
Supplementary Background

Origin of the chicken genome consortium

Given the many uses of the chicken in research and its importance as an agricultural

commodity and based on the existence of a significantly large community of interested

scientists, a proposal submitted to the National Human Genome Research Institute

(NHGRI) in 2002 outlining the rationale for sequencing the chicken genome (McPherson

et al.; http://genome.wustl.edu) was awarded a high priority1.  Key aspects of that

rationale are described below.  The physical map (Wallis et al., this issue) and draft

sequence of the 1.2 Gb chicken genome were completed at the Washington University

Genome Sequencing Center in just 9 months.  The draft genome sequence was released

on March 1, 2004 (http://www.genome.gov/11510730).  Additional whole genome

sequencing was carried out by the Beijing Genome Institute on three domestic chicken

varieties to identify and evaluate chicken genome variation (International Chicken

Polymorphism Map Consortium, this issue).  In parallel, more than 400,000 ESTs and

24,000 full length cDNA sequences were generated from a variety of different tissues to

provide experimental evidence for transcription, to increase the precision of gene

prediction and to validate the genome sequence assembly2.

Background

Evolution

The chicken genome serves as a model for those of  ~9600 extant avian species, along

with their evolutionary ancestors.  Birds are part of the diapsid branch of vertebrates that

split from the synapsid line (including mammals) over 310 My ago3,4  (Fig. 1, main text).

Birds and crocodiles (and possibly turtles), along with their extinct progenitors, including



dinosaurs, constitute the archosauromorphs and, together with lepidosauromorphs (e.g.,

lizards, snakes), are the primary extant diapsids. The earliest fossils specifically assigned

to the avian lineage are those of Archaeopteryx, dating to the late Jurassic period, about

150 My ago.  Most studies suggest that many extant orders of birds were present prior to

the Cretaceous-Tertiary boundary5-7 and date the split between Galliformes (land fowl,

including all four Jungle Fowl species) and Anseriformes (water fowl) at 90 My ago and

the origin of the Jungle Fowl genus itself, Gallus, at 8-9 My ago.

Domestication and natural history

Archeological evidence suggests chickens were domesticated in Asia at least by 5400 BC

or perhaps even earlier in the Neolithic period (~ 8000 BC 8), as chicken bones were

found associated with human artifacts of this age in Northeast China. The chickens kept

by the Harappan Culture (2500-2100 BC) of the Indus Valley (today this region

encompasses Pakistan and Western India) are considered the main source for subsequent

global dispersal of domestic animals9,10. Darwin11 suggested that the Red Jungle Fowl

(RJF) was the nearest ancestor to the domestic chicken because it can interbreed with

domestic birds producing fertile offspring, unlike the other Jungle Fowl (Grey, Green,

Ceylon). Support for this view was provided by mitochondrial DNA analysis12 which

indicated the Red Jungle Fowl native to Thailand are the monophyletic ancestor of the

domestic chicken.  It is hypothesized that chickens were originally utilized primarily for

religious ceremonies and sporting purposes and, in fact, eating chicken was likely taboo

in many cultures (and still is for some)13,14.

In addition to their use in agriculture and research, unusual varieties of chickens

continue to be bred by poultry fanciers for exhibition purposes.  Phenotypic variations

found among domestic chickens based on physique alone (size, shape, plumage and

comb) are remarkable; there are more than 300 combinations of features in over 120



breed standards with numerous varieties and an equal number of miniature versions

(bantams).  The extensive use of the chicken in literature, mythology, popular symbolism

and for comic relief (what came first the chicken or the egg?) among cultures on a global

scale speaks to interesting and positive ties to human cultural development

(http://www.yale.edu/agrarianstudies/chicken/program.html).

Agricultural relevance

The chicken is the first agricultural animal to have its genome sequenced.  Chickens

continue to grow in importance as a source of high quality protein, with over 50 million

tons of eggs and nearly 57 million tons of meat produced by the allied poultry industries

in 200015. Until the middle of the last century, most chicken breeds were raised for both

meat and eggs, generally in fairly small flocks.  However, the demand for more efficient

production led to increasing genetic specialization and intensive selection, such that

modern meat-type (broiler) and egg-type (layer) industrial breeds differ remarkably from

each other and from their source breeds. Poultry breeders continue to make annual

advances in productivity using quantitative genetic methods of selection. The molecular

basis for the continued genetic adaptability of the chicken is almost completely unknown,

but this genome sequence provides the opportunity to explore it (International Chicken

Polymorphism Map Consortium, this issue). It is also worth noting that backyard-

barnyard chicken flocks surviving on forage and food scraps remain a dependable source

of animal protein for people in developing nations throughout the world.



One hundred years of chicken research: implications for human and chicken

biology

Genetics: map and karyotype resources

Chickens have been a primary animal model for genetics for over 100 years since Bateson

and Saunders’ classic experiments16,17 established that Mendel's laws applied to animals,

and Spillman18  showed that feather-barring was sex-linked.  Chickens are relatively

straightforward to maintain, reproduce rapidly, and large crosses are generated easily.  As

with the laboratory mouse, but unlike most agricultural animals, inbred lines of chickens

have been developed to standardize genetic backgrounds.  Over the last 70 years well-

characterized research resources have been developed, including mutant stocks with

physiologic, metabolic, developmental and cytogenetic variants19.  Ironically, just as new

opportunities are being afforded by the genome sequence, there is continuing loss of

specialized chicken genetic lines, and there remains a lack of long-term conservation

planning for the extant resources20,21 .

The first chicken genetic linkage maps based on morphological and physiological

phenotypes were published by Serebrovsky and Petrov22 and Hutt23 (updated and

reviewed by Bitgood and Somes24). The development of molecular DNA markers and the

creation of internationally shared mapping populations dramatically improved these early

maps. A consensus linkage map was published in 200025 based on three resource

mapping populations26-28 comprising 1889 loci and spanning 3800 cM.  An additional

~300 loci subsequently have been added, bringing the current count to 2172 loci with a

length of ~4000 cM. The consensus map consists of 51 linkage groups, several likely

representing the same microchromosome. Thirty-one of these groups now have been

assigned to a specific chromosome29.  Radiation hybrid (RH) mapping has met with



limited success in the chicken, and only recently has a useful chicken RH panel been

established30. Framework RH maps for individual chicken chromosomes are just

beginning to appear31.  First generation BAC-based physical maps have also been

produced for both individual chromosomes32,33 and for the genome as a whole34.  A more

complete BAC contig physical map, developed in parallel with the genome sequence, is

reported by Wallis et al. (this issue).

The karyotype of most birds consists of 40 pairs of chromosomes (2n=80) of

dramatically different length; their number and appearance being quite distinct as

compared to the standard mammalian karyotype. The chicken karyotype includes 38

autosomes and two sex chromosomes (Z and W). Although the chromosomes fall along a

gradual size continuum, distinct size classes are obvious and here, for the purposes of

analysis, we designated three groups:  large macrochromosomes (GGA1-5), intermediate

chromosomes (GGA6-10) and 28 microchromosomes (GGA11-38). In terms of relative

scale, the macro- and intermediate chromosomes are similar in size to human

chromosomes35, whereas microchromosomes range down to sizes barely visible at the

light microscope level of resolution. The inability to distinguish between the majority of

microchromosomes has been a significant obstacle for cytogenetic mapping in chicken,

until recently allowing for a standardized G-banded karyotype only for autosomes 1

through 8 plus the Z and W sex chromosomes36. Recent developments in chromosome

painting and fluorescence in situ hybridization (FISH) using bacterial artificial

chromosome (BAC) probes has resulted in the cytogenetic identification of a large

number of the microchromosomes29,37,38.

Sex chromosomes, genes and mechanisms



In birds, the female is the heterogametic sex, having Z and W chromosomes; the male is

homogametic having ZZ sex chromosomes. Although the avian Z and W are not

orthologous to the mammalian X and Y39,40, some general features are common41.  The Z

chromosome, like the mammalian X, is conserved among avian lineages and is a large

chromosome42, whereas the W, like Y, is smaller, rich in heterochromatin and gene-

poor42.  It is not yet known what gene triggers the avian sex determination pathway,

analogous to the role of  SRY for male determination in mammals, although a number of

promising candidates are under study, including DMRT1 on the Z, and ASW(HINTW) and

FET1 on the W43. In fact, it remains uncertain whether the W plays a dominant role

(analogous to Y) in avian sex determination or if dosage of the Z is critical44.  Chickens

that are aneuploid solely for sex chromosomes are not available, but triploid (infertile)

ZZW birds initiate development as females and then appear to sex reverse post-hatch,

suggesting W initiation of femaleness but Z-dosage maintenance of maleness45.

Additional models have been developed to suggest that Z and W gene interactions control

avian sex determination rather than depending on a single dominant gene (reviewed in43).

Recent results indicate equal expression in males and females of several Z-linked genes,

suggesting an active dosage compensation mechanism exists in chickens46.  However,

genes are transcribed from both Z chromosomes in males, so any dosage compensation

must be regulated by post-transcriptional mechanisms47.

Developmental biology

Chickens have been immensely valuable as a model for developmental

biologists48.  Chicken embryo development is morphologically similar to that of

mammals with even specialized avian features such as scales and feathers providing



insight for development of homologous vertebrate structures. However, in chicken this

process occurs in ovo, allowing greater accessibility for experimental analysis of the fate

of embryonic tissues. Furthermore, the early chicken embryo develops along a flat plane

and is transparent, so the morphogenetic movements of cells and cell layers during

blastulation, gastrulation, neurulation, and somitogenesis are visible and accessible.

Embryos can also be cultured ex ovo.  Thus, a wealth of classical and experimental

embryological literature has accumulated, dating from the writing of Hippocrates,

Aristotle’s description of the development of the chicken embryo (4th century BC) and

Hieronymus Fabricius’ accurate drawings chronicling daily development (16th century49)

to the classical work of the last century on the stages of chicken embryogenesis50-53.

The major concepts of developmental biology, such as embryonic induction and

embryonic fate maps, were extended to avian embryos in the 1930’s54,55. Due to its

experimental advantages, the chicken embryo rapidly became a major model organism

for the study of organogenesis. Saunders and Wolpert established avian limb bud

development as a model system for understanding embryonic patterning and

morphogenesis56. This work led to several concepts of modern developmental biology

such as positional information and morphogens. Other major breakthroughs in our

understanding of the molecular mechanisms underlying establishment of embryonic

segmentation were performed in the chick embryo57,58. Hamburger and Montalcini

pioneered the study of programmed cell death through transplantation studies, leading to

the identification of nerve growth factor59. The identification of morphological

differences between the nuclei of quail and chick cells was used by Le Douarin to

develop an extremely robust fate mapping technique60. The introduction of fluorescent

dye and green fluorescent protein labeling coupled to time-lapse imaging opened new

avenues for studying cellular dynamics in the chick embryo61, and the ability to introduce

exogenous DNA into developing tissues has facilitated the characterization of several



morphogenetic signaling pathways. Retroviral vectors have been employed in gain of

function of experiments and have proven particularly useful in understanding the role of

signaling systems in limb bud patterning62. More recently, in ovo electroporation of the

embryo was used in gain of function experiments in the developing nervous system and

other tissues63. An alternative approach involves grafting local sources of secreted

proteins or chemical inhibitors64.  The lack of knock-out technology to generate loss of

function mutations was overcome, in part, using electroporation of morpholinos,

oligonucleotides, RNAi or ribozymes to induce local gene inactivation within the

embryo65,66. The application of RNAi technology in the developing chicken embryo67,68

should boost the use of the chicken as a model for the analysis of gene function.

Developmental mutations (many inherited as single gene recessives) uncovered in

large experimental and industry flocks during the 20th century provide valuable assets for

vertebrate developmental analysis (e.g., cleft palate, dwarfing, digit malformations,

limbless and wingless, integument disorders, etc.).  Over 30 lethal developmental

mutations were initially described by Romanoff 52; see Pisenti et al.19 and Delany21 for an

updated listing of mutant lines held in N. America. Many of the mutations were carefully

characterized for phenotype and inheritance pattern, and in several cases mechanistic

explanations are now available. However, most of the underlying genes remain to be

discovered, and the developmental mechanisms are still to be explored.

Viral Oncogenesis

The initial discovery by Peyton Rous in 1911 that injections of tumor filtrate produced

tumors in healthy chickens initiated the field of viral oncology, leading to the

characterization of Rous sarcoma virus, the subsequent discovery of oncogenes and

proto-oncogenes, Temin's provirus hypothesis, reverse transcriptase and retroviral

receptors  (see Vogt69 for a chronology. The avian sarcoma-leukosis virus group remains



a key model for retrovirology today. The oncogenic Marek’s Disease herpesvirus

provides a unique model for DNA tumor virology, and it is the only DNA tumor virus, to

date, for which an effective vaccine is available.  Host resistance to retroviruses, later

shown to be a property of the viral receptor protein, was discovered in poultry 70, and the

chicken genome continues to be explored for alleles that confer resistance to a variety of

pathogens, e.g. 71.

Immunology

Studies of the chicken immune system led to the first distinction between B-(Bursa of

Fabricius, the organ where Ig-producing lymphocytes are generated in avians) and T-cells

(Thymus) 72. The chicken immunoglobulin gene repertoire is diversified by a novel

system of somatic mutation based on gene conversion 73. The chicken major

histocompatibility gene complex (MHC) is also of great interest. The chicken MHC is

composed primarily of two large multigene clusters, the B-complex and Rfp-Y region

that flank the nucleolar organizer region (18S-5.8S-28S rDNA complex) 74,75.

An important application of the unique properties of the avian immune system has

grown out of the observation of Buerstedde and Takeda 76 that viral-transformed chicken

lymphoid cell lines exhibit remarkably high rates of homologous recombination. This led

to the wide use of the DT40 chicken B-cell line for genetic engineering of both avian and

mammalian genes48 (see also http://swallow.gsf.de/dt40.html).   Gene targeting in DT40

is largely undertaken to discover general aspects of gene function. The sequence

described herein expedites the identification of worthwhile candidate genes for disruption

and the subsequent analysis and interpretation of mutant phenotypes.



Zoonoses

Chickens and humans are infected by a number of common or related pathogens and

share several disease resistance/susceptibility mechanisms. Example zoonotic diseases

include salmonellosis, campylobacter, Newcastle disease and avian tuberculosis.  A

recent reminder of the importance of such processes was the transfer of avian influenza

from chicken to human and the spread of avian influenza to commercial poultry flocks in

the U.S. and elsewhere 77.  Similarly, recent evidence suggests a partial avian origin for

the SARS coronavirus 78,79.  Of note and concern regarding zoonotic disease is the fact

that many human (and other) vaccines are produced in chicken embryonic cells. In

addition to its significant contribution to human vaccine production, the chicken also

provides a valuable model for vaccination strategies, for example, Marek’s Disease

vaccination programs have pioneered the use of embryonic rather than post-natal

administration.

Cellular aging mechanisms: genome stability

Several features of chicken telomere biology suggest that the chicken model is more

similar to human than the rodent. Telomerase activity is developmentally down-regulated

and telomeres shorten in the majority of terminally-differentiated somatic tissues,

whereas telomerase activity re-emerges in transformed cells 80-82. Interestingly, both

chicken and human cells are more difficult to immortalize than rodent cells 83-85,

suggesting existence of common mechanisms/pathways governing genome stability and

cellular immortalization. Notably, many avians exhibit maximum life expectancies

similar to humans, and thus a stringent telomere clock may keep aging cells resistant to

immortalization. Interestingly, birds also exhibit a higher basal metabolic rate (and body

temperature) than mammals and may possess special protective mechanisms to respond

to the generation of DNA-damaging oxidative radicals.



The ability to now “see”, in part, the edges of telomeric repeats (see below) within

the draft sequence is important because researchers can identify and tag telomere-

adjacent regions to study sequence and gene content. This has implications for future

research on the impact of shortening of telomeric DNA on adjacent regions. Further,

interstitial telomeric DNA segments have been implicated in model organisms as

“hotspots” for recombination, and, more recently, terminal telomeric recombination

hotspots have been observed in chicken (Rodrigue et al., submitted for publication).  A

key area for further research will be the exploration of the genetic mechanisms

underlying enhanced recombination within the chicken genome and the role of repetitive

elements in fostering recombination.

Multifactoral factorial inheritance: Advantages of chicken QTL analysis

A number of chicken genetic lines are models for similar physiologic conditions found in

humans, e.g., thyroiditis, dwarfing, muscular dystrophy, cleft palate, scleroderma,

vitilligo, scoliosis, limb and digit malformations, neurological malformations, integument

malformations, and retinal degeneration 19,86. The genome sequence of the chicken

enhances the value of these models for analysis of the underlying genetic and physiologic

mechanisms and possible therapeutic responses. In addition to specific chicken mutants,

QTL studies of agricultural interest are of potential relevance to human multifactorial

diseases as well. Indeed, there is considerable overlap between study of the chicken as a

model organism and as a food animal87. The chicken is especially valuable for QTL

analysis because it reproduces rapidly, and a number of highly inbred lines and resource

populations are available.

Although several QTL searches have now been accomplished (for an overview,

see  https://acedb.asg.wur.nl/) or are in progress, only a small fraction of the interesting

allelic diversity available in chickens has been examined to date. The specific



characteristics of chicken as a model in QTL studies will provide additional advantages

in understanding more complex genetic phenomena, such as the importance of epistatic

interactions in complex multigenetic traits 88. Recently, several causative mutations

underlying QTL in livestock species were shown to be located within conserved

regulatory modules (CRMs) 89,90; the identification of a large number of such CRMs in

the chicken genome sequence, therefore, is of relevance to the identification of the

molecular basis of QTL. QTL mapping is expected to have significant impact in

improving agricultural phenotypes such as disease resistance, meat quality and behavioral

traits that are difficult to select in commercial poultry breeding. In addition, public

concerns have already resulted in greater emphasis on animal well-being traits, whose

understanding and application should benefit from new tools such as the genome

sequence.
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