker regions and extreme repeat homogenization. Insect Biochemistry and Molecular Biology 2017, 81 , 80-90. https://doi.org/10.1016/j.ibmb.2017.01.002
    28. Sean J. Blamires, Todd A. Blackledge, I-Min Tso. Physicochemical Property Variation in Spider Silk: Ecology, Evolution, and Synthetic Production. Annual Review of Entomology 2017, 62 (1) , 443-460. https://doi.org/10.1146/annurev-ento-031616-035615
    29. Jonas O. Wolff. Structural Effects of Glue Application in Spiders—What Can We Learn from Silk Anchors?. 2017, 63-80. https://doi.org/10.1007/978-3-319-59114-8_5
    30. Sean J. Blamires, Shichang Zhang, I-Min Tso. Webs: Diversity, Structure and Function. 2017, 137-164. https://doi.org/10.1007/978-3-319-65717-2_6
    31. Justin Jones, Thomas Harris, Paula Oliveira, Brianne Bell, Abdulrahman Alhabib, Randolph Lewis. Importance of Heat and Pressure for Solubilization of Recombinant Spider Silk Proteins in Aqueous Solution. International Journal of Molecular Sciences 2016, 17 (11) , 1955. https://doi.org/10.3390/ijms17111955
    32. B. Mortimer, A. Soler, C. R. Siviour, R. Zaera, F. Vollrath. Tuning the instrument: sonic properties in the spider's web. Journal of The Royal Society Interface 2016, 13 (122) , 20160341. https://doi.org/10.1098/rsif.2016.0341
    33. Taylor Crawford, Caroline Williams, Ryan Hekman, Simmone Dyrness, Alisa Arata, Craig Vierra. Molecular and Structural Properties of Spider Silk. 2016, 445-487. https://doi.org/10.1007/978-3-319-40740-1_12
    34. Amanda E. Brooks. The Potential of Silk and Silk-Like Proteins as Natural Mucoadhesive Biopolymers for Controlled Drug Delivery. Frontiers in Chemistry 2015, 3 https://doi.org/10.3389/fchem.2015.00065
    35. Ching-Shuen Wang, Huaizhong Pan, G. Mahika Weerasekare, Russell J. Stewart. Peroxidase-catalysed interfacial adhesion of aquatic caddisworm silk. Journal of The Royal Society Interface 2015, 12 (112) , 20150710. https://doi.org/10.1098/rsif.2015.0710
    36. Elise Hennebert, Barbara Maldonado, Peter Ladurner, Patrick Flammang, Romana Santos. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review. Interface Focus 2015, 5 (1) , 20140064. https://doi.org/10.1098/rsfs.2014.0064
    37. Olena Tokareva, Matthew Jacobsen, Markus Buehler, Joyce Wong, David L. Kaplan. Structure–function–property–design interplay in biopolymers: Spider silk. Acta Biomaterialia 2014, 10 (4) , 1612-1626. https://doi.org/10.1016/j.actbio.2013.08.020
    38. Sean J. Blamires, Vasav Sahni, Ali Dhinojwala, Todd A. Blackledge, I-Min Tso, . Nutrient Deprivation Induces Property Variations in Spider Gluey Silk. PLoS ONE 2014, 9 (2) , e88487. https://doi.org/10.1371/journal.pone.0088487
    39. Michael B. Hinman, Florence Teulé, David Perry, Bo An, Sherry Adrianos, Amy Albertson, Randy Lewis. Modular Spider Silk Fibers: Defining New Modules and Optimizing Fiber Properties. 2014, 137-164. https://doi.org/10.1007/978-94-007-7119-2_8
    40. Nicola M. Pugno, Steven W. Cranford, Markus J. Buehler. Synergetic Material and Structure Optimization Yields Robust Spider Web Anchorages. Small 2013, 9 (16) , 2747-2756. https://doi.org/10.1002/smll.201201343
    41. Todd A. Blackledge. Spider Silk: Molecular Structure and Function in Webs. 2013, 267-281. https://doi.org/10.1007/978-3-642-33989-9_20
    42. Gefei Chen, Xiangqin Liu, Yunlong Zhang, Senzhu Lin, Zijiang Yang, Jan Johansson, Anna Rising, Qing Meng, . Full-Length Minor Ampullate Spidroin Gene Sequence. PLoS ONE 2012, 7 (12) , e52293. https://doi.org/10.1371/journal.pone.0052293
    43. Keshav Vasanthavada, Xiaoyi Hu, Tiffany Tuton-Blasingame, Yang Hsia, Sujatha Sampath, Ryan Pacheco, Jordan Freeark, Arnold M. Falick, Simon Tang, Justine Fong, Kristin Kohler, Coby La Mattina-Hawkins, Craig Vierra. Spider Glue Proteins Have Distinct Architectures Compared with Traditional Spidroin Family Members. Journal of Biological Chemistry 2012, 287 (43) , 35986-35999. https://doi.org/10.1074/jbc.M112.399816
    44. Todd A. Blackledge. Spider silk: a brief review and prospectus on research linking biomechanics and ecology in draglines and orb webs. Journal of Arachnology 2012, 40 (1) , 1-12. https://doi.org/10.1636/M11-67.1
    45. D. Bittencourt, P.F. Oliveira, F. Prosdocimi, E.L. Rech. Review Protein families, natural history and biotechnological aspects of spider silk. Genetics and Molecular Research 2012, 11 (3) , 2360-2380. https://doi.org/10.4238/2012.August.13.10
    46. Yang Hsia, Eric Gnesa, Simon Tang, Felicia Jeffery, Paul Geurts, Liang Zhao, Andreas Franz, Craig Vierra. Identification and synthesis of novel biomaterials based on spider structural silk fibers. Applied Physics A 2011, 105 (2) , 301-309. https://doi.org/10.1007/s00339-011-6621-8
    47. Todd A. Blackledge, Matjaž Kuntner, Ingi Agnarsson. The Form and Function of Spider Orb Webs. 2011, 175-262. https://doi.org/10.1016/B978-0-12-415919-8.00004-5

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect