Skip to main content
    We present comprehensive maps at single-amino acid resolution of the residues stabilizing the human Gαi1 subunit in nucleotide- and receptor-bound states. We generated these maps by measuring the effects of alanine mutations on the... more
    We present comprehensive maps at single-amino acid resolution of the residues stabilizing the human Gαi1 subunit in nucleotide- and receptor-bound states. We generated these maps by measuring the effects of alanine mutations on the stability of Gαi1 and the rhodopsin-Gαi1 complex. We identified stabilization clusters in the GTPase and helical domains responsible for structural integrity and the conformational changes associated with activation. In activation cluster I, helices α1 and α5 pack against strands β1-β3 to stabilize the nucleotide-bound states. In the receptor-bound state, these interactions are replaced by interactions between α5 and strands β4-β6. Key residues in this cluster are Y320, which is crucial for the stabilization of the receptor-bound state, and F336, which stabilizes nucleotide-bound states. Destabilization of helix α1, caused by rearrangement of this activation cluster, leads to the weakening of the interdomain interface and release of GDP.
    Connexins form a family of membrane proteins that assemble into communication channels and directly connect the cytoplasms of adjoining cells. Malfunctioning of connexin channels often cause disease, such as the mutations M34T and R75W in... more
    Connexins form a family of membrane proteins that assemble into communication channels and directly connect the cytoplasms of adjoining cells. Malfunctioning of connexin channels often cause disease, such as the mutations M34T and R75W in human connexin 26, which are associated with hereditary deafness. Another residue known to be essential for normal channel activity in the connexin is Cys-64. To obtain structural and functional insights of connexin 26, we studied the roles of these three residues by expressing mutant connexins in insect Sf9 and HeLa cells. The M34T and M34A mutants both formed gap junction plaques, but dye transfer assays showed that the M34A mutant had a significantly reduced permeability, suggesting that for proper channel function a side chain of adequate size is required at this position. We propose that Met-34 is located in the innermost helix of the channel, where it ensures a fully open channel structure via interactions with other transmembrane helices. Gap junction channels formed by the R75W and R75D mutants dissociated upon solubilization in dodecyl maltoside, whereas the R75A mutant remained hexameric. All gap junctions formed by Arg-75 mutants also showed only negligible activity in dye transfer experiments. These results suggest that residue Arg-75 plays a role in subunit interactions needed to retain a functional and stable connexin hexamer. The C64S mutant was suggested to be defective in oligomerization and/or protein folding even in the presence of wild-type connexin.
    The activation of the G-protein transducin (Gt) by rhodopsin (Rho) has been intensively studied for several decades. It is the best understood example of GPCR activation mechanism and serves as a template for other GPCRs. The structure of... more
    The activation of the G-protein transducin (Gt) by rhodopsin (Rho) has been intensively studied for several decades. It is the best understood example of GPCR activation mechanism and serves as a template for other GPCRs. The structure of the Rho/G protein complex, which is transiently formed during the signaling reaction, is of particular interest. It can help understanding the molecular details of how retinal isomerization leads to the G protein activation, as well as shed some light on how GPCR recognizes its cognate G protein. The native Rho/Gt complex isolated from bovine retina suffers from low stability and loss of the retinal ligand. Recently, we reported that constitutively active mutant of rhodopsin E113Q forms a Rho/Gt complex that is stable in detergent solution. Here, we introduce methods for a large scale preparation of the complex formed by the thermo-stabilized and constitutively active rhodopsin mutant N2C/M257Y/D282C(RhoM257Y) and the native Gt purified from bovine...