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2 Supplementary Section: Datasets and temporal dependence

2.1 Datasets used in analysis

The NASA GISTEMP dataset uses the 1951-1980 average as the baseline pe-
riod and estimates anomalies up to 1200 km from the nearest measurement
station, allowing for broad spatial coverage. The NOAA data reconstructs land
data for unobserved regions using a method called “empirical orthogonal tele-
connections.” The HadCRUT4 data does not use any spatial infilling and thus
has gaps in grid squares with very sparse (or no) data. The HadCRUT4 data
therefore does not account for warming in the Arctic and Antarctic regions,
leading to documented coverage bias (Cowtan and Way, 2014).

We primarily present in the main text the results from analysis of the NASA
GISS data set, as it provides the largest spatial coverage of the three datasets.
The NASA GISS data is also plotted in Figure 5. However, the NOAA and
HadCRU datasets are also thoroughly analyzed to ensure that our results are
not biased by any particular dataset. See Summary Tables 1 and 2. It is clear
from these summary tables that analyzing a restricted spatial domain can lead
to di↵erent scientific conclusions.
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(a) NASA GISS data
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(b) NASA GISS data with 5-year moving av-
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Fig. 5: Plots of (a) the global mean land-ocean temperature index, from 1880
to 2013, with the base period 1951-1980 and (b) with a 5-year simple moving
average superimposed.
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2.2 Serial Dependence in the global temperature record

Residual plots from a standard least squares fit and corresponding PACF and
ACF plots are given below. These clearly illustrate the presence of serial corre-
lation in the global temperature record, and thus the need to properly account
for it.

OLS 1950−1997 Residuals
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(a) Plot of the 1950-1997 OLS residuals

OLS 1950−2013 Residuals
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(b) Plot of the 1950-2013 OLS residuals

Residuals
from separate OLS for 1950−1997 and 1998−2013
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(c) Plot of the residuals from separate 1950-
1997 and 1998-2013 OLS fits

Fig. 6: Plots of the residuals from 1950-2013.
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Fig. 7: ACF and PACF plots for residuals from 1950-2013.
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3 Supplementary Section: Details of Methodology and Additional
Results

3.1 Hypothesis I

Consider the model where the global temperature series x
t

for the 1998-2013
period follows a linear model, given by

x
t

= ↵1 + �1t+ "
t

,

where E("
t

) = 0 and Var("
t

) = �2. The claim that the linear rate of change
in global temperature has stalled can be restated as saying there is no linear
trend in global temperature during the period 1998-2013. The corresponding
statistical hypothesis can be stated as

H0 : �1 = 0 versus H
A

: �1 6= 0.

Three methods with increasing levels of generality and sophistication are
employed in order to test Hypothesis I: Three methods (with increasing levels
of generality/sophistication) are used to test this hypothesis:

– Method IA: No temporal dependence
– Method IB: Temporal dependence: using an AR(1) model
– Method IC: Temporal dependence: using the bootstrap only

3.1.1 Method IA: No temporal dependence

Under the assumption of independently and identically distributed errors, ordi-
nary least squares is used to estimate the slope �1, and is given as b�1 = 0.0090
with the standard error se(b�1) = 0.0052. The Wald statistic is constructed as

W =
b�1 � 0

se(b�1)
= 1.7510.

Under the null hypothesis that �1 = 0, W approximately follows a t
n�2 dis-

tribution, where n is the number of observations. We compute the p-value to
be

p = P [|t
n�2| > |W |] = 2F (�|W |) = 0.1018,

where F is the cdf of t
n�2 = t14.

It is important to recognize that the observed temperature time series are
potentially subject to errors due instrumental errors and other reasons. A
more sophisticated formulation of the standard regression model could also
be formulated. A key assumption that has been made in our analysis in this
regard is that the observational errors can be absorbed into the residuals of
the regression model.
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3.1.2 Method IB: Temporal dependence: Autoregressive structure in the

residuals

Assume that the global temperature series x
t

for the 1998-2013 period follows
a linear model, given by

x
t

= ↵1 + �1t+ "
t

,

where "
t

follows an AR(1) model, namely

"
t

= �"
t�1 + �

t

,

where �
t

are iid innovations with E(�
t

) = 0 and Var(�
t

) = �2.

The b�1 now denotes the estimate of �1 using the iterative Cochrane-Orcutt
procedure (Cochrane and Orcutt, 1949). A semiparametric block bootstrap is

implemented in order to approximate Var(b�1). The algorithm is given below:

1. Fit the model bx
t

= b↵1 + b�1t + b�"
t�1 using the iterative Cochrane-Orcutt

procedure and compute the sample innovations b�
t

= x
t

� bx
t

.
2. Use the circular block bootstrap with block size b to generate a bootstrap

series of innovations �⇤
t

of length equal to the original data series.
3. Construct bootstrap observations x⇤

t

= bx
t

+ �⇤
t

, on which we rerun the

regression analysis to yield a bootstrap replication b�⇤
1 .

4. To approximate the sampling distribution of b�1, repeat Steps 2 and 3, B
times, to get b�⇤

1,1, . . . ,
b�⇤
1,B .

Approximate two-sided p-values are calculated in three ways. First, we
compute the bootstrap estimate of Var(b�1) by

dVar
b

(b�1) =
1

B � 1

BX

j=1

 
b�⇤
1,j �

1

B

BX

k=1

b�⇤
1,k

!2

and construct the Wald statistic

W =
b�1 � 0q
dVar

b

(b�1)
.

Under the null hypothesis that �1 = 0, W approximately has a t
n�3 distri-

bution, where n is the number of observations. We thus compute the p-value
by

p̂ ⇡ P [|t
n�3| > |W |] = 2F (�|W |),

where F is the cdf of t
n�3.

Asymptotically, W converges in distribution to N (0, 1), so we can also
approximate the p-value by

p̂ ⇡ P [|Z| > |W |] = 2�(�|W |),

where Z ⇠ N (0, 1) and � is the CDF of Z.
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We also compute bootstrap p-values by computing

p̂ =
1

B

BX

k=1

I
⇣���b�⇤

1,k � b�1

��� >
���b�1

���
⌘
.

We report the bootstrap standard errors and p-values below for various block
sizes b and B = 1000.

Table 3: Bootstrap standard errors for b� at various bootstrap block sizes and
the corresponding p-values computed using the t13 and N (0, 1) distributions
and the bootstrap approximation for the 1998-2013 time period when assuming
an AR(1) model in the residuals.

Block Size Std.Error t
13

N (0, 1) Bootstrap

b = 1 0.0111 0.2704 0.2497 0.241
b = 2 0.0083 0.1463 0.1223 0.116
b = 3 0.0069 0.0853 0.0626 0.071
b = 4 0.0046 0.0161 0.0057 0.005
b = 5 0.0067 0.0778 0.0555 0.075
b = 6 0.0037 0.0045 0.0006 0.000

No AR(1)/Bootstrap 0.0052 0.1018 0.0799

The p-values become significant (at the 10% level) for block sizes of b = 3 or
larger. Accounting for the temporal dependence in the data, there is su�cient
evidence at the 10% significance level to reject the hiatus claim.

A counterintuitive result emerges from the analysis above since we reject
the null hypothesis when accounting for the influence of temporal dependence
(using a simple AR(1) dependence model), but cannot reject the null hypoth-
esis when assuming independence. This is unexpected given the greater un-
certainty in the slope estimates given the weak persistence in the global mean
temperature. In order to understand this issue better, the ACF and PACF
plots of the residuals for the period 1998-2013 were calculated (see Figure 8).
It is clear from the PACF plot that there is non-negligible negative autocor-
relation in the 1998-2013 residual time series. This negative autocorrelation
explains the apparent contradiction. It is important to note that the coun-
terintuitive PACF estimate could be due to sampling variability. The PACF
plot for the 1999-2013 residual time series, that is without the 1998 tempera-
ture data point, reveals interesting points. The negative lag 1 autocorrelation
and partial autocorrelation in the 1998-2013 series is no longer present when
year 1998 is removed from the analysis, underscoring the e↵ect of this one
time point on the entire analysis. Furthermore, non-negligible positive partial
autocorrelation starts to emerge when year 1998 is removed.
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Fig. 8: Top: ACF plots of residuals time series 1998-2013 (left) and 1999-2013
(right). Bottom: PACF plots of residuals time series 1998-2013 (left) and 1999-
2013 (right).

3.1.3 Method IC: Temporal dependence: The nonparametric block bootstrap

A very general method to assess the uncertainty in the estimates of �1 is to
use the block bootstrap. Let b�1 denote the ordinary least squares estimate of
�1. To approximate Var(b�1), consider the following algorithm:

1. Fit the model bx
t

= b↵1 + b�1t using ordinary least squares and compute the
sample residuals b"

t

= x
t

� bx
t

.
2. Use the circular block bootstrap with block size b to generate a bootstrap

series of residuals "⇤
t

of length equal to the original data series.

3. Construct bootstrap observations x⇤
t

= b↵1+b�1t+"⇤
t

on which the regression

analysis is repeated to yield a bootstrap replication b�⇤
1 .

4. To approximate the sampling distribution of b�1, repeat Steps 2 and 3, B
times, to get b�⇤

1,1, . . . ,
b�⇤
1,B .

As in Method IB, approximate p-values are calculated in three ways. First,
the bootstrap estimate of Var(b�1) is computed by

dVar
b

(b�1) =
1

B � 1

BX

j=1

 
b�⇤
1,j �

1

B

BX

k=1

b�⇤
1,k

!2

and construct the Wald statistic

W =
b�1 � 0q
dVar

b

(b�1)
.
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Under the null hypothesis that �1 = 0, W approximately has a t
n�2 distri-

bution, where n is the number of observations. The corresponding p-value is
computed by

p̂ = P [|t
n�2| > |W |] = 2F (�|W |),

where F is the CDF of t
n�2.

Asymptotically, W converges in distribution to N (0, 1), so one can also
approximate the p-value by

p̂ = P [|Z| > |W |] = 2�(�|W |),

where Z ⇠ N (0, 1) and � is the CDF of Z.
The bootstrap p-values can be computed by evaluating

p̂ =
1

B

BX

k=1

I
⇣���b�⇤

1,k � b�1

��� >
���b�1

���
⌘
.

The bootstrap standard errors and p-values for various block sizes b and
B = 1000 are reported in Table 4. For the 1998-2013 period, n = 16, so W ⇠
t16�2 = t14. Since n is small, the p-values computed using the t14 distribution
are more reliable.

Table 4: Bootstrap standard errors for b� at various bootstrap block sizes and
the corresponding p-values computed using the t14 and N (0, 1) distributions
and the bootstrap approximation for the 1998-2013 time period.

Block Size Std.Error t
14

N (0, 1) Bootstrap

b = 1 0.0048 0.0818 0.0607 0.046
b = 2 0.0044 0.0610 0.0416 0.05
b = 3 0.0037 0.0288 0.0149 0.019
b = 4 0.0032 0.0145 0.0053 0.001
b = 5 0.0035 0.0224 0.0102 0.006
b = 6 0.0032 0.0127 0.0043 0.001

No Bootstrap 0.0052 0.1018 0.0799

From Table 4 the p-values are both significant (at the 5% level) and stable
from block size b = 3 and larger.

3.2 Hypothesis II

The second hypothesis test is set up in the context of two linear models, and
is given by

x
t

= ↵0 + �0t+ "
t

y
s

= ↵1 + �1s+ "
s

,
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where x
t

and y
s

are the 1950-1997 and 1998-2013 global mean temperature
anomalies series respectively, and "

t

is random noise, so E("
t

) = 0,Var("
t

) =
�2. The claim is that the linear trend during the 1998-2013 hiatus period is
lower than the trend during the previous period 1950-1997 2. The correspond-
ing statistical hypothesis is then given as

H0 : �0 � �1  0 versus H
A

: �0 � �1 > 0.

Three methods (with increasing levels of generality/sophistication) are
used to test this hypothesis:

– Method IIA: No temporal dependence
– Method IIB: Temporal dependence: using the nonparametric block boot-

strap
– Method IIC: Temporal dependence: using subsampling

3.2.1 Method IIA: No temporal dependence

First, temporal dependence in the observations is ignored and errors are as-
sumed to be independent. The hypothesis test is based on the standard Wald
statistic

W =
b�0 � b�1r

b�2
0Pn0

j=1 t

2
j
+ b�2

1Pn1
k=1 s

2
k

,

where b�0, b�1 are the respective ordinary least squares estimates for �0 and
�1, b�2

0 , b�2
1 are the estimates for the residual variances, and t

j

and s
k

denote
standardized time units within each time interval.

The estimates obtained are b�0 = 0.0134, b�1 = 0.0090, yielding the Wald
statistic W = 0.8063. Assuming independent observations, the distribution of
W can be approximated by N (0, 1). The one-sided p-value is given by

p = P [Z > W ] = P [Z > 0.8063] = 0.2100,

where Z ⇠ N (0, 1). The observed di↵erence in slopes is not statistically sig-
nificant at the 5% significance level. Hence there is no compelling evidence to
suggest that the slopes are significantly di↵erent.

2 Changing the reference period from 1950-1997 to 1880-1997 only strengthens the null
hypothesis of no di↵erence between the hiatus period and before. This follows from the fact
that the trend during 1880-1997 is more similar to the trend in the hiatus period. Thus the
selected period 1950-1997 can be regarded as a lower bound on p-values for tests of di↵erence
in slopes.
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3.2.2 Method IIB: Temporal dependence: The nonparametric block bootstrap

Method IIB tests the hypotheses while accounting for the temporal depen-
dence in the observations. Specifically, the block bootstrap regression method
is employed in order to approximate Var(b�0 � b�1). The implementation of the
block bootstrap is described below.

1. Fit the models bx
t

= b↵0+ b�0t and bys = b↵1+ b�1s using ordinary least squares
and compute the sample residuals series

b"
t

=

(
x
t

� bx
t

if 1950  t  1997

y
t

� by
t

if 1998  t  2013.

2. The circular block bootstrap is used with block size b to generate a boot-
strap series of residuals "⇤

t

of length equal to the original data series.
3. The bootstrap observations are constructed as follows:

x⇤
t

= b↵0 + b�0t+ "⇤
t

, if 1950  t  1997

y⇤
t

= b↵1 + b�1t+ "⇤
t

, if 1998  t  2013

on which the regression analysis is rerun to yield bootstrap replications b�⇤
0

and b�⇤
1 .

4. To approximate the sampling distribution of b�0 � b�1, Steps 2 and 3 are
repeated, B times, to get b�⇤

0,1, . . . ,
b�⇤
0,B ,

b�⇤
1,1, . . . ,

b�⇤
1,B and compute b�⇤

0,1 �
b�⇤
1,1, . . . ,

b�⇤
0,B � b�⇤

1,B .

The approximate p-values are calculated in two ways. First, the bootstrap
estimate of Var(b�0 � b�1) is computed by

dVar
b

(b�0 � b�1) =
1

B � 1

BX

j=1

"⇣
b�⇤
0,j � b�⇤

1,j

⌘
� 1

B

BX

k=1

⇣
b�⇤
0,k � b�⇤

k

⌘#2

as an ingredient in the Wald statistic

W =
(b�0 � b�1)� 0q
dVar

b

(b�0 � b�1)
.

Under the null hypothesis that �0 � �1 = 0, W converges in distribution to
N (0, 1), so the one-sided p-value is approximated by

p̂ = P [Z > W ] = 1� �(W ),

where Z ⇠ N (0, 1) and � is the CDF of Z.
The one-sided bootstrap p-value is obtained by computing

p̂ =
1

B

BX

k=1

I
h⇣
b�⇤
0,k � b�⇤

1,k

⌘
�
⇣
b�0 � b�1

⌘
>
⇣
b�0 � b�1

⌘i
.
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The bootstrap standard errors and p-values are reported for various block
sizes b and B = 1000 in Table 5. Even after taking temporal dependence into
account, the observed di↵erence is not statistically significant. The p-values
are fairly stable, since they do not vary much by block size. Note that after
accounting for temporal dependence, the p-values change from 0.2 to around
0.3.

Table 5: Bootstrap standard errors for b�0 � b�1 at various bootstrap block
sizes and the corresponding one-sided p-values computing using the N (0, 1)
distribution and the bootstrap approximation to test for a di↵erence in slopes
between the global temperatures in the 1950-1997 and 1998-2013 periods.

Block Size Std.Error N (0, 1) Bootstrap

b = 1 0.0075 0.2838 0.257
b = 2 0.0078 0.2908 0.297
b = 3 0.0086 0.3085 0.306
b = 4 0.0085 0.3054 0.323
b = 5 0.0085 0.3068 0.299
b = 6 0.0086 0.3079 0.323

No bootstrap 0.0053 0.2100

3.2.3 Method IIC: Temporal dependence using subsampling

The third method employs the technique of subsampling (Politis et al, 1999) as
a means to quantify the uncertainty around the di↵erence in the two observed
regression slopes. Here the 16-year regression slope obtained when fitting a
regression analysis on data from 1998-2013 is compared against all contigu-
ous 16-year trends during the period 1950-1997. Note that this distribution
does not overlap with the 1998-2013 period. A p-value is computed based on
the quantile of the distribution of 16-year trends, that corresponds to the ob-
served (1998-2013) trend. This approach yields a valid statistical method that

approximates the null distribution of the test statistic b�1, and falls within the
overall framework of subsampling - see Rajaratnam et al (2014) for theoretical
details.

The observed trend during the hiatus period, b�1 = 0.0091, yields a p-value
of 0.3939. As in the previous two methods, the p-value is not significant at the
nominal 5% level. Having said this, from Figure 2 there is a clear pattern in
the distribution of 16 year linear trends over time: all 16 year trends starting
at 1950 all the way to 1961 are lower than the trend during hiatus period, and
all 16 year linear trends starting at years 1962 all the way to 1982 are higher
than the trend during the hiatus period, with the exception of the 1979-1994
trend.
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3.3 Hypothesis III

As mentioned in the main text of the paper, Hypothesis III is tested in four
ways.

1. Method IIIA: E(x1998) = x1998 and variability of x1998 is not mod-
eled. First E(x1998) is estimated by the observed value x1998 = 0.84. This
value is assumed to be fixed as the variability associated with this estimate
is not modeled. The stationary and circular block bootstraps are used to
sample from the 1999-2013 series to generate a sampling distribution for
bµ⇤
after�x1998. It turns out that the entire bootstrap sampling distribution,

regardless of block bootstrap method and block size, is negative. Hence
one can reject the null hypothesis and conclude that the post-1998 mean
is statistically significantly di↵erent from the 1998 mean.

2. Method IIIB: E(x1998) = bµ1998 and variability of bµ1998 is not mod-
eled. The value for E(x1998) is estimated by the fitted value bµ1998 =

b↵ + b�(1998) = 0.4844, where b↵ and b� are estimated using ordinary least
squares on the 1950-1998 series. This estimated value is once more as-
sumed to be fixed, as the variability associated with this estimate is not
modeled.Note that using the observed 1998 as a substitute for the true
underlying mean µ1998 can be viewed as “cherry picking” a reference year
which favors the hiatus claim. Thus estimating µ1998 from the regression
line from the period 1950-1997 provides a statistically rigorous way to
avoid this pitfall. The stationary and circular block bootstraps are used to
sample from the 1999-2013 series and generate a sampling distribution for
bµ⇤
after � bµ1998. In this case, the entire bootstrap sampling distribution, re-

gardless of block bootstrap method and block size, is positive. That is, the
sign of the di↵erence is reversed. One can thus reject the null hypothesis
and conclude that the post-1998 mean is statistically significantly di↵erent
from the 1998 mean.

3. Method IIIC: E(x1998) = x1998 and variability of x1998 is modeled.
The value for E(x1998) is estimated by the observed value x1998 = 0.84.
We now explicitly model both the variability of the E(x1998) estimate and
the E(x1998+t

) estimate of bµafter =
1
15

P15
t=1 x1998+t

= 0.7573 by using the
circular block bootstrap. The 1950-1998 and 1999-2013 series are sampled
separately. For each bootstrap series, we again estimate E(x1998) by the
1998 observation x⇤

1998 in the bootstrap series. We estimate E(x1998+t

) by
bµ⇤
after =

1
15

P15
t=1 x

⇤
1998+t

. The bootstrap sampling distributions of (bµ⇤
after�

x⇤
1998)� (bµafter � x1998) for various block sizes are obtained. The observed

di↵erence in mean estimates bµafter � x1998 = �0.0827 is in the far left tail
of the bootstrap sampling distributions, regardless of block size. However
when using a two-sided test, unlike in Method IIIA, we retain the null
hypothesis and conclude that su�cient evidence is not available to deduce
that the post-1998 mean is statistically significantly di↵erent from the 1998
mean.
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Table 6: Summary table of results for Hypothesis III with 1999 cuto↵

Method E(x
1999

) Variability of x
1999

Result Remark

IIIA x
1999

Assume fixed Reject H
0

increase in mean

IIIB bµ
1999

Assume fixed Reject H
0

increase in mean

IIIC x
1999

Simulate by bootstrap Retain H
0

no change in mean

IIID bµ
1999

Simulate by bootstrap Reject H
0

increase in mean

Table 7: Summary table of results for Hypothesis III with 2000 cuto↵

Method E(x
2000

) Variability of x
2000

Result Remark

IIIA x
2000

Assume fixed Reject H
0

increase in mean

IIIB bµ
2000

Assume fixed Reject H
0

increase in mean

IIIC x
2000

Simulate by bootstrap Retain H
0

no change in mean

IIID bµ
2000

Simulate by bootstrap Reject H
0

increase in mean

4. Method IIID: E(x1998) = bµ1998 and variability of bµ1998 is mod-
eled. The value for E(x1998) is estimated by the fitted value bµ1998 =

b↵ + b�(1998) = 0.4844, where b↵ and b� are estimated using ordinary least
squares on the 1950-1998 series. Both the variability of the E(x1998) esti-
mate and the E(x1998+t

) estimate of bµafter = 0.7573 are explicitly mod-
eled by using the circular block bootstrap. For each bootstrap series, we
estimate E(x1998) by the fitted value bµ⇤

1998 = b↵⇤ + b�⇤(1998), where b↵⇤

and b�⇤ are estimated using ordinary least squares on the 1950-1998 boot-
strap series. We estimate E(x1998+t

) by bµ⇤
after =

1
15

P15
t=1 x

⇤
1998+t

. The boot-
strap sampling distributions of (bµ⇤

after � bµ⇤
1998) � (bµafter � bµ1998) for var-

ious block sizes are obtained. The observed di↵erence in mean estimates
bµafter� bµ1998 = 0.2729 is in the far right tail of the bootstrap sampling dis-
tributions, regardless of block size. Thus, as in Method IIIB, one can reject
the null hypothesis and conclude that the post-1998 mean is statistically
significantly di↵erent from the 1998 mean.

E↵ect of varying the start of the hiatus period to 1999 and 2000:

Explanation of the di↵erences between Hypotheses I and III:
Recall that in the linear model in hypothesis I, setting the population slope
coe�cient to zero corresponds to a constant mean global temperature during
the hiatus period. In this sense hypothesis I and III coincide. There are however
some not-so-subtle di↵erences. First, the class of linear models considered in
hypothesis I is a sub-model of the more general model considered in hypothesis
III. This di↵erence leads to di↵erent test statistics that guard against Type I
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error in the context of that particular model. Second, the class of alternatives
are also di↵erent between hypothesis I and hypothesis III. Thus the statistical
power, which guards against Type II error, associated with the two tests is
also di↵erent.

Further discussion of the choice of 1998 as the start of the hiatus
period:

The results of the detailed statistical analysis presented above is quite nu-
anced. The four statistical tests together give compelling evidence to refute the
assertion that global mean temperature has stalled during the hiatus period.
In fact the increase in global mean temperature appears to continue unabated
during the hiatus period. This warming trend appears to be masked by the
global mean temperature record for 1998. The analysis also suggests that the
observed global mean temperature record for 1998 is extreme in the sense that
if the associate variability is accounted for, then ensuing years do not reflect
a significant decrease in temperature.

The robustness of the above results are examined by varying the starting
year of the hiatus from 1998 to 1999 and 2000. The results from this sensitivity
analysis are given in Tables 6 and 7. The decrease in mean suggested by method
IIIA when x1998 is used as a substitute for µ1998 no longer holds true when the
cut-o↵ year 1999 or 2000 is used. In fact, the recorded temperature for 1999 is
relatively lower than those recorded in the period 2000-2013 and leads to the
conclusion that global mean temperatures have actually increased during the
purported hiatus period. This sensitivity analysis once more underscores our
earlier point that a selection e↵ect occurs when picking 1998 as the start of the
hiatus period. The result above can also be interpreted against the backdrop of
hypothesis I which (essentially) tested for the slope after 1998. In that analysis
the slope was found to be positive and significantly di↵erent from zero.

There are two additional ways to see how the conclusion in the testing of the
global mean temperature is sensitive to the single observed value in year 1998.
One approach is to pick the year 2000 as the start of the hiatus period. Just
as 1998 is hand-picked, one can also hand-pick 2000. When year 2000 is picked
however, the conclusion of a stalling in mean global warming is completely
reversed, and the opposite conclusion from the 1998 case is reached. So it is
clear from just this experiment that data snooping can strongly influence the
final conclusion. A second approach is to look at the largest temperature value
before 1998. Note that the 1998 value (anomaly) is 0.84 vs. the previous high
of only 0.56 in 1995. A simple analysis shows than any value for 1998 which
is lower than 0.81 would not lead to a conclusion that would suggest that the
mean has stalled. Hence it is clear that the 1998 value is very high compared
to any of the previous values by a large margin. Thus, any hiatus claims after
the fact of observing an exceptionally warm year as a means of comparing
amounts to cherry-picking.
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3.4 Hypothesis IV

Formally, consider the hypotheses
H0 : F

�X

(·) = F
�Y

(·) versus H
A

: F
�X

(·) 6= F
�Y

(·),
where �X denotes the year-to-year increase in annual temperatures during
1950-1998 and �Y denote the year-on-year increase between 1998-2013. This
corresponds to a null hypothesis that within a long term period of increases
(as witnessed by the general increase between 1950-1998), shorter periods of
zero or negative trends (as observed in the period 1998-2013) are not unusual.

The empirical changes in annual temperatures are computed by taking the
first di↵erences of the observed global mean annual temperatures series. That
is,

�X
t

= x
t

� x
t�1 for 1881  t  1998

�Y
s

= y
s

� y
s�1 for 1999  s  2013.

The following five tests are implemented in the above framework:

– Hypothesis IVA: Test for a di↵erence in distributions
– Hypothesis IVB: Test for a di↵erence in means
– Hypothesis IVC: Test for a di↵erence in medians
– Hypothesis IVD: Test for a di↵erence in variances
– Hypothesis IVE: Test for a di↵erence in log variances

The implementation of hypothesis IVA using the Kolmogorov-Smirnov test
in conjunction with the block bootstrap is outlined below. Implementation of
hypotheses IVB, C, D, E follow similarly.

Consider now using the Kolmogorov-Smirnov test for hypothesis IVA:

H0 : F
�X

(·) = F
�Y

(·) versus H
A

: F
�X

(·) 6= F
�Y

(·),
where �X denotes the change in annual temperatures between 1894-1998 and
�Y denote the change between 1998-2013. The Kolmogorov-Smirnov statistic
is given by

D = D
m,n

= sup
x

|F
�X,m

(x)� F
�Y,n

(x)| ,

where F
�X,m

and F
�Y,n

(x) are the empirical distribution functions of �X
and �Y , respectively.

The block bootstrap is used to approximate the sampling distribution of
the usual test statistic D

m,n

. Details of the algorithm are given below:

1. Use the stationary block bootstrap with block sizes drawn from a geometric
distribution with probability p of success (i.e., expected block size of 1/p)
to �X

t

and �Y
s

to generate bootstrap series �X⇤
t

and �Y ⇤
s

for 1950 
t  1998 and 1999  s  2013.

2. Compute the bootstrap Kolmogorov-Smirnov statistic

D⇤ = sup
x

|F
�X

⇤
,m

(x)� F
�Y

⇤
,n

(x)| .
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3. To approximate the sampling distribution ofD, repeat Steps 1 and 2 above,
B times, to get D⇤

1 , D
⇤
2 , . . . , D

⇤
B

.

The entire 1950-2013 series is used to generate the bootstrapped series,
and the bootstrap p-values are computed by

p̂ =
1

B

BX

i=1

I (D⇤ > D) .

The subsampling results are also illustrated in Figures 9, 10, 11, 12 and
13. These figures illustrate how the Kolmogorov-Smirnov statistic, mean, me-
dian and variance of the year-to-year temperature increases recorded during
the hiatus compare to the distribution of these quantities during the 1950-
1997 period. It is clear that the recorded statistics during the hiatus period
are rendered non-significant in the subsampling context because of di↵erences
observed further back in the past, and not in the recent past.
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Fig. 9: Time series plots of 15-year di↵erence estimates observed between 1950
to 2013.
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Histogram of 15−Year KS Statistic Estimates
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Fig. 10: Plots of 15-year KS di↵erence estimates observed between 1950 to
2013. The dashed lines in (a) and (b) indicate the observed 15-year KS value
for the period 1998–2013.
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Fig. 11: Plots of 15-year mean di↵erence estimates observed between 1950 to
2013. The dashed lines in (a) and (b) indicate the observed 15-year mean value
for the period 1998–2013.
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Histogram of 15−Year Median Difference Estimates
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Fig. 12: Plots of 15-year median di↵erence estimates observed between 1950
to 2013. The dashed lines in (a) and (b) indicate the observed 15-year median
value for the period 1998–2013.
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1950 to 2013. The dashed lines in (a) and (b) indicate the observed variance
for the period 1998–2013.
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The analysis described above was also repeated when the starting year of
1998 was varied to 1999 or 2000 - see Table 8. The K-S bootstrap based test
for di↵erence in distributions is not significant at the nominal 5% level when
the later cut-o↵ years of 1999 or 2000 are used. In fact the p-value which was
lower than the 5% level in the 1998 analysis is no longer less than 0.05. The
sensitivity analysis once more reveals that hiatus claims can be linked to the
reference year of 1998.

Table 8: Summary Table of results for Hypothesis IV using starting years 1999
and 2000

Test
Bootstrap Subsampling

1999 2000 1999 2000

Di↵erence in distribution = 0.611 = 0.578 = 0.250 = 0.237
Di↵erence in mean = 0.995 ⇡ 0.906 = 0.583 = 0.579
Di↵erence in median = 0.434 ⇡ 0.515 = 0.194 = 0.974
Di↵erence in variance = 0.251 ⇡ 0.378 = 0.056 = 0.132

Di↵erence in log variance = 0.175 ⇡ 0.335 � �

4 Supplementary Section: Incorporating Observational
Uncertainties

Note that there are two distinct questions that can be asked regarding the
“trend” in the temperature series. The first is whether the observed tempera-
ture record exhibits an upward or downward trend that is greater than varia-
tions which can be attributed to observational error alone. This questions aims
to characterize the observed record. The second question aims to understand if
there is a deterministic component in the underlying stochastic process which
generates the data. These two questions are distinct and understanding if a
trend is significant requires examining both the observational uncertainties
and also assessing the variability that is inherent in the underlying model.

One of the datasets of global surface temperature anomalies used in our
analysis is the HadCRUT4 data, produced from the Met O�ce Hadley Cen-
tre in collaboration with the University of East Anglia Climatic Research
Unit (CRU). The HadCRUT4 data is “an ensemble data set in which the 100
constituent ensemble members sample the distribution of likely surface tem-
perature anomalies given our current understanding of these uncertainties.”
(Morice et al, 2012)

The primary HadCRUT4 series that was analyzed is the median of the
100 ensemble member time series. In order to account for the observational
uncertainties in the data, all of the analyses was rerun on “the lower and
upper bounds of the 95% confidence interval of the combined e↵ects of all
the uncertainties described in the HadCRUT4 error model (measurement and
sampling, bias and coverage uncertainties).” (Morice et al, 2012)
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The results from all three analyses are shown in Tables 9 and 10. Most of
the conclusions are robust to the choice of HadCRUT4 series we use. The main
di↵erence is appears in the results for Hypothesis I. There does not appear to
be a significant linear trend during the hiatus period in the median series for
the HadCRUT4 dataset, whereas there is a significant linear trend at the 5%
significance level in the lower and upper series. The conclusion of a significant
linear trend during the hiatus period is consistent with the results that was
found using the NASA GISS temperature anomalies dataset.
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5 Supplementary Section: Scientific Claims & corresponding
Statistical Hypotheses

Group I: The rate of change (linear increase) from 1998 onwards

– “Global mean surface temperature over the past 20 years (1993-2012) rose
at a rate of 0.14± 0.06 �C per decade (95% confidence interval). This rate
of warming is significantly slower than that simulated by the climate mod-
els...” (Fyfe, J. et al., Nature Climate Change, 2013)

– “...many governments are demanding a clearer explanation of the slowdown
in temperature increases since 1998.” (McGrath, M., BBC News, 2013)

– “Climate sceptics have seized on the temperature trends as evidence that
global warming has ground to a halt.” (Tollefson, J., Nature, 2014)

– “...despite a marked warming over the course of the 20th century, tem-
peratures have not really risen over the past ten years.” (The Economist,
2013)

Group II: Comparing the rates of change between the 1998-
present period and before

– “The rate of global mean warming has been lower over the past decade
than previously.” (Otto et. al, Nature Geoscience, 2013)

– “The rise in the surface temperature of earth has been markedly slower
over the last 15 years than in the 20 years before that.” (Gillis, J., The
New York Times, 2013)

– “...it is now clear that the rate of warming has slowed substantially over
the past 15 years or so...” (Smith, D., Nature Climate Change, 2013)

Group III: Stalling of the global mean from 1998 onwards

– “Global warming first became evident beyond the bounds of natural vari-
ability in the 1970s, but increase in global mean surface temperatures have
stalled in the 2000s.” (Trenberth, K. and Fasullo, J., Earth’s Future, 2013)

– “...average atmospheric temperatures have risen little since 1998...” (Tollef-
son, J., Nature, 2014)

– “Despite the continued increase in atmospheric greenhouse gas concentra-
tions, the annual-mean global temperature has not risen in the twenty-first
century...” (Kosaka and Xie, Nature, 2013)

– “...the Earth’s mean near-surface temperature paused its rise during the
2000-2010 period.” (Guemas et al., Nature Climate Change, 2013)

– “Average global temperatures hit a record high in 1998 – and then the
warming stalled.” (Tollefson, J., Nature, 2014)

Group IV: Di↵erence in year-to-year temperature increases

– “...many governments are demanding a clearer explanation of the slowdown
in temperature increases since 1998.” (McGrath, M., BBC News, 2013)

– “...despite a marked warming over the course of the 20th century, tem-
peratures have not really risen over the past ten years.” (The Economist,
2013)
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