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Abstract

This paper proves that the real projection of each zero of any function P (z) in a large class of
exponential polynomials is an interior point of the closure of the set of the real parts of the zeros
of P (z). In particular it is deduced that, for each integer value of n ≥ 17, if z0 = x0 + iy0 is an
arbitrary zero of the nth partial sum of the Riemann zeta function ζn(z) =

∑n
j=1

1
jz , there exist

two positive numbers ε1 and ε2 such that any point in the open interval (x0 − ε1, x0 + ε2) is an
accumulation point of the set defined by the real projections of the zeros of ζn(z).
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1. Introduction

Suppose that {g1, g2, . . . , gk} is a set of k ≥ 2 positive real numbers which are linearly

independent over the rationals. Let n ≥ 2 be an integer number and take wj =
k∑
l=1

cj,lgl,

j = 1, 2, . . . , n, for some integer numbers cj,l ≥ 0. The purpose of this paper is to study the
behavior of the set of the zeros, say ZP , of the function

P (z) = 1 +

n∑
j=1

mje
wjz (1)
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where the mj ’s are non-null complex numbers (called coefficients) and the wj ’s are positive and
distinct (called frequencies).

For every natural number n, each exponential polynomial P (z) is an entire function of order
1. It is easy to prove that the zeros of P (z) are located on a vertical strip [10, Lemma 2.5], the
critical strip, bounded by the real numbers aP and bP , where

aP := inf {Re z : P (z) = 0} (2)

and
bP := sup {Re z : P (z) = 0} . (3)

These bounds allow us to define an interval IP := [aP , bP ] which contains the closure of the set
of the real parts of the zeros, denoted by

RP := {Re z : P (z) = 0}. (4)

In this manner, when aP < bP , the existence of a real open interval J included in RP would
mean that P (z) possesses zeros arbitrarily close to every vertical line contained in the strip
{z ∈ C : Re z ∈ J} ⊂ {z ∈ C : aP < Re z < bP }.

As far as we know, the first theoretical work on location of open intervals in RP , with P (z) an
exponential polynomial of the form (1), was made by Moreno by assuming that the frequencies
of P (z) are linearly independent over the rationals [11, Main Theorem] (see also [9, Theorem
1]). Later, through an auxiliary function and without specific conditions on the real frequencies
of P (z), Avellar and Hale [1, Theorem 3.1] obtained a criterion to decide whether a real number
is in the set RP .

On the other hand, about the special case of the partial sums of the Riemann zeta function

ζn(z) =
n∑
j=1

1

jz
,

there are more specific results along these lines. For example, from Montgomery and Vaughan’s
work [4, 5], we know that for large enough values of n the exponential polynomial ζn(z) has

zeros in a strip of small width close to the line x = 1 +
(
4
π − 1

) log(logn)
logn and the upper bound

(3) verifies that bζn ≤ 1 +
(
4
π − 1

) log(logn)
logn for all integer n greater than a certain N0. Also, we

deduce from [2, Theorem 4] that if z0 = x0 + iy0 is a zero of order 1 of ζn(z), n > 2, there exist
two non-negative numbers ε1 and ε2, with ε1 + ε2 > 0, such that [x0− ε1, x0 + ε2] ⊂ Rζn . In this
sense, Mora stated in 2013 that there exists an integer N such that Rζn = [aζn , bζn ] for every
n > N [7, Theorem 12], but the proof of this theorem is based on a result which is not true,
such as will be shown in the last section of this paper.

In this way, the study of the density properties of the real projections of the zeros of the func-
tions P (z) of the form (1) is the main goal of this paper. In fact, the problem of the density of the
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zeros of P (z) is related to the following question: are there strips S(a,b) = {z ∈ C : a < Re z < b},
contained in the critical strip {z ∈ C : aP ≤ Re z ≤ bP }, such that P (z) has zeros near any line
parallel to the imaginary axis inside S(a,b)? We will prove that, under determined conditions,
the answer is affirmative by demonstrating that the real part of each zero of P (z) is an interior
point of the set RP .

If PS denotes the class of exponential polynomials P (z) of type (1) verifying the conditions
of Definition 8, which contains all the sums ζn(−z) =

∑n
j=1 j

z for integer values of n ≥ 17, the
main results of this paper can be summarized as follows:

i) For each zero z0 = x0 + iy0 of a exponential polynomial P (z) in the class PS there exist
two positive numbers ε1 and ε2 such that (x0 − ε1, x0 + ε2) ⊂ RP (see Main Theorem,
formulated in Theorem 13).

ii) From the result above, for each exponential polynomial P (z) in the class PS , we deduce
that aP < bP . More so, the real part of the infinitely many zeros of each function in the
class PS is never aP or bP (see Corollary 14).

iii) For every integer number n ≥ 17 the real part of any zero of ζn(z), the nth partial sum of
the Riemann zeta function, is an interior point in Rζn (see Corollary 15).

iv) We show in the last section that for the function G20(z) = ζ20(−z), the condition x0 ∈ RG20

is not sufficient to assure that there exists some y ∈ R such that AG20(x0, y) = 0, where
the function AP is defined in (7). This contradicts [2, Theorem 2], [6, Theorem 2], [7,
Theorem 5] and [8, Theorem 3.14] (see Theorem 0 in the present paper), which attaches
more significance to the other main results of our work. In this respect, we also point out
where the proof of Theorem 0 fails.

2. First results

As we noted in the introduction, it is worth to show a first characterization of RP , the closure
of the set of real projections of the zeros of an exponential polynomial P (z) of type (1), which
was given by Avellar and Hale in 1980 [1, Theorem 3.1].

Theorem 1. Let P (z) = 1+

n∑
j=1

mje
wjz be an exponential polynomial of type (1) and define the

auxiliary function FP : R× Rk → C associated to P (z) as

FP (x,x) := 1 +

n∑
j=1

mje
wjxei

∑k
l=1 cj,lxl, x ∈ R, x = (x1, x2, . . . , xk) ∈ Rk. (5)

Then x0 ∈ RP if and only if FP (x0,x) = 0 for some x ∈ Rk.
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Now, let

P (z) = 1 +

n∑
j=1

mje
wjz, n ≥ 2, mj ∈ C \ {0} (6)

be an exponential polynomial of type (1) with increasing positive frequencies w1 < w2 < . . . < wn
such that the set of positive numbers {g1, g2, . . . , gk}, k ≥ 2, is a basis of the group W =
Zw1+. . .+Zwn (rankW = k ≥ 2) and with the restrictions that gk = wt for some t ∈ {1, 2, . . . , n}
and gk /∈

{∑n
j=1,j 6=t rjwj , rj ∈ Q

}
. In this manner, under these conditions, the group W can be

written as a direct sum of the form

W =

 n∑
j=1,j 6=t

Zwj

⊕ Zwt.

It is worth pointing out that the set of k ≥ 2 positive numbers {g1, g2, . . . , gk} is not neces-
sarily an ordered set.

Note that the sums ζn(−z) =
∑n

j=1 j
z, n ≥ 3, are exponential polynomials verifying the

conditions above. Indeed, the set {log p1, log p2, . . . , log pkn}, where {p1, p2, . . . , pkn} is the set
of all prime numbers less than or equal to n, can be used to obtain a basis of the group W =
Z log 2 + Z log 3 + . . . + Z log n. Furthermore, from Bertrand’s postulate, it is known that for
every integer number m > 1 there is always at least one prime p such that m < p < 2m and,
therefore, the frequency wt = log pkn satisfies the required condition.

Let P (z) be an exponential polynomial of type (6). Associated to P (z), we define the complex
function

P ∗(z) := P (z)−mte
gkz, z = x+ iy,

and the real function

AP (x, y) := |P ∗(x+ iy)| − |mt|egkx, x, y ∈ R. (7)

An important result which allows us to obtain points of RP is given by means of the function
AP (x, y).

Proposition 2. Let P (z) be an exponential polynomial of type (6) and x0 a real number such
that AP (x0, y) = 0 for some y ∈ R, then x0 ∈ RP .

Proof. If AP (x0, y) = 0 for some y ∈ R, then |P ∗(x0 + iy)| = |mt|egkx0 and there exists
θ ∈ (−π, π] such that P ∗(x0 + iy) = |mt|egkx0eiθ. That is,

1 +m1e
w1(x0+iy) + . . .+

︷ ︸︸ ︷
mte

gk(x0+iy) + . . .+mne
wn(x0+iy) = |mt|egkx0eiθ, (8)
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where
︷ ︸︸ ︷
mte

gk(x0+iy) means that mte
gk(x0+iy) is not on the left side of (8). Therefore,

1 +m1e
w1(x0+iy) + . . .− |mt|egkx0eiθ + . . .+mne

wn(x0+iy) = 0

and, by taking the vector x = (g1y, g2y, . . . , gk−1y,−Arg(mt)+θ+π), with Arg(mt) the principal
value in the range (−π, π], we have FP (x0,x) = 0 where FP is defined in (5). Consequently, by
Theorem 1, we conclude that x0 ∈ RP .

Remark 3. In general the converse of Proposition 2 is not true, such as we show in the last
section of the present paper.

Proposition 4. Let P (z) = 1 +
∑n

j=1mje
wjz be an exponential polynomial of type (6) with

mj > 0, j = 1, 2, . . . , n, and k = rankW ≥ 3. Consider a real number x0. Then

max {|P ∗(z)| : Re z ≤ x0} = P ∗(x0)

and this maximum is only attained at the point x0.

Proof. Since mj , wj > 0 for each j = 1, 2, . . . , n, for any z = x+ iy such that x ≤ x0 we have

|P ∗(z)| =
∣∣∣∣1 +m1e

w1z + . . .+
︷ ︸︸ ︷
mte

gkz + . . .+mne
wnz

∣∣∣∣ ≤
1 +m1e

w1x + . . .+
︷ ︸︸ ︷
mte

gkx + . . .+mne
wnx ≤

1 +m1e
w1x0 + . . .+

︷ ︸︸ ︷
mte

gkx0 + . . .+mne
wnx0 = P ∗(x0),

which proves that
max {|P ∗(z)| : Re z ≤ x0} = P ∗(x0).

We next prove that this maximum is only attained at the point x0. For this, let z = x+ iy be
so that x ≤ x0 and |P ∗(z)| = P ∗(x0). Note first that we immediately deduce from above that
x = x0. Suppose now y 6= 0. For complex numbers z, w 6= 0, remark that |z + w| = |z|+ |w| if
and only if there is some λ > 0 such that w = λz. Thus, from above, and since k = rankW ≥ 3,
there exist positive real numbers λ and µ such that mre

wr(x0+iy) = λ and mse
ws(x0+iy) = µ,

where r and s are different from t and so that wr and ws are linearly independent over the
rationals. Hence there exist two non-null integer numbers k1 and k2 such that wry = k1π and
wsy = k2π, which means that k2wr = k1ws. This clearly represents a contradiction, which
implies that y = 0 and the proposition holds.

Before to prove the lemmas which will lead us to the main theorem of this paper, we first
analyse the particular case when the largest frequency wn coincides with the element gk of the

basis of W or, equivalently, W =
(∑n−1

j=1 Zwj
)
⊕ Zwn.
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Proposition 5. Let P (z) = 1 +
∑n

j=1mje
wjz be an exponential polynomial of type (6) with

mj > 0, j = 1, 2, . . . , n, and wn = gk. Then bP = x1P , where x1P denotes the unique real solution
of the real equation

P ∗(x) = mne
gkx.

Proof. We next justify that x1P is the unique real solution of the real equation P ∗(x) = mne
gkx.

Let f(x) = mne
gkx−P ∗(x).As gk = wn, observe that in this case we have P ∗(x) = 1+

n−1∑
j=1

mje
wjx.

Since limx→−∞ f(x) = −1 and limx→∞ f(x) = ∞, there exists at least a real number α such
that f(α) = 0. As the derivative

f ′(α) = wnmne
wnα −

n−1∑
j=1

wjmje
wjα > wn−1mne

wnα −
n−1∑
j=1

wjmje
wjα =

wn−1P
∗(α)−

n−1∑
j=1

wjmje
wjα = wn−1 + wn−1

n−1∑
j=1

mje
wjα −

n−1∑
j=1

wjmje
wjα =

wn−1 +

n−1∑
j=1

(wn−1 − wj)mje
wjα ≥ wn−1 > 0,

the function f(x) is strictly increasing at the point α and then the equation f(x) = 0 has only
the solution x = x1P . On the other hand,

|P (x+ iy)| = |P ∗(x+ iy) +mne
gk(x+iy)| ≥ mne

gkx − |P ∗(x+ iy)| ≥ mne
gkx − |P ∗(x)|

and then |P (z)| > 0 for any z = x+ iy with x > x1P . Hence bP ≤ x1P . Furthermore, if AP (x, y)
is the real function defined in (7), then

AP (x1P , 0) = P ∗(x1P )−mne
gkx

1
P = 0

and, by Proposition 2, we have x1P ∈ RP . Hence x1P ≤ bP and consequently bP = x1P .

Corollary 6. Let P (z) = 1+
∑n

j=1mje
wjz be an exponential polynomial of type (6) with mj > 0,

j = 1, 2, . . . , n, k = rankW ≥ 3 and wn = gk. Then Re z < bP for all z ∈ ZP . That is,
bP = sup {Re z : P (z) = 0} is not attained.

Proof. If we suppose the existence of some z0 ∈ ZP such that Re z0 = bP , on the one hand it
is clear that Im z0 6= 0 because P (x) > 0 for any real x and, on the other hand, we have

0 = |P (z0)| = |P ∗(z0) +mne
wnz0 | ≥ mne

wnbP − |P ∗(z0)|. (9)

Now, in view of Proposition 4, we have that P ∗(bP ) > |P ∗(z0)| and thus, we deduce from (9)
and Proposition 5 that

0 = |P (z0)| > mne
wnbP − P ∗(bP ) = 0,

which is a contradiction. Hence the result holds.
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3. The main theorem

From now on, let ∂RP denote the set determined by all the boundary points of the set RP . In
the first part of this section we are going to study the consequences of the theoretical existence
of the zeros of P (z) whose real part belongs to ∂RP .

Lemma 7. Let P (z) = 1 +
∑n

j=1mje
wjz be an exponential polynomial of type (6) with mj > 0,

j = 1, 2, . . . , n, and k = rankW ≥ 3. If z0 = x0 + iy0 ∈ ZP with x0 ∈ ∂RP , then

min{|P ∗(z)| : Re z = x0} = |P ∗(z0)|.

Proof. Observe that if x0 is a boundary point of the set RP , every neighbourhood of x0
intersects RP and its complementary set. Hence, according to Proposition 2, for any ε > 0 there
exists either x1 ∈ (x0 − ε, x0) or x2 ∈ (x0, x0 + ε) such that

AP (x1, y) 6= 0 or AP (x2, y) 6= 0 for all y ∈ R. (10)

Let z0 = x0 + iy0 ∈ ZP and AP (x, y) = |P ∗(x + iy)| −mte
gkx. If we suppose that there exists

some z1 = x0 + iy1 verifying |P ∗(z1)| < |P ∗(z0)| = mte
gkx0 , we have

AP (x0, y1) = |P ∗(x0 + iy1)| −mte
gkx0 < 0, (11)

which means, by Proposition 4, that y1 6= 0. Furthermore, since z0 = x0 + iy0 is a zero of P (z),
it clearly satisfies y0 6= 0 and |P ∗(z0)| = mte

gkx0 , which means that AP (x0, y0) = 0. At this
point, also by Proposition 4, we have

AP (x0, 0) = P ∗(x0)−mte
gkx0 > |P ∗(z0)| −mte

gkx0 = AP (x0, y0) = 0. (12)

In this manner, the continuity of AP (x, y) and the inequalities (11) and (12) assure the existence
of some δ > 0 such that AP (x, y1) < 0 and AP (x, 0) > 0 for all x ∈ (x0− δ, x0 + δ). Hence, again
from the continuity of AP , for any x ∈ (x0−δ, x0) there is a point y−x , and for any x ∈ (x0, x0+δ)
there is a point y+x so that

AP (x, y−x ) = 0 and AP (x, y+x ) = 0,

which contradicts (10). Now the proof is completed.
The subsequent results that we are going to prove in this section, and specifically the main

theorem of this paper, are valid for the exponential polynomials of type (1) which are in the
following large class of functions.

Definition 8. Let n ≥ 3 be an integer number. We will say that an exponential polynomial

P (z) = 1 +

n∑
j=1

mje
wjz is in the class PS when it verifies the following properties:
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i) mj > 0 for each j = 1, 2, . . . , n;

ii) 0 < w1 < w2 < . . . < wn;

iii) the set of positive numbers {g1, g2, . . . , gk}, k ≥ 3, is a basis of W = Zw1 + . . . + Zwn
(observe that n ≥ rankW = k ≥ 3) such that

a) gk = wt0, gk−1 = wt1 and gk−2 = wt2 for some distinct indexes t0, t1, t2 ∈
{1, 2, . . . , n};

b) W is the direct sum
(∑n

j=1,j /∈I Zwj
)
⊕ Zwt0 ⊕ Zwt1 ⊕ Zwt2 , with I = {t0, t1, t2}.

It is worth pointing out that the set of k ≥ 3 positive numbers {g1, g2, . . . , gk} is not necessar-
ily an ordered set. Under the conditions above, note that if k = 3 then W = Zwt0⊕Zwt1⊕Zwt2.

Moreover, if k > 3 and j ∈ {1, 2, . . . , n}\I then wj =
k−3∑
l=1

cj,lgl for some integer numbers cj,l ≥ 0.

Remark 9. The class PS contains all exponential polynomials

P (z) = 1 +
n∑
j=1

mje
wjz, n ≥ 3, mj > 0

with positive real frequencies w1 < w2 < . . . < wn linearly independent over the rationals. Also,
since 17 is the smallest positive integer N3 such that for all x ≥ N3 the interval

(
x
2 , x
)

contains
at least 3 primes (i.e. the third Ramanujan prime is 17 [12, 13]), then for every n ≥ 17 it is
verified that 2pkn−2 > n where pkn−2 < pkn−1 < pkn are the last three prime numbers less than
or equal to n. Hence the class PS contains all the sums

ζn(−z) =

n∑
j=1

jz, n ≥ 17.

Furthermore, note that Lemma 7 is not vacuous when P (z) = ζn(−z), n ≥ 17.

Although it is not used in the proof of the main theorem, we next provide a variation of
Proposition 2 for exponential polynomials in the class PS . Associated to P (z) we consider the
real function

BP (x, y) := |P ∗∗∗(x+ iy)| −mt0e
wt0x −mt1e

wt1x −mt2e
wt2x, x, y ∈ R, (13)

where P ∗∗∗(z) = P (z)−mt0e
wt0z −mt1e

wt1z −mt2e
wt2z.

Proposition 10. Let P (z) be an exponential polynomial in the class PS and x0 a real number
such that BP (x0, y) = 0 for some y ∈ R, then x0 ∈ RP .
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Proof. If BP (x0, y) = 0 for some y ∈ R, where BP is defined in (13), then

|P ∗∗∗(x0 + iy)| = mt0e
wt0x0 +mt1e

wt1x0 +mt2e
wt2x0

and there exists θ ∈ (−π, π] such that

P ∗∗∗(x0 + iy) = (mt0e
wt0x0 +mt1e

wt1x0 +mt2e
wt2x0) eiθ.

Therefore, by taking the vector x = (g1y, g2y, . . . , gk−3y, θ+ π, θ+ π, θ+ π) and since P (z) is in
the class PS , we have FP (x0,x) = 0 where FP is defined in (5). Consequently, by Theorem 1,
we conclude that x0 ∈ RP .

The next lemma plays an important role in the proof of the main theorem of this paper. It
is proved by using Kronecker’s theorem [3, Th.444, p.382] on simultaneous diophantine approx-
imation, which states that if {aj} is any finite collection of rationally independent real numbers,
then given any sequence of real numbers {bj} and ε, T > 0 there are integers {nj} and t > T
such that |taj − nj − bj | < ε for all j. In this respect, fixed an exponential polynomial P (z)
of type (6), the idea behind the next lemma is that the alignment of all the terms of the form
ewtsz and P (z)− ewtsz, with wts linearly independent from the remaining frequencies of P (z), is
a necessary condition to get a non-null minimum of the modulus of P (z) on a certain straight
line Re z = x0.

Lemma 11. Let P (z) = 1 +
∑n

j=1mje
wjz be an exponential polynomial of type (6) and z0 =

x0 + iy0 a complex number such that

min{|P (z)| : Re z = x0} = |P (z0)| 6= 0.

Thus for each frequency wts such that W =
(∑n

j=1,j 6=ts Zwj
)
⊕ Zwts there exists a real number

µs 6= 0 such that
P (z0) = µsmtse

wtsz0 . (14)

Proof. Take wts so that W = Zw1 + . . .+Zwn is the direct sum
(∑n

j=1,j 6=ts Zwj
)
⊕Zwts , then

we can suppose without loss of generality that wts = gk−s for some s ∈ {0, 1, . . . , k − 1}, where
{g1, . . . , gk−s, . . . , gk} is a basis of W and k = rankW . Let z0 = x0 + iy0 be a complex number
such that

min{|P (z)| : Re z = x0} = |P (z0)| 6= 0.

This means that if (14) is true, then µs will be different from 0. Also, under the assumption that
P (z0) = mtse

gk−sz0 , we have µs = 1 and (14) is true. Hence, suppose that P (z0) 6= mtse
gk−sz0 .

Now, if βs denotes the principal argument of −mtse
gk−sz0 , then

y0gk−s = βs ± π + 2πl, for some l ∈ Z. (15)
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Let αs be the principal argument of P (z0)−mtse
gk−sz0 and suppose that αs < βs, then βs = αs+α

for some 0 < α < 2π and (15) becomes

y0gk−s = αs + α+ π(2l ± 1). (16)

Herein we next adopt the nomenclature of Kronecker’s theorem [3, Th.444, p.382] and we define
the numbers

aj =
gj
2π
, j = 1, 2, . . . , k;

bj =
y0gj
2π

, j ∈ {1, 2, . . . , k} \ {k − s}; bk−s =
αs ± π

2π
.

Then, since the aj ’s are linearly independent over the rationals, by applying Kronecker’s theorem

[3, Th.444, p.382], given T = |y0| and εq =
1

2πq
with q = 1, 2, . . ., there exist integers dj,q,

j = 1, 2, . . . , k, and a real number yεq > y0 such that∣∣yεqaj − dj,q − bj∣∣ =
∣∣∣yεq gj2π

− dj,q −
y0gj
2π

∣∣∣ < εq, j ∈ {1, 2, . . . , k} \ {k − s}

and ∣∣yεqak−s − dk−s,q − bk−s∣∣ =

∣∣∣∣yεq gk−s2π
− dk−s,q −

αs ± π
2π

∣∣∣∣ < εq.

That is,
yεqgj = 2πdj,q + y0gj + ηj,q, j ∈ {1, 2, . . . , k} \ {k − s} (17)

and
yεqgk−s = 2πdk−s,q + αs ± π + ηk−s,q, (18)

with ηj,q real numbers satisfying

|ηj,q| < 2πεq =
1

q
, j = 1, . . . , k. (19)

Now, we define the sequence zεq := x0 + iyεq , q = 1, 2, . . ., and we claim that

lim
q→∞

(
P (zεq)−mtse

gk−szεq
)

= P (z0)−mtse
gk−sz0 . (20)

Indeed, if j ∈ {1, 2, . . . , n} then wj =
k∑
l=1

cj,lgl for some integer numbers cj,l ≥ 0, with wts = gk−s

and cr,l = 0 for l = k − s and r ∈ {1, 2, . . . , n} \ {ts}. Therefore, from (17) we have for each wj ,
j ∈ {1, 2, . . . , n} \ {ts}, that

wjzεq = wj(x0 + iyεq) = wjx0 + iyεq

k∑
l=1
l 6=k−s

cj,lgl =
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wjx0 + i

k∑
l=1
l 6=k−s

cj,l(y0gl + ηj,q + 2πdj,q) = wjz0 + i

k∑
l=1
l 6=k−s

cj,lηj,q + 2πi

k∑
l=1
l 6=k−s

cj,ldj,q.

In this manner,

ewjzεq = ewjz0ei
∑k

l=1,l 6=k−s cj,lηj,q

and, by taking the limit as q →∞, we deduce from (19) that

lim
q→∞

ewjzεq = ewjz0 , j ∈ {1, 2, . . . , n} \ {ts},

which proves (20). On the other hand, by noting Rs = |P (z0)−mtse
gk−sz0 | 6= 0 and using (16),

we have

|P (z0)| = |P (z0)−mtse
gk−sz0 +mtse

gk−sz0 | = |Rseiαs +mtse
gk−sx0eigk−sy0 | =

|Rseiαs +mtse
gk−sx0ei(αs+α+π(2l±1))| = |Rseiαs −mtse

gk−sx0ei(αs+α)| =

|Rs −mtse
gk−sx0eiα|.

Moreover, by noting Rεq =
∣∣P (zεq)−mtse

gk−szεq
∣∣, which from (20) is also different from 0 for

all q greater than a certain q0, αεq the principal argument of P (zεq) −mtse
gk−szεq , q ≥ q0, and

taking (18) into account, we have

|P (zεq)| = |P (zεq)−mtse
gk−szεq +mtse

gk−szεq | =

|Rεqeiαεq +mtse
gk−sx0eigk−syεq | = |Rεqeiαεq −mtse

gk−sx0ei(αs+ηk−s,q)| =

|Rεq −mtse
gk−sx0ei(αs−αεq+ηk−s,q)|.

Now, since min{|P (z)| : Re z = x0} = |P (z0)|, we have |P (z0)| ≤ |P (zεq)|. Thus

|Rs −mtse
gk−sx0eiα|2 ≤ |Rεq −mtse

gk−sx0ei(αs−αεq+ηk−s,q)|2

and, by taking the limit when q →∞, we get

|Rs −mtse
gk−sx0eiα|2 ≤ |Rs −mtse

gk−sx0 |2,

which means that cosα = 1 and this contradicts αs < βs = αs + α with 0 < α < 2π. Thus
αs ≥ βs and, by supposing βs = αs + α with −2π < α < 0, we are analogously led to a
contradiction (note that if αs = π then either αεq → −π or αεq → π, but the conclusion is the
same). Consequently, we have αs = βs and there exists λs > 0 such that

P (z0)−mtse
gk−sz0 = λs(−mtse

gk−sz0).

Now, by taking µs = 1− λs, the lemma is proved.
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Remark 12. Let P (z) be in the class PS. Since P ∗(z) is clearly an exponential polynomial of
type (6), Lemma 11 could be used with P ∗(z) and, with the notation of Definition 8, it is possible
to consider the frequencies wt1 = gk−1 and wt2 = gk−2.

We next prove the main theorem which states that the real part of any zero of P (z) in the
class PS does not belong to ∂RP .

Theorem 13 (The main theorem). Let P (z) = 1 +
∑n

j=1mje
wjz be an exponential polyno-

mial in the class PS and z0 = x0 + iy0 ∈ ZP . Thus there exists an open interval Jx0 ⊂ RP such
that x0 ∈ Jx0.

Proof. If z0 = x0 + iy0 is a zero of P (z), it is clear that x0 ∈ RP , y0 6= 0 and

P ∗(z0) = −mt0e
gkz0 . (21)

Hence |P ∗(z0)| = mt0e
gkx0 6= 0. By reductio ad absurdum, assume that x0 is a boundary point

of the set RP = IntRP ∪ ∂RP , then by Lemma 7 we have min{|P ∗(z)| : Re z = x0} = |P ∗(z0)|.
Now by Lemma 11 (see also Remark 12), applied to P ∗(z), there exist two real numbers µ1 and
µ2, different from 0, verifying

P ∗(z0) = µ1mt1e
gk−1z0 (22)

and
P ∗(z0) = µ2mt2e

gk−2z0 . (23)

Hence, we have from (22) and (23) that

µ1mt1e
gk−1z0 = µ2mt2e

gk−2z0

and thus
e(gk−1−gk−2)z0 =

µ2
µ1

mt2

mt1

∈ R \ {0}.

Therefore there exists a non-null integer u1 such that

(gk−1 − gk−2)y0 = u1π. (24)

Analogously, we have from (21) and (22) that −mt0e
gkz0 = µ1mt1e

gk−1z0 . That is

e(gk−gk−1)z0 = −µ1
mt1

mt0

∈ R \ {0}.

Therefore there exists a non-null integer u2 such that

(gk − gk−1)y0 = u2π. (25)
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Dividing (24) and (25), we get
gk−1 − gk−2
gk − gk−1

=
u1
u2
,

which means that {gk, gk−1, gk−2} are linearly dependent over the rationals and this is a contra-
diction. Hence x0 is an interior point of RP and there exists an open interval Jx0 ⊂ RP such
that x0 ∈ Jx0 .

It is clear that aP , bP ∈ ∂RP and RP is a closed set in [aP , bP ]. Furthermore, according to
the main theorem, the real part of a zero of an exponential polynomial P (z) in the class PS is
not a boundary point of RP . Thus, in the class PS , the bounds aP and bP are not real parts
of zeros of P (z) and therefore P (z) possesses infinitely many zeros having real part between aP
and bP .

Corollary 14. Let P (z) = 1+
∑n

j=1mje
wjz be an exponential polynomial in the class PS. Then

aP < Re z < bP for all z ∈ ZP ; that is, aP = inf {Re z : P (z) = 0} and bP = sup {Re z : P (z) = 0}
are not attained.

4. Final considerations

Since the class PS contains all the sums

Gn(z) := ζn(−z) =
n∑
j=1

jz, n ≥ 17,

(see Remark 9), we are led to formulate the following corollary.

Corollary 15. For every n ≥ 17 the real part of any zero of ζn(z) is an interior point in Rζn.

Proof. The result follows directly from Remark 9, Theorem 13 and the fact that Zζn = −ZGn .

We next show the existence of exponential polynomials of type (6) (also in the class PS)
which have at least a point x0 ∈ RP such that AP (x0, y) 6= 0 ∀y ∈ R, where AP is defined in
(7). This means that the sufficiency of Proposition 2 is not valid.

Proposition 16. Let P (z) = ζ20(−z) =
∑20

j=1 j
z, then AP (aP , y) > 0 ∀y ∈ R, where aP is

defined in (2).

Proof. Observe first that P (z) is clearly in the class PS . In fact, the set {g1, g2, . . . , g8} with
g1 = log 2, g2 = log 3 g3 = log 5, g4 = log 7, g5 = log 11, g6 = log 13, g7 = log 17 and g8 = log 19,
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is a basis of W = Z log 2 + . . .+Z log 20 which satisfies the required conditions. Also, by taking
the vector x = (x1, x2, x3, x4, x5, x6, x7, x8) = (0, 0, π, π, π, π, π, π), note that

FP (0,x) = 1 + eix1 + eix2 + ei2x1 + eix3 + ei(x1+x2) + eix4 + ei3x1 + ei2x2+

+ei(x1+x3) + eix5 + ei(2x1+x2) + eix6 + ei(x1+x4) + ei(x2+x3)+

+ei4x1 + eix7 + ei(x1+2x2) + eix8 + ei(2x1+x3) = 0

where FP is the function defined in (5). Consequently, by Theorem 1, we conclude that 0 ∈ RP .
Therefore aP ≤ 0 and thus

AP (aP , 0) = 1 + 2aP + 3aP + . . .+ 18aP + 20aP − 19aP > 0. (26)

Assume that there exists a real number y1 such that

AP (aP , y1) < 0. (27)

Thus the continuity of AP (x, y) and the inequalities (26) and (27) assure the existence of some
δ > 0 such that AP (x, 0) > 0 and AP (x, y1) < 0 for all x ∈ (aP−δ, aP +δ). Therefore, again from
the continuity of AP (x, y), for each x ∈ (aP − δ, aP ) there is a point yx such that AP (x, yx) = 0,
which implies by Proposition 2 that (aP −δ, aP ) ⊂ RP , contradicting the definition of aP . Hence
AP (aP , y) ≥ 0 for all y ∈ R or, equivalently, |P ∗(aP + iy)| ≥ 19aP for all y ∈ R. Now, assume
that y0 is a real number such that AP (aP , y0) = 0. Thus y0 6= 0 and the point z0 = aP + iy0
verifies

min{|P ∗(z)| : Re z = aP } = |P ∗(z0)| = 19aP .

Therefore, from Lemma 11 we deduce the existence of three non-null real numbers µ1, µ2 and
µ3 such that

P ∗(z0) = µ117aP+iy0 ,

P ∗(z0) = µ215aP+iy0

and
P ∗(z0) = µ313aP+iy0 .

Consequently, µ117aP+iy0 = µ215aP+iy0 and µ215aP+iy0 = µ313aP+iy0 , which implies that(
17

15

)aP+iy0

=
µ2
µ1

and (
15

13

)aP+iy0

=
µ3
µ2
.

That is, there exist non-null integers u1 and u2 such that

y0(log 17− log 15) = u1π (28)
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and
y0(log 15− log 13) = u2π. (29)

Dividing (28) and (29), we get
log 17− log 15

log 15− log 13
=
u1
u2
,

which means that {log 13, log 15, log 17} are linearly dependent over the rationals and this is a
contradiction. Now the proposition is proved.

Nevertheless, in [2, Theorem 2], [6, Theorem 2], [7, Theorem 5] and [8, Theorem 3.14] one
states the following result for the functions Gn(z) = ζn(−z):

Theorem 0. (Mora, 2013, 2014; Dubon et al., 2014) For every integer n > 2, a real number
x ∈ RGn if and only if AGn(x, y) = 0 for some y ∈ R.

It can be easily checked that this false equivalency does not affect any subsequent result of the
paper [2] because it is only used in the right sense of Proposition 2 of the present paper. However,
Theorem 0 is essential to prove the main results in [6, 7, 8], particularly [7, Theorem 12] and [6,
Theorem 3.18]. The mistake in that proof consists of supposing that limn→∞ e

iCyn = eiCλ when
y1, y2, . . . , yn, . . . are real numbers so that limn→∞ e

iyn = eiλ for λ ∈ [0, 2π) and C is a fixed real
number (see [7, p.123, l.6] or [2, p.328, l.5]). For example, if yn = 3πn

n+1 , n ≥ 1, and C = 1
3 , then

limn→∞ e
iyn = eiπ (observe that λ = π) and limn→∞ e

iCyn = eiπ 6= eiCλ.
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