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The vanishing epidemic threshold for viruses spreading on scale-free networks indicate that traditional
methods, aiming to decrease a virus’ spreading rate cannot succeed in eradicating an epidemic. We demonstrate
that policies that discriminate between the nodes, curing mostly the highly connected nodes, can restore a finite
epidemic threshold and potentially eradicate a virus. We find that the more biased a policy is towards the hubs,
the more chance it has to bring the epidemic threshold above the virus’ spreading rate. Furthermore, such
biased policies are more cost effective, requiring less cures to eradicate the virus.
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While most diffusion processes of practical interest, rang-
ing from the spread of computer viruses to the diffusion of
sexually transmitted diseases, take place on complex net-
works, the bulk of diffusion studies have focused on model
systems, such as regular lattices or random networks@1–3#.
A series of recent results indicate, however, that real net-
works significantly deviate from the structure of these model
systems@4#—deviations that have a strong impact on the
diffusion dynamics as well. In particular, the networks re-
sponsible for the spread of computer viruses, such as the
Internet@5# or the email network@6#, have a scale-free topol-
ogy @7#, exhibiting a power-law degree distributionP(k)
;k2g, whereg ranges between 2 and 3. Similarly, a recent
study indicates that the social network responsible for the
spread of sexually transmitted diseases, such as AIDS, also
exhibits a scale-free structure@8#. The topology of scale-free
networks fundamentally deviate from the topology of both
regular lattices and random networks@9#, differences that
impact the network’s robustness and attack tolerance@10# or
the dynamics of synchronization@11#. It is not unexpected,
therefore, that the broad degree distribution leads to unex-
pected diffusion properties as well@12#.

A simple model often used to study the generic features of
virus spreading is the susceptible-infected-susceptible~SIS!
model. In this model an individual is represented by a node,
which can be either ‘‘healthy’’ or ‘‘infected.’’ Connections
between individuals along which the infection can spread are
represented by links. In each time step a healthy node is
infected with probabilityn if it is connected to at least one
infected node. At the same time an infected node is cured
with probability d, defining an effective spreading ratel
[n/d for the virus.

The behavior of the SIS model is well understood if the
nodes are placed on a regular lattice or a random network
@1#. Diffusion studies indicate that viruses whose spreading
rate exceeds a critical thresholdlc will persist, while those
under the threshold will die out shortly. Recently, however,
Pastor-Satorras and Vespignani have shown@12# that for
scale-free networks withg<3 the epidemic threshold van-
ishes, i.e.,lc50. This finding implies that on such networks
even weakly infectious viruses can spread and prevail. This
vanishing threshold is a consequence of the hubs—nodes
with a large number of links encoded by the tail of power
law P(k). Indeed, the hubs are in contact with a large num-

ber of nodes, and are therefore easily infected. Once infected,
they pass on the virus to a significant fraction of the nodes in
the system.

The finding that the epidemic threshold vanishes in scale-
free networks has a strong impact on our ability to control
various virus outbreaks. Indeed, most methods designed to
eradicate viruses—biological or computer based—aim at re-
ducing the spreading rate of the virus, hoping that ifl falls
under the critical thresholdlc , the virus will die out natu-
rally. With a zero threshold, while a reduced spreading rate
will decrease the virus’ prevalence, there is little guarantee
that it will eradicate it. Therefore, from a theoretical perspec-
tive viruses spreading on a scale-free network appear unstop-
pable. The question is, can we take advantage of the in-
creased knowledge accumulated in the past few years about
network topology to understand the conditions in which one
can successfully eradicate viruses?

Here we study the spreading of a virus to which there is a
cure, eradicating the virus from the node to which it is ap-
plied to, but which does not offer a permanent protection
against the virus. If such a cure is available to all nodes,
treating simultaneously all infected nodes will inevitably
wipe the virus out. However, due to economic or policy con-
siderations the number of available cures is often limited.
This applies to AIDS, for which relatively effective but pro-
hibitively expensive cures are available, unable to reach the
most affected segments of population due to economic con-
siderations@13#. But it also applies to computer viruses,
where only a small fraction of users commit the time and
investment to update regularly their virus protection system.
We show that distributing the cures randomly in a scale-free
network is ineffective, being unable to alter the fundamental
properties of the threshold-free diffusion process. However,
even weakly biased strategies, that discriminating between
the nodes, curing with a higher probability the hubs than the
less connected nodes, can restore the epidemic threshold. We
find that such hub-biased policies are more cost effective as
well, requiring fewer cures than those distributing the cures
indiscriminately.

Curing the hubs. The vanishing epidemic threshold of a
virus spreading in a scale-free network is rooted in the infi-
nite variance of the degree distribution@12#. Indeed, the
thresholdlc depends on the variance as
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On a regular lattice the degree distribution is ad function,
while on a random network it follows a Poisson distribution,
in both cases resulting in a finite^k2&, and therefore nonzero
lc . In contrast, if the virus spreads on a scale-free network,
for which P(k) follows a power law withg<3, the variance
is infinite and the epidemic threshold islc50. Therefore, to
restore a finite epidemic threshold, which would allow the
infection to die out, one needs to induce a finite variance. As
the origin of the infinite variance is in the tail of the degree
distribution, dominated by the hubs, one expects that curing
all hubs with degree larger than a given degreek0 would
restore a finite variance and therefore a nonzero epidemic
threshold. Indeed, if on a scale-free network nodes with de-
greek.k0 are always healthy, the epidemic threshold is fi-
nite and has the value@14#
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This expression indicates that the more hubs we cure~i.e.,
the smallerk0 is!, the larger the value of the epidemic thresh-
old ~Fig. 1! @15#. Therefore, the most effective policy against
an epidemic would be to cure as many hubs as economically
viable. The problem is that in most systems of interest we do
not have detailed network maps, thus we cannot effectively
identify the hubs. Indeed, we do not know the number of
sexual partners for each individual in the society, thus we
cannot identify the social hubs that should be cured if in-
fected. Similarly, on the email network we do not know
which email accounts serve as hubs, as these are the ones
that, for the benefit of all email users, should always carry
the latest antivirus software.

Short of a detailed network map, no method aiming to
identify and cure the hubs is expected to succeed at its goal
of finding all hubs with degree larger than a givenk0. Yet,
policies designed to eradicate viruses could attempt to iden-
tify and cure as many hubs as possible. Such biased policy
will inevitably be inherently imperfect, as it might miss some
hubs, and falsely identify some smaller nodes as hubs. The
question is, however, would a policy biased towards curing
the hubs, without a guarantee that it can identify all of them,
succeed at restoring the epidemic threshold?

To investigate the effect of incomplete information about
the hubs we assume that the likelihood of identifying and

administering a cure to an infected node withk links in a
given time frame depends on the node’s degree aska, where
a characterizes the policy’s ability to identify hubs. In this
framework a50 corresponds to random cure distribution,
which is expected to have zero epidemic threshold whilea
5` corresponds to an optimal policy that treats all hubs with
degree larger thank0. Within the framework of the SIS
model we assume that each node is infected with probability
n, but each infected node is cured with probabilityd
5d0ka, again becoming susceptible to the disease. We define
the spreading rate asl5n/d0. As each healthy node is sus-
ceptible again to the disease, a node can get multiple cures
during a simulation.

We place the nodes on a scale-free network@16# and ini-
tially infect half of them. After a transient regime the system
reaches a steady state, characterized by a constant average
density of infected nodesr, which depends on both the
spreading ratel anda ~Fig. 2!. Thea50 limit corresponds
to random immunization in which case the epidemic thresh-
old is zero. As treating only the hubs will restore the nonzero
epidemic threshold, fora5` we expect a nonzerolc . Yet,
the numerical simulations indicate that we have a finitelc
well before thea5` limit. Indeed, as Fig. 2 shows,lc is
clearly finite for a51 and so is for smaller value ofa as
well. The numerical simulations do not give an unambiguous
answer to the crucial question: Is there a critical value ofa at
which a finitelc appears, or for any nonzeroa we have a
finite lc?

Mean-field theory. To interpret the results of the numeri-
cal simulations we studied the effect of a biased policy using
the mean-field continuum approach@1,12#. Denoting by
rk(t) the density of infected nodes with connectivityk, the
time evolution ofrk(t) can be written as@12#

] trk~ t !52d0kark~ t !1n@12rk~ t !#ku~l!. ~3!

The first term in the right-hand side~rhs! describes the prob-
ability that an infected node is cured, and it is therefore pro-
portional to the number of infected nodesrk(t) and the prob-
ability d0ka that a node withk links will be selected for a
cure. The second term is the probability that a healthy node
with k links is infected, proportional to the infection rate (n),
the number of links (k), the number of healthy nodes withk

FIG. 1. The epidemic threshold as a function ofk0.
FIG. 2. Prevalencer measured as the fraction of infected nodes

in function of the effective spreading ratel for a50(s),
0.25(h), 0.50(¹), 0.75(L), and 1(n), as predicted by Monte
Carlo simulations using the SIS model on a scale-free network with
N510 000 nodes.
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ZOLTÁN DEZSŐAND ALBERT-LÁ SZLÓ BARABÁSI PHYSICAL REVIEW E65 055103~R!

055103-2



links @12rk(t)#, and the probabilityu(l) that a given link
points to an infected node. The probabilityu(l) is propor-
tional to kP(k), therefore, it can be written as

u~l!5(
k

kP~k!

(
s

sP~s!

rk . ~4!

Using l5n/d0 and imposing the] trk(t)50 stationary con-
dition we find the stationary density as

rk5
lu~l!

ka211lu~l!
. ~5!

Combining Eqs.~4! and ~5! and using the fact that the con-
nectivity distributionP(k)52m2/k23 for the scale-free net-
work @7#, we obtain

mlE
m

` dk

k2@ka211lu~l!#
51. ~6!

The average density of infected nodes is given by

r~l!5(
k

P~k!r~k!52m2lu~l!E
m

` dk

k3@ka211lu~l!#
.

~7!

Equations~6! and ~7! allow us to calculate the average den-
sity of infected nodes for any value ofa. For a50 they
reduce to the case studied in Ref.@12# giving lc50. For a
51 we can solve Eq.~6!, and using Eq.~7! we obtain

r~l!ua515
l21

l
, ~8!

which indicates that fora51 the epidemic threshold is fi-
nite, having the valuelc(a51)51 @15#.

To determine the epidemic threshold as a function ofa
we need to solve ther(l)50 equation. While we cannot get
r(l) for arbitrary values ofa, we can solve Eq.~6! in l
using that at the thresholdl5lc we haveu(lc)50. In this
case Eq.~6! predicts that the epidemic threshold depends on
a as

lc5ama21. ~9!

For a50 we recoverlc50, confirming that random immu-
nization cannot eradicate an infectious disease. Fora51 Eq.
~9! predicts that the epidemic threshold islc51, in agree-
ment with Eq.~8!. Most important, however, Eq.~9! indi-
cates thatlc is nonzero for any positivea, i.e., any policy
that is biased towards curing the hubs can restore a finite
epidemic threshold. Furthermore, policies with largera are
expected to be more likely to lead to the eradication of the
virus, as they result in largerlc values. Therefore, Eq.~9!
indicates that a potential avenue to eradicating a virus is to
increase the effectiveness of identifying and curing the hubs.
Indeed, if the virus has a fixed spreading rate, increasinga
could increaselc beyondl, thus making it possible for the

virus to die out naturally. To test the validity of prediction~9!
we determined numerically thel(a) curve from the simula-
tions shown in Fig. 2. As Fig. 3 shows, we find excellent
agreement between the simulations and the analytical predic-
tion ~9!.

Cost effectiveness. A major criteria for any policy de-
signed to combat an epidemic is its cost effectiveness. Sup-
plying cures to all nodes infected by a virus is often prohibi-
tively expensive. Therefore, policies that obtain the largest
effect with the smallest number of administered cures are
more desirable. To address the cost effectiveness of a policy
targeting the hubs we calculated the number of cures admin-
istered in a time step per node for different values ofa.
Figure 4 indicates that increasing the policy’s bias towards
the hubs by allowing a higher value fora decreases rapidly
the number of necessarily cures. Therefore, policies that dis-
tribute the cures mainly to the nodes with more links are
more cost effective than those that spread the cures ran-
domly, blind to the node’s connectivity. We can understand
the origin of the rapid decay inc(a) by noticing that the
number of cures administered per unit time is proportional to
the density of infected nodes. From Fig. 2 we see that for a
given value of the spreading rate the prevalence is decreasing
asa increases, decreasing the number of necessary cures as
well.

FIG. 3. The dependence of the epidemic thresholdlc on a as
predicted by our calculations~continuous line! based on the con-
tinuum approach, and by the numerical simulations based on the
SIS model~boxes!. The small deviation between the numerical re-
sults and the analytical prediction is due to the uncertainty in deter-
mining the precise value of the threshold in Monte Carlo simula-
tions.

FIG. 4. The number of curesc administered in a unit time per
node for different values ofa. The rapidly decayingc indicates that
the more successful a policy is in selecting and curing hubs~larger
is a), the fewer the cures are required for a fixed spreading rate
(l50.75). For a50 the number of cures is calculated byc
5n/(n1d)5l/(11l) which gives c50.43, which value is in
good agreement with the numerical results.
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In summary, our numerical and analytical results indicate
that targeting the more connected infected nodes can restore
the epidemic threshold, therefore making possible the eradi-
cation of a virus. Most important, however, is the finding
that even moderately successful policies with smalla
can lead to a nonzero epidemic threshold. As the magnitude
of lc rapidly decreases witha, the more effective a policy
is at identifying and curing the hubs of a scale-free network,

the higher are its chances of eradicating the virus. Finally,
the simulations show that a biased treatment policy is
not only more efficient but it is also less expensive
than random immunization. These results, beyond improving
our understanding of the basic mechanisms of virus
spreading, could also offer important input into designing
effective policies to eradicate computer or biological infec-
tions.
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ZOLTÁN DEZSŐAND ALBERT-LÁ SZLÓ BARABÁSI PHYSICAL REVIEW E65 055103~R!

055103-4


	Northeastern University
	May 01, 2002
	Halting viruses in scale-free networks
	Zoltán Dezső
	Albert-László Barabási
	Recommended Citation





