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1 Details of cell lines and RNA-Seq procedures

1.1 Cell lines used

In the analyses presented in the main paper, we used data generated by sequencing RNA from
69 lymphoblastoid cell lines obtained from Corriell. The cell lines were derived from Yoruban
individuals from Nigeria by the International HapMap Project, and have been extensively genotyped
(Frazer et al., 2007). Many of the individuals in the HapMap are parts of trios; we used only the
parents in these families. The full list of individuals is in Supplementary Table 1; we included 54
individuals from HapMap “plate 1” and 15 from HapMap “plate 2”.

1.2 RNA Sequencing

Sequencing libraries for the Illumina GA2 platform were created from the polyadenylated fraction of
RNA from each cell line. Total RNA was extracted using an RNeasy Mini Kit (Qiagen) and assessed
using an Agilent Bioanalyzer. mRNA was then isolated with Dyna1 oligo-dT beads (Invitrogen)
from 10 µg of total RNA. The mRNA was randomly fragmented using the RNA fragmentation kit
from Ambion. First-strand cDNA synthesis was performed using random primers and SuperScriptII
reverse-transcriptase (Invitrogen). This was followed by second-strand cDNA synthesis using DNA
Polymerase I and RNase H (Invitrogen). The Illumina adaptor was ligated to the ends of the
double-stranded cDNA fragments and a 200 bp size-selection of the final product was performed
by gel-excision, following the Illumina-recommended protocol. 200 bp cDNA template molecules
with the adaptor attached were enriched by PCR to create the final library.

Each library that was prepared was sequenced twice, once at the Yale sequencing center using 35
bp reads, and once at the Argonne sequencing center using 46 bp reads. In the course of examining
variability between libraries, multiple libraries were prepared and sequenced for a subset of cell
lines; we found that it increased power to include these libraries by averaging expression levels
across libraries of the same cell line. Image analysis and base calling were done with the Illumina
pipeline version 1.3.2.

1.2.1 Mapping reads to the genome

The genome sequence used for read mapping was a slightly modified version of hg18 – we converted
the pseudo-autosomal region of the Y chromosome to all Ns and removed the files labeled as
“random”, as these often contain known duplicated regions. We then mapped all reads to this
genome sequence using MAQ v0.6.8 (Li et al., 2008) using the default parameters (the default
settings allow two mismatches in the first 24 bases of a read). All reads that failed to map were
then mapped to a database that we constructed of every possible exon-exon junction between
Ensembl exons. This database was created by concatenating, for each gene, the last 50 bases of
every exon with the first 50 bases of every other exon. Reads mapping to this database were
assigned to the exon in which the first base of the read fell. Reads that did not map to either the
genome or the exon-exon junction database were examined for evidence of having originated in the
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poly-A tail. We extracted all reads that either started or ended with a run of at least four As or
Ts, trimmed off those terminal As or Ts, and attempted to map these trimmed reads back to the
whole genome.

To obtain a rough estimate of how well we could expected mapping to perform, we simulated
35bp sequencing reads tiling the genome on both the plus and minus strands, and then mapped
these reads back to the genome sequence described above. This mapping used BWA (Li and
Durbin, 2009) instead of MAQ for reasons of computational speed. For each base, we calculated
its “mappability” as the number of reads that correctly mapped back to the base divided by the
total number of simulated reads covering the base (in this case 70). We compared the true length
of mRNAs to the “mappable” length (Supplementary Figure 11A), defined as the sum of the
mappability of all bases in the gene (the length of a gene was defined as the union of all transcripts
associated with the gene). For most genes, the mappable length of the gene is near or equivalent
to the length of the gene; however, for about 1% of genes we failed to map reads efficiently, if at
all (Supplementary Figure 11B).

We note that SNPs in the genome may lead to biases in mapping, in that reads that do not
carry the allele present in the reference genome sequence may not map correctly. For this reason,
we experimented with mapping against a genome in which all variable positions had been masked
(converted to a base not known to segregate in humans). Perhaps surprisingly, this method actually
increases the fraction of SNP sites that show biased mapping (Degner et al., 2009). For this reason,
we used the unmasked reference sequence, however, in analyses of allele-specific expression, we
screened for areas of mapping biases using simulations (see section 8).

1.2.2 Quality control

The number of reads generated per lane varied from 1.2M to 11.7M, with a median of 8.4M. Of
these, a median of 69% of reads mapped uniquely to the genome (range: 43-72%). Of these unique
matches, a median of 86% (range: 64-91%) mapped within exons. A median of 6% of reads per
lane (range: 3%-9%) mapped to exon-exon junctions. See Supplementary Table 1 for all numbers.

We compared SNPs identified in the RNA-Seq data to those from the HapMap. To do this, we
generated SNP calls for all lanes using MAQ (using the default parameters). We then extracted all
sites that were both typed in the HapMap and called as heterozygous in the RNA-Seq data, and
checked to see if the SNP was also called as a heterozygote in the HapMap. For all samples, there
was excellent concordance (>95%) between these genotype calls.

2 Identifying unannotated transcription

See Supplementary Figure 1 for a flow chart of the step for gene annotation described below. We
calculated, for each base in the genome, the average rate across lanes at which it was covered
by mapped sequencing reads in our data, and divided the genome into contiguous regions with
evidence of expression. As a first approximation, we defined the “expression level” of a region as
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the maximum per base coverage of bases in the region. In general, the higher the expression level
of a region in the data, the more likely it was to overlap a known exon (we define “known” as
being present in the RefSeq, Ensembl, UCSC, or Vega gene databases). We chose a threshold of
an average expression level of 5× 10−8 (or 0.05 reads/million) to consider a region expressed, and
merged together regions separated by less than 15 bases.

At this threshold, there are 191,982 regions of putative transcription in the human LCLs,
141,164 (74%) of which overlap annotated exons. Because of results described below (see the
section “Comparison to chimpanzee”) that those regions of putative transcription that overlap
“most conserved” elements are observed in chimpanzee at a higher rate than those that do not, we
focused on the 4,031 putative novel regions of expression that overlap these elements and are aligned
between human and chimp, rhesus, mouse, rat, and dog in the 28-way vertebrate alignment from
UCSC (see section on dN/dS analysis below). These putative novel exons have a median length of
452 bases, and range from 65 to 10,057 bases in length. Overall, these regions have lower rates of
transcription than previously annotated exons. 36% of these regions fall in introns of known genes,
while the remainder are intergenic.

We examined a number of other characteristics of these regions. First, we examined how often
these regions overlap previously characterized non-coding RNAs (Khalil et al., 2009). Only 1.3% of
them overlap these regions. Second, we used splice junctions identified ab initio from the RNA-Seq
data (Section 4) to determine whether these putative exons show evidence of being part of spliced
transcripts. 24.6% of these regions show evidence of being spliced (compared to 9.1% of transcribed
regions that do not show evidence of conservation); of these regions, 74% show evidence of splicing
to known transcripts. Two examples are shown in Supplementary Figure 6. The remaining 259
spliced regions appear to be part of previously unannotated genes.

The results of the dN/dS test (see below) suggest that the majority of transcribed regions, even
those that are spliced to known genes, do not code for protein. We examined this possibility in more
detail. There are 696 unannotated regions that show evidence of being spliced to known genes,
45 of which show evidence of having protein-coding function from our analysis of evolutionary
conservation. We reasoned that any novel exon with evidence of being spliced between two known
protein-coding exons should also be protein coding. Of the 696 unannotated regions spliced to
known genes, 99 fit this profile. This still leaves the majority of unannotated transcribed regions
with no evidence of having protein-coding potential. Given this, we suggest that many of them
form parts of unannotated UTRs.

2.1 dN/dS analysis

To determine whether the novel, conserved transcribed regions represent unannotated protein-
coding exons, we applied a test based on the ratio of non-synonymous to synonymous substitutions
(dN/dS). For each putative novel exon, we first extracted the region from the 28-way alignment
from UCSC (Miller et al., 2007). We observed that a number of regions called as “conserved” were
present in human and distant species sequenced at low coverage (e.g., medaka), while not being
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present in deeply sequenced genomes like mouse or rat; manual inspection led us to conclude that
many of these conserved regions are in fact due to misalignment of non-orthologous DNA, often
due to pseudogenes (not shown). For this reason, we extracted only those regions that were aligned
between human and chimp, rhesus, mouse, rat, and dog (as these are the most complete genomes),
though we included all species for analysis of these regions. For each alignment, for each of all
six possible reading frames (three on the (+) strand and three on the (-) strand), we calculated
a likelihood ratio for a model under which dN/dS is estimated versus a model in which dN/dS is
1 using PAML (Yang, 2007). To format alignments for PAML, gaps in the human sequence were
removed, gaps in non-human sequences were converted to Ns, and each of the six possible frames
was trimmed to be a multiple of three bases.

To estimate a null distribution for calculation of the false discovery rate, we sampled 100,000
times from the distribution of the maximum of six χ2

1 variables. This distribution was simulated
using R. At a false discovery rate of 1% (corresponding to a likelihood ratio of 17.2), there are 115
transcribed regions with patterns of conservation consistent with protein-coding function. This set
of 115 includes includes only 7 of the 99 regions classified as being likely protein-coding above.

2.1.1 Power estimation

This dN/dS test has been shown to be a powerful test for protein-coding potential in the fly
phylogeny (Lin et al., 2008). To test our power in the mammalian phylogeny, we randomly sampled
5,000 conserved transcribed regions which overlap protein-coding exons annotated in Ensembl and
performed the same procedure as above. At the same likelihood ratio threshold used to call novel
regions as protein-coding (17.2), 4026 (81%) of the known protein-coding exons are significant. This
suggests that we have good power in this analysis, and that the majority of conserved, unannotated
regions that we identify as transcribed are not protein-coding.

2.2 Comparison to chimpanzee

We used an RNA-Seq dataset generated by sequencing the polyadenylated fraction of RNA from
five chimpanzee LCLs to analyze the expression of putative novel exons identified in the human
LCLs (A. Pai and Y. Gilad, unpublished data). For each human exon (novel or in Ensembl), we
converted the coordinates from hg18 to PanTro2 using the LiftOver utility from the UCSC Genome
Browser. We then counted the reads in each exon in the chimpanzee cell lines. Putative novel exons
which overlap a “most conserved” region replicated at a higher rate than putative novel exons which
do not overlap such a region, supporting our decision to focus only on those putative novel exons
which are conserved (Supplementary Figure 5).

We compared how often Ensembl exons and putative novel exons with similar expression levels
(in humans) are expressed in the chimpanzees. The rationale is that, if novel exons are due to
spurious transcription, they should be observed in chimp at a lower rate than known, annotated
exons. If, however, the novel exons are largely from true transcripts, they should be observed in
chimp at approximately the same rate as annotated exons. This latter situation appears to be the
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case (Supplementary Figure 7).

2.3 Comparison to other tissues

We downloaded the RNA-Seq dataset generated by sequencing RNA from multiple human tissues
by Wang et al. (2008) and remapped all sequencing reads to our modified version of hg18 (described
above) using MAQ. We then counted the number of reads from each tissue that mapped within
each novel and Ensembl exon. We compared, for the data from each tissue, the fraction of novel
versus Ensembl exons in which we observed sequencing reads as for chimpanzee (Supplementary
Figures 7). For nearly all tissues, the fraction of Ensembl exons observed is significantly higher
than the number of novel exons observed, across expression levels. There are two exceptions to this:
lymph node and breast tissue. It seems reasonable to expect that lymph node and lymphoblastoid
cell lines would show similar expression levels, as they are similar tissue types. It is less clear why
breast tissue would also show this pattern, although we note that Wang et al. (2008) observed that
breast and lymph node also show similar patterns of alternative splicing. Overall, the observation
that unannotated exons in these cells are lowly expressed and more tissue-specific than annotated
exons is consistent with previous work annotating exons using sequence conservation alone (Siepel
et al., 2007).

3 Identifying potential novel polyadenylation sites

As described above, our mapping strategy allowed us to find putative novel polyadenylation sites.
We first identified all sequencing reads that did not initially map to the genome and either began or
ended with a run of at least four As or T. We then trimmed off the run of As or Ts and remapped
the reads to the genome using MAQ. At those reads that then mapped uniquely to the genome,
we inferred the precise base where cleavage occurred. To filter out cleavage sites possibly due
to sequencing errors, we removed putative polyadenylation sites where the downstream genomic
regions contained at least three As or Ts, reasoning that a sequencing error at the non-A or T
site might lead to mis-mismapping and spurious calling of a poly-A site. After filtering out these
sites, and pooling across all individuals, we identified 39,729 putative poly-A sites. To examine our
error rate in this analysis, we used the fact that the majority of polyadenylated mRNAs contain
an AATAAA motif approximately 15-30 bases upstream of the cleavage site. We estimated the
frequency of this motif for sites supported by only a single read versus sites seen more than once;
while sites supported by a single read show a significant enrichment for this hexamer, sites supported
by multiple reads show a much stronger enrichment (Supplementary Figure 8A). For this reason,
we focused our attention on sites supported by at least two reads.

We examined the enrichment of single base variants of the consensus hexamer upstream of
these sites, as some of these may play the same role as the consensus hexamer (Tian et al., 2005).
Only the ATTAAA hexamer showed any enrichment upstream of these putative cleavage sites
(Supplementary Figure 8B).
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3.1 Estimation of the false discovery rate

We used the spatial distribution of single base-pair variants of AATAAA to estimate the false
discovery rate in our analysis. For each hexamer (excluding ATTAAA), we calculated the fraction
of sites containing the hexamer in the 15-30 bases upstream of the predicted polyadenylation site
(Supplementary Figure 8B). This is an approximate null model for the distribution of the AATAAA
hexamer. We then calculated this same fraction for the AATAAA hexamer. Of all predicted
polyadenylation sites over 500 bases from a known polyadenylation site (known sites are from the
Ensembl, RefSeq, Vega, and UCSC databases), 10.8% have an AATAAA hexamer 15-30 bases
upstream. The average fraction for all other single base variants of AATAAA is 1.4%. This gives
an FDR of 12.9% for the class of predicted poly-A sites that lie at least 500 bases from a known
site and contain a match to the AATAAA hexamer upstream of the site.

4 Ab initio prediction of splice junctions

In the analysis of unannotated transcription and in Figures 1A and 3A in the main text, we analyze
splice junctions identified from the RNA-Seq data that are not present in current databases. In
this section, we describe the identification and properties of these junctions. We note that our
approach for ab initio identification of splice junctions is similar to previous approaches (Trapnell
et al., 2009; Yassour et al., 2009), but tailored specifically to our data.

4.1 Gapped alignment procedure

To identify splice junctions without reference to a set of known exons, we used only those Illumina
lanes sequenced at the Argonne sequencing center, as these reads are 46 bases long (as opposed to
35 at the Yale sequencing center). We initially removed all sequencing reads that mapped (either
uniquely or non-uniquely) to the reference genome (note we do not filter based on matches to known
exon-exon junctions). This left us with 47 million sequencing reads. We then attempted to map
both the first 20 bases and the last 20 bases of each of these reads to the genome independently
using MAQ. We identified reads where at least one end mapped uniquely to the genome. If both
ends mapped uniquely, we filtered for those pairs in which both mapped to the same strand of the
same chromosome with a minimum distance between them of 70 bases, and in the “correct” order
(i.e., for reads mapping to the plus strand, the position of the starting 20-mer of the read must
be before the position of the ending 20-mer). We then extended the alignment between these two
seeds by exhaustively searching the possible extensions and choosing the one with the least number
of mismatches.

For reads where only one of the two ends mapped uniquely, we extended the alignment on the
mapped end as long as the reference and the sequencing read were perfect matches. This left us
with an unmapped end with a length between six (chosen as the minimum length) and 26 bases.
We then searched within 20kb of the mapped end for a unique perfect match to this remaining
sequence. Together, this left us with 20 million reads spanning putative splice junctions.
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4.2 Identification of junction boundaries and analysis of specificity

Each individual read is generally compatible with more than one possible junction boundary due to
the sequence organization of the splice junctions. We grouped individual sequence reads together
if there was any overlap in the set of splice junctions compatible with each. We then grouped
together junctions that had both the 5’ and 3’ ends located within two bases of each other. After
this procedure, we arrived at a set of 408,826 predicted splice junctions.

To evaluate whether these predicted splice junctions represent the outcomes of true splicing
reactions, we evaluated how often our predicted junctions contained the consensus GT-AG splice
site in the intronic two bases. We also compared these predicted junctions to those present in
current gene annotations. In Supplementary Figure 10, we show the fraction of predicted junctions
that match the consensus GT-AG splice site as a function of the number of reads supporting the
junction. The majority of junctions seen more than once match the consensus, approaching nearly
95% of those seen more than 20 times. As a control, we also evaluated how often these junctions
match the pair GT-TC (note that the strand of the 3’ splice site is switched in this control). Almost
no junctions match this pair of dinucleotides (Supplementary Figure 10). Further, the more reads
that support the existence of a junction, the more likely it is to be present in current databases
of gene models. We infer the presence of a large number of unannotated splice junctions–though
(for example) 70% of the 33,923 splice junctions supported by two sequencing reads match the
consensus splice site, only 23% of these are annotated.

5 HapMap genotypes and imputation

For association mapping, we used the HapMap combined Phase 2 and 3 genotypes from release 27.
As some SNPs were typed in one panel but not in the other, we performed genotype imputation
using the fastPHASE model (Scheet and Stephens, 2006) implemented in bimbam (Guan and
Stephens, 2008). The EM algorithm was run 5 times with 20 steps per run (the bimbam options
are -e 5 -s 20). All association analyses use the posterior mean genotype, as recommended by Guan
and Stephens (2008).

For analyses of allele-specific expression, we used the phased haplotypes from Phase 2 of the
HapMap (release 22). These individuals were all phased in trios, so the phasing is highly accurate.

6 Association mapping

In this section, we describe the normalization and correction procedures used for the eQTL and
sQTL analyses, and give additional summaries of the results not presented in the main text. See
Supplementary Figure 2 for a flow chart of the steps described in detail below.
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6.1 eQTL mapping

As noted in the main text, we performed a number of correction and normalization steps on the
RNA-Seq data to gain power for the mapping part of the paper. Below, we describe these steps in
full. We started by counting, for each exon in each lane, the number of sequencing reads mapped
to that exon. Let this count be xij , where i indexes exon and j indexes lane.

6.1.1 Correction for GC content

We noticed that different lanes (even of the same individual) often showed preferential sequencing
of genes or exons at different levels of GC content (Supplementary Figure 12). To correct for this,
we performed the following procedure:

1. Assign all exons to 200 approximately equally-sized bins based on GC content. Let slj be the
number of reads in bin l from lane j.

2. For each bin, for each lane, calculate the log2 relative enrichment, flj , of reads in each GC

bin: flj = log
( slj/

P
j sljP

l slj/
P

l

P
j slj

)
3. For each lane, fit a spline to the plot of flj against the mean GC content for the bin (Supple-

mentary Figure 12). We used the R function “smooth.spline” with a smoothing parameter of
1.

4. Now, estimate the over/under-representation of each individual exon in each lane from the
spline (we used the “predict” function in R); let ĝij be the predicted log over/under-representation
of exon i in lane j.

5. Set xnewij = xij2−ĝij

After this step, we computed gene-level expression by summing the corrected exon-level values in
each gene and dividing by the total (corrected) number of reads in the lane, as follows. If we let
yjk be the “expression level” of gene k in lane j, and Z be the set of indices of all exons in gene k,
we can write this as:

yjk =
∑

i∈Z xij∑
i xij

.

Here, yjk is our estimate of the fraction of all reads in lane j from gene k.

6.1.2 Correction for center and concentration effects

As each sample was sequenced at two different centers, we included an explicit correction for
differences between the centers. We also sequenced some cell lines at a concentration of 2.5 pM, then
switched to 3.5 pM later in the experiment. We included an explicit correction for the differences
between these sequencing concentrations as well. In both cases we calculated the median expression
level for each gene in both groups, then adjusted the expression level in one of the groups. Let µk1 be
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the median expression level of gene k in group 1 (one of the sequencing centers or concentrations),
and µk2 be the corresponding expression level in group 2. Recall that yjk is the adjusted expression
level of gene k in lane j. We adjusted these expression levels such that (if lane j is in group 1):

y′jk = yjk
µk2
µk1

After this step, we averaged expression levels across lanes of the same individual. Let zkl be
the expression level of gene k in individual l, and S be the set of indices of all lanes measuring the
expression of individual l. Then:

zkl =

∑
j∈S yjk

|S|

After averaging expression levels across lanes of the same individual, we removed all genes with
a median expression level of zero.

6.1.3 Quantile normalization

One of the assumptions of the linear regression model used for identification of eQTLs is that
the expression values follow a Gaussian distribution within genotype classes. This assumption
is violated by outliers or non-normality (for whatever reason) of expression levels inferred from
the sequencing data. While one approach would be to examine the robustness of each individual
regression to dropping outliers or different transformations of the data, this is infeasible for the
millions of regressions performed in this study. We thus guaranteed that the overall distribution
of expression levels for each gene is normal by transforming the ranks of the expression values for
each gene to their respective quantiles of a N(0, 1) distribution (using the “qqnorm” function in R).
Ties (in practice only due to estimated expression levels of zero in some genes for some individuals)
were broken randomly.

6.1.4 Unidentified confounders

The measured expression levels of sets of genes in some individuals may be correlated for a number
of both technical and biological reasons. This should not generate false positives in our study
design, but may reduce power. To increase power, we removed these correlations using principal
components analysis. This approach was motivated by the success of similar approaches in the
analysis of expression microarray data (Kang et al., 2008; Leek and Storey, 2007). We calculated
the principal components of the N ×M matrix of N (quantile-normalized) expression values by M
individuals. For each individual, we extracted their loadings on the first 16 principal components
(PCs) using the R function “prcomp”. For each gene, we performed a linear regression of expression
value on the first 16 PCs, and replaced the expression value of individual l at gene k with their
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residual in that regression. That is,

znewkl = zkl −
16∑
n=1

ˆβnkxnl

where xnl is the loading for individual l on PC n and ˆβnk is the regression coefficient from the
regression of the expression level of gene k on PC n. We chose to remove 16 PCs because this
empirically gave the largest number of eQTLs in downstream analysis. As these residuals may
be slightly non-normal, we performed a second round of quantile normalization after this step.
These expression values znewkl were used as input to the regressions performed in the eQTL study
as described below. Overall, we noticed the largest increases in power in the entire procedure came
from the quantile normalization and the PC correction.

6.2 sQTL mapping

A number of studies have used exon microarrays or quantitative PCR to identify SNPs influencing
the relative expression of different isoforms of a gene (Fraser and Xie, 2009; Heinzen et al., 2008;
Hull et al., 2007; Kwan et al., 2008; Zhang et al., 2009b). Here we describe our approach using
RNA-Seq. The correction and normalization steps done to the data before performing the sQTL
study were similar to those steps described above for the eQTL study. The differences are described
below:

6.2.1 Correction for GC content

After the GC correction, we did not convert the exon-level counts to gene-level counts or correct
for difference in read depth across lanes. Instead, we converted the counts from each exon to the
fraction of reads in that exon out of all reads in the gene. In the notation from the section on GC
content above, let yij be the “exon expression level” of exon i in lane j, and Z be the set of indices
of all exons in gene k, we can write this as:

yij =
xij∑
i∈Z xij

The corrections for center and concentration effects, averaging across lanes of the same individ-
ual, and quantile normalization were performed on these values as described above.

6.2.2 Correction for unidentified confounders

The PC correction in the sQTL analysis was similar to that for the eQTL analysis, but we removed
the effect of eight, rather than 16, PCs (this choice was made because removing the effects of 8
PCs gave us the largest number of sQTLs). Similarly to the above procedure, we calculated the
principal components of the N ×M matrix of N (quantile-normalized) exon expression values by
M individuals. For each individual, we extracted their loadings on the first 8 principal components
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(PCs) using the R function “prcomp”. For each gene, we performed a linear regression of exon
expression value on the first 8 PCs, and replaced the expression value of individual l at exon i with
their residual in that regression. If, analogously to the notation above, zil is the uncorrected exon
expression level for exon i in individual l,

znewil = zil −
8∑

n=1

β̂nixnl

where xnl is the loading for individual l on PC n and β̂ni is the regression coefficient from the
regression of the exon expression level of gene i on PC n. As above, we performed a second round
of quantile normalization after this step. These expression values znewil were used as input to the
regressions performed in the sQTL study described below.

6.3 Linear regression and estimation of FDR

For “local” association studies (focused on SNPs falling in a candidate region including the gene
and 200kb on either side of the gene), least-squares linear regressions between expression levels
(either the gene or exon expression levels described above) and genotypes at SNPs within 200 kb of
the gene were performed in R. To estimate the false discovery rate, for each gene we permuted the
phenotypes three times, recalculated the linear regressions, and recorded the minimum P-value for
the gene for each permutation. This set of minimum P-values forms the empirical null distribution
for the P-values. We then compared the true distribution of the minimum P-values to this null
distribution to estimate the FDR. That is, we found the P-value z such that P (p0<z)

P (p1<z)
= x, where

x is the desired FDR, p0 is a P-value from the null distribution, p1 is a P-value from the true
distribution, P (p0 < z) is the fraction of minimum P-values from the permutations that fall below
the P-value threshold, and P (p1 < z) is the corresponding fraction in the non-permuted data.

For genome-wide association studies, we used bimbam version 0.99 (Guan and Stephens, 2008)
to perform Bayesian linear regression (Servin and Stephens, 2007) between the normalized gene
expression levels described above and all SNPs genome-wide.

6.4 Summary of QTL mapping results

We first summarize the results from the genome-wide association studies using bimbam. At a
significance threshold of a log10(Bayes Factor) of 6, there are 76 genes with an eQTL; of all
significant SNPs, 92% are within 200kb of the respective gene. As different genes have different
numbers of significantly associated SNPs, we also considered the top Bayes Factor for each gene.
Of these, 71% are within 200kb of the respective gene and 79% are on the same chromosome. If we
limit ourselves to a more stringent threshold of a log10(BF) of 8, there are 23 eQTLs, all but two of
which are on the some chromosome as the affected gene. Inspection of the most significant distant
eQTL revealed that it is also a local eQTL for a nearby gene; we suspect this is a false distant
eQTL due to sequencing reads originating from a small section of a nearby gene mapping far from
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the gene. Overall, then, the overwhelming majority of strong associations are “local” associations.
We now summarize the results of the “local” eQTL and sQTL studies. Linear regressions and

permutations were performed as described above. As reported in the main text, at an FDR of 10%,
we identified 929 and 187 genes with eQTLs and sQTLs, respectively. Numbers for different FDR
thresholds are in Supplementary Table 2.

6.5 Distribution of eQTLs around the gene

We examined the distribution of eQTLs with respect to distance from the transcription start and end
sites, using the Bayesian hierarchical model developed by Veyrieras et al. (2008) (Supplementary
Figure 13). Previous eQTL studies using Illumina microarrays reported peaks of eQTL density
near both the transcription start and end sites (Cheung et al., 2005; Veyrieras et al., 2008). In
our study using RNA-Seq, the peak of eQTL density near the 3’ end of genes is much attenuated
(Supplementary Figure 13). This does not appear to be due to measurements of expression levels
by micoarrays being confounded by SNPs in array probes, as the 3’ peak in the array study remains
even after removing all probes containing SNPs in these individuals, as determined by data from
the 1000 Genomes Project (not shown). We now believe that much of the 3’ peak in eQTL density
in the Illumina array data is due to SNP effects on splicing of the exon containing the probe. We
will provide more analysis of this issue in a future publication.

6.6 Relationship between read depth and power

After identifying eQTLs and sQTLs, we examined the rate at which we detected QTLs at genes/exons
in different bins of expression level (Supplementary Figure 15). For overall gene expression levels,
we found that the rate of eQTLs approached a plateau at a mean expression rate of approximately 1
read per million (Supplementary Figure 15A), corresponding to approximately 10 reads/individual
in our data. About 65% of expressed genes (defined as genes with a median number of reads per
individual greater than one) are covered at this level or higher in our data, suggesting that deeper
coverage of individuals would result in greater power for about 35% of genes. This is necessar-
ily a very rough approximation, as it is unknown if eQTL rates vary across expression levels for
biological, as well as statistical, reasons.

For splicing QTLs, the rate of QTLs approaches a maximum only at very high levels of expression
(Supplementary Figure 15B)–upwards of 1 read per 10,000, an expression level achieved by only
around 0.5% of all exons in our data. This implies greater power to detect sQTLs for longer exons
(which have more reads). An additional consideration is that we take the most significant exon in a
gene as the target of the sQTL, which may further increase the skew in our results towards highly
expressed exons. However, these results suggest that deeper sequencing of individuals will increase
power to detect sQTLs at nearly all genes.
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6.7 Comparison of eQTLs across populations

We obtained P-values from the top 500 SNP-gene associations (i.e., the lowest P-values) from an
RNA-Seq eQTL study performed in LCLs derived from individuals of Northern European descent
(S. Montgomery et al., sumbitted), and calculated the P-values for these same SNP-gene pairs in
our data. After excluding monomorphic SNPs in the Nigerian population, there are 460 SNP-
gene associations which we could compare. Among the 460 associations identified in the European
populations, there is a clear enrichment for significant P-values in the Nigerian population (Supple-
mentary Figure 16). For example, of the top 50 associations identified in the European population,
20 have p < 0.01 in our data, a 40-fold enrichment. Overall, of the top 460 associations identified
in the European population, 51 have P < 0.01 in our data, an 11-fold enrichment over background.
We note that the data collection and data analysis strategies likely differed between our eQTL study
and the eQTL study performed in the European population, so direct comparison of P-values, as
done here, is only a very rough approximation of the amount of overlap between the two studies.

7 Comparison of RNA-Seq to genome-wide expression microar-

rays

We compared the expression levels inferred from RNA-Seq in this study to those inferred from a data
set generated using genome-wide Affymetrix exon microarrays (Huang et al., 2007). We performed
similar comparisons to the data generated for the same individuals using Illumina microarrays
(Stranger et al., 2007) (which have in general a single probe per gene), though we focus on the exon
microarrays due the fact that they, like RNA-Seq, attempt to measure expression using information
from the entire transcript.

7.1 Pre-processing of exon array data

We downloaded the exon array data from GEO and extracted the data for the 53 individuals
in common between this study and the study of Huang et al. (2007). We remapped the probe
sequences to hg18 using MAQ, and excluded those probes overlapping a SNP in the June 2009
release of the 1000 Genomes Project. Expression levels from all probes that mapped to the exons
of a given Ensembl gene were combined to obtain a gene-level expression measurement using RMA
(Irizarry et al., 2003).

7.2 Correlation between gene expression assayed with two technologies

To compare these exon array measurements to those from the RNA-Seq, for each individual we
defined the RNA-Seq expression level of each gene as the fraction of reads mapping to exons of the
gene (using the union of all annotated transcripts) divided by the mappable length of the gene.
Spearman correlations between the exon array and RNA-Seq measurements of expression levels
were similar across individuals (Supplementary Figure 3).
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A perhaps more important comparison is how well the expression levels inferred from the mi-
croarray and RNA-Seq data correlate within genes, across individuals. For each gene, we calculated
Spearman correlations between the expression levels determined by the RNA-Seq data and by the
array data. These correlations were smaller, with a median around 0.12 (Supplementary Figure
4A). The highest correlations were found at genes with intermediate expression levels in the RNA-
Seq data (Supplementary Figure 4B), consistent with the possibility that arrays measure expression
levels less well at the low and high ends of the expression range.

7.3 Comparison between eQTLs identified using two technologies

We also compared the eQTLs identified using exon arrays to those identified using RNA-Seq in the
same set set of 53 individuals measured in both studies. For each gene, we quantile-normalized the
expression levels as measured by the exon array, and performed association studies for these genes
(all association studies used SNPs within 200kb of the gene). By permutation (as described in
Section 6.3), we identified 138 genes with eQTLs using expression levels from the microarray data.
In Supplementary Figure 14, we plot the effect size in both the array and sequencing association
studies for these 138 gene-SNP pairs. As noted in the main text, 93% of the associations are in the
same direction, and 70% are significant at a p-value threshold of 0.05.

8 Identification of allele-specific expression

RNA-Seq data can be used to identify regions of allele-specific expression (Degner et al., 2009;
Heap et al., 2009; Lee et al., 2009; Zhang et al., 2009a). For these analyses, we used only those
individuals and SNPs from HapMap release 22, as they were phased in trios and thus the phasing
is highly accurate. For each gene with an eQTL (at an FDR of 10%), we identified all individuals
heterozygous for the most significant SNP. Then, in these individuals we identified all sequencing
reads overlapping all heterozygous exonic SNPs in the gene, and assigned each read to either the
high-expression haplotype or the low-expression haplotype using the phased data. If the most
significant SNP was in release 27 of the HapMap (used for the eQTL mapping) but not in release
22, we used the best proxy from release 22 to define the high- and low-expression haplotypes (if
there was no SNP with a proxy with r2 > 0.8, we excluded the gene).

Some SNPs have a “mapping bias”, in that sequencing reads derived from one of the alleles map
preferentially to the genome (Degner et al., 2009). These SNPs will cause errors in the estimation of
allele-specific expression. To identify potentially biased reads, for each exonic SNP, we simulated all
possible reads (of both 35 and 46 base pairs in length) that could overlap the SNP from either allele.
We then mapped these reads back to the genome using MAQ. Any SNP that showed a mapping bias
in favor of either allele (in that an unequal number of reads from each allele successfully mapped
back to the genome in these simulations) was excluded from analysis.
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8.1 Beta-binomial model

For each gene with an eQTL, we used a beta-binomial model to estimate the fraction of reads
coming from the (+) haplotype in individuals heterozygous for the most significant SNP. We took
this approach rather than using, for example, a binomial model, to allow for over-dispersion in the
data due to heterogeneity in the fraction of reads from the (+) haplotype across individuals (due
to, for example, differences in genetic background).

After removing potentially biased SNPs, we called a gene “informative” if at least two individuals
had at least five reads that could be assigned to either the low- or high-expression haplotype. Let
X be the number of reads coming from the high-expressing haplotype, and y be the total number
of reads that could be assigned to individual haplotypes. For each individual, then,

X ∼ BeBi(y, α, β) (1)

The probability density for the beta-binomial distribution is

p(x|y, α, β) =
B(α+ x, β + y − x)

B(α, β)
(2)

where B(a, b) is the beta function. The mean of the beta-binomial is µ = α
α+β . The overall

log-likelihood of the data, assuming each individual is independent, is:

log(P (D)) =
∑
i

log
[
B(α+ xi, β + yi − xi)

B(α, β)

]
(3)

where i indexes individual.
We then considered the following hypotheses:

1. H0: α = β (i.e., µ = 0.5)

2. H1: α 6= β

Parameters were estimated using a maximum likelihood approach. As these models are nested,
−2[l(Ĥ0)− l(Ĥ1)] ∼ χ2

1, where l(Ĥ0) and l(Ĥ1) denote the likelihoods calculated at the MLEs for
each model. All maximizations of the likelihoods were performed using the “optim” or “optimize”
functions in R. In Figure 2B in the main text, we plot the histogram of µ̂ estimated under H1 for
the set of 244 informative genes.

8.2 Comparison to eQTL effect size

From the beta-binomial model above, we have an estimate, for each eQTL, of the fraction of reads
coming from the (+) haplotype in individuals heterozygous for the eQTL. We then wanted to
compare this fraction to our expectation given the magnitude of the effect size of the QTL. To
do this, we defined the expression level of a gene in a lane as the number of reads falling into
exons of that gene divided by the total number of exonic reads in the lane, then averaged this
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fraction across lanes sequencing RNA from the same cell line. We did this, rather than use the
normalized and corrected expression levels used in the initial eQTL study, because it is unclear
how the estimates of allele-specific expression relate to expression levels after transformation. For
each gene, we performed a linear regression of the uncorrected expression level of the gene, Yi (the
number of reads in the gene divided by the number of reads in the individual), on the genotype of
the most significant SNP, gi:

E[Yi] = a+Bgi (4)

where i indexes individual. This gives an estimated allelic effect B̂ and the estimated expression level
in the homozygote, â. The expected fraction of reads coming from the high expressing haplotype
is then â+2B̂

2(â+B̂)
. In Figure 2C in the main text, we plot this estimate of the allelic effect against the

estimate using allele-specific expression for each of the 222 informative genes.

9 Details of the hierarchical model

We used a modification of the hierarchical model presented in Veyrieras et al. (2008) to estimate
the effects of SNP and exon annotations on the probability of a gene to have a splicing QTL.
This model has several components. First, there is the calculation of the Bayes factor, defined as
P 1

ijk

P 0
ij

, where i indexes gene, j indexes exon, and k indexes SNP. That is, it is the probability of
the data under a model where SNP k influences the inclusion level of exon j in gene i, divided by
the probability under a model where it does not. We use priors from Servin and Stephens (2007)
that allow us to compute the Bayes factor analytically. We note that we must specify a parameter
that corresponds to the variance of the expected effect size (this is σ2

a in the notation of Servin
and Stephens (2007)); we computed the Bayes factor under six different values of σ2

a (0.05, 0.1,
0.2, 0.4, 0.8, 1.6), and averaged these Bayes factors for each SNP, as recommended by Servin and
Stephens (2007). (Note that the level of exon inclusion has been quantile normalized, and so a
normal prior on the effect size is reasonable). In all cases, the prior on dominance (σ2

d) was 0; this
was motivated by the observation that nearly all eQTLs act in a strictly additive fashion (Veyrieras
et al., 2008). These Bayes factors end up giving nearly identical ranks to SNPs as using a P-value
from a standard linear regression (not shown).

The rest of the model requires specification of the prior probability that a given exon has a
QTL, and the prior probability that a given SNP influences exon inclusion. Below, we define these
and lay out the full hierarchical model.

9.1 Modeling the probability that an exon has a QTL

In the model, a gene either has a single SNP that affects the inclusion of a single exon, or no
such SNP. Conditional on gene i having one such SNP, let πij be the prior probability that the
exon affected is exon j. We want to allow this probability to depend on any of L annotations (for
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example, whether the exon in question it the first or last exon). We define this as:

πij =
exij∑
j e

xij
(5)

where

xij =
∑
l

λlIjl (6)

where λl is the effect of annotation l and Ijl is an indicator variable denoting whether exon j falls
in annotation l.

9.2 Modeling the probability that a SNP causes a QTL

As above, we place a prior on the probability that SNP k influences the inclusion level of exon
j, and to allow this probability to depend on any of M SNP-level annotations (note that there
are both SNP-level and exon-level annotations, in contrast to the model in Veyrieras et al. (2008)
where only SNPs have annotations). As above,

πijk =
exijk∑
k e

xijk
(7)

where

xijk =
∑
m

λmIjkm (8)

where λm is the effect of SNP annotation m and Ijkm is an indicator variable denoting whether
SNP k falls in annotation m for exon j. Note that the SNP annotation is allowed to vary depending
on the exon, such that a SNP that is annotated as a splice site SNP for one exon will be an intronic
SNP for other exons.

9.3 Modification of the hierarchical model to include exon effects

Let Pi be the likelihood in this model of the data at gene i, P 0
i be the likelihood of the data at gene

i under the null hypothesis that no SNP affects the inclusion of any exon of the gene, P 1
i be the

likelihood of the data at gene i under the alternative hypothesis that the inclusion of exactly one
exon of the gene is influenced by exactly one SNP, Π0 be the prior probability of the null model,
and Π1 be the prior probability of the alternative.

Pi = Π0P
0
i + Π1P

1
i (9)

In this case,

P 0
i =

ni∏
j=1

P 0
ij (10)
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where j indexes exon and ni is the number of exons in gene i. Additionally,

P 1
i =

ni∑
j=1

[
πijP

1
ij

∏
k 6=j

(1− πik)P 0
ik

]
(11)

That is, conditional on there being a single exon affected, the likelihood is the sum over the
likelihood over all configurations of single affected exons. Putting all this together,

Pi
P 0
i

= Π0 + Π1

∑ni
j=1

[
πijP

1
ij

∏
k 6=j(1− πik)P 0

ik

]
P 0
i

(12)

Pi
P 0
i

= Π0 + Π1

ni∑
j=1

[
πij

P 1
ij

P 0
ij

∏
k 6=j

(1− πik)
]

(13)

P 1
ij

P 0
ij

is the probability of the observed data in exon j under the model allowing one QTL, divided
by the probability of the observed data in exon j under the model allowing no QTLs, and,

P 1
ij =

mi∑
k=1

πijkP
1
ijk (14)

where k indexes SNPs, and mi is the number of SNPs in the region. Then, defining BFijk =
P 1

ijk

P 0
ij

,
the full likelihood is

Pi = P 0
i

[
Π0 + Π1

ni∑
j=1

(
πij
∏
k 6=j

(1− πik)
mi∑
k=1

πijkBFijk

)]
(15)

We maximized the log-likelihood using the Nelder-Mead algorithm as implemented in the GNU
Scientific Library (Gough, 2003). Maximization is over Π1 and the set of all λ. Initial estimates of
the parameters were set to 0.

9.4 Annotations considered in the model

There are two types of annotation considered in the model, as noted above: exon annotation and
SNP annotations. For exon annotations, we classified exons as being the first exon, the last exon, or
an interior exon. Exons that could fall into either annotation (due to known alternative transcripts)
were preferentially assigned to be first or last. We first fit a model with no SNP annotations. The
last exon has a log odds ratio of 1.05 [0.35, 1.65] (compared to interior exons) while first and interior
exons are indistinguishable. Part of the effect of last exons may by due to their larger exon size
(and thus increased power). We note, however, that both Fraser and Xie (2009) and Kwan et al.
(2008) and also found that the inclusion of last exons was more likely to be affected by polymorphic
variation; further work is needed to fully characterize this pattern.

We considered several different SNP annotations. We first considered SNPs in the exon being
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tested for alternative splicing, SNPs in other exons, intronic (non-splice site) SNPs, intergenic
SNPs, and SNPs within the canonical splice sites (the two bases intronic of either splice site). The
splice sites are significantly enriched for sQTLs (Supplementary Figure 19). We tested whether
including SNPs near the canonical splice sites improved the fit of the model. We defined SNPs in
the 5’ splice site as all SNPs falling two bases exonic to six bases intronic of the 3’ end of an exon,
and SNPs in the 3’ splice site as all SNPs falling one base exonic to 20 bases intronic of the 5’ end
of an exon; these are approximately the binding sites for the U1 snRNP and U2AF splice factors
(Watson et al., 2008). Using this definition improved the optimized log-likelihood of the model by
8.8 units without adding additional parameters. We then considered allowing different parameters
for the 5’ and 3’ splice sites; this did not improve the model (P = 0.41, Supplementary Figure 19).
We also considered splitting SNPs in the tested exon into those which disrupt splicing enhancers
(as defined by Fairbrother et al. (2002)) and those which do not. The odds ratio for SNPs in the
exon which disrupt splicing enhancers to affect exon inclusion is higher than that of SNPs in the
exon which do not (a log-odds ratio of 3.9 versus 3.4), however, allowing this additional parameter
did not significantly improve the model (P = 0.56).
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1.2 billion sequencing reads

Schematic of methods for genome annotation with RNA-Seq

Map reads to hg18 with MAQ 0.6.8

880M mapped reads w/ MAQ quality score 
>=10 (reads mapped with MAQ quality < 

10 discarded)
154M unmapped reads

Identify transcribed 
regions

191,982 transcribed regions

4,031 conserved, 
unannotated transcribed 

regions

Filter based on known 
exons, UCSC "most 

conserved" track

20 million gapped 
alignments

Gapped alignment of 
46bp reads

Filter reads spanning 
Ensembl exon-exon 

junctions

70M unmapped reads

190,163 putative 
splice junctions

Predict splice 
junctions w/ more 

than 1 read

Examine for 
evidence of 
poly-A tail

39,730 putative 
poly-A sites

3,481 high 
confidence poly-A 

sites

Filter for sites 
w/ more than 1 

read and a 
CPSF binding 

site
115 novel protein coding 

exons

dN/dS test

992 regions with 
evidence of splicing

696 regions spliced to 
known transcripts

Figure 1: Flow chart of the methods used for annotating gene models.
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Schematic for methods for QTL mapping with RNA-Seq

161 lanes of Illumina data from 
69 individuals

~68% of reads/lane map uniquely to 
the genome (discard reads mapping 

non-uniquely)
~12% of reads/lane do not 

map to the genome

Map reads to hg18 with MAQ 0.6.8

Count reads per Ensembl exon (and 
4,031 conserved transcribed 

regions)

Map reads to Ensembl exon-exon 
junctions with MAQ 0.6.8

Combined counts for each 
exon in each lane

Matrix of individuals by 
gene expression levels

Matrix of individuals by 
exon expression levels

Sum over exons in a gene, correct 
for confounders, average over lanes 

of the same individual

Divide by total gene counts, correct 
for confounders, average over lanes 

of the same individual

929 eQTLs at a 10% FDR 
threshold

Linear regression 
between expression 
levels and genotypes 

at all SNPs within 
200kb

187 sQTLs at a 10% FDR 
threshold

Linear regression 
between exon 

expression levels and 
genotypes at all 

SNPs within 200kb

Identify individuals 
heterozygous for eQTL 
with informative exonic 

SNPs

222 eQTLs to be tested for 
allele-specifc expression

Figure 2: Flow chart of the methods used for eQTL and sQTL mapping.
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Figure 3: Correlation of exon array and sequencing measurements of expression levels
within individuals. We compared the expression levels estimated by the two technologies for
the subset of 53 individuals for whom we have estimates of expression levels from both. Here, the
expression level of a gene in a lane is the number of reads mapping to exons of the gene divided by
the total number of exonic reads in the lane and divided again by the mappable length of the gene;
we averaged this quantity across lanes to get a mean expression level in the RNA-Seq data for each
gene. A, B. Correlation between exon array and sequencing estimates of expression
for two lanes. The expression estimates derived from the array (log2 intensities) are plotted
against the (natural log of the) expression measurements derived from the sequencing. In A is the
lane with the lowest correlation, and in B is the lane with the highest. C. Similar correlations
between the array and sequencing expression levels for all lanes. Plotted is a histogram
of the Spearman correlations for all lanes. 24
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Figure 4: Correlation of exon array and sequencing measurements of expression levels
across individuals. A. Histogram of all correlations. For each gene, we calculated the
Spearman correlation between the expression levels derived from the array and sequencing data.
Here, we estimated the expression level of each gene from the RNA-Seq data as the number of
reads mapped to exons of the gene divided by the number of reads mapped to all exons, divided
again by the “mappable” length of the gene. Plotted is the histogram for all genes. B. Increased
concordance between expression levels estimated using the two platforms at the middle
of the expression range. We plot the correlation between expression levels assayed by arrays
and sequencing as a function of the natural log of the expression level of the gene (in the sequencing
data). The correlations are highest towards the middle of the expression range, and close to zero
at low expression levels.
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Figure 5: Putative exons conserved at the DNA level are more likely than unconserved
exons to be transcribed in chimpanzee. We split unannotated transcribed regions into those
that overlap most conserved regions (as defined by phastCons on a 28-way alignment of vertebrates)
and those that do not. We then tested each region for evidence of expression in chimpanzee. For
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fraction to get the mean expression level of the region. Across all expression levels, exons that
overlap most conservered regions replicate at a higher rate than those that do not.
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Figure 7: Previously unannotated exons are somewhat more tissue-specific than anno-
tated exons.. We used the RNA-Seq dataset from Wang et al. (2008) to estimate the expression
levels of all unannotated and Ensembl exons in a number of tissues. We divided the exons according
to expression level in the human LCLs, and plot, for each expression level, the fraction of Ensembl
or unannotated exons that are observed in each tissue. Above each plot is the cell type. The num-
bers are the number of unannotated exons in each data point (these numbers are the same within
all human tissue. For Ensembl exons, there are thousands to tens of thousands of observations
underlying each data point).
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Figure 8: Motif enrichment around predicted polyadenylation sites. A. Sites supported
by more than a single sequencing read show a stronger enrichment of the consensus
binding site. We split putative polyadenylation sites into those supported by only one read in
the data and those observed more than once. We extracted the 50 bases upstream of each site
and plot, for each base, the fraction of sites which match AATAAA. B. Single base variants of
AATAAA show little enrichment upstream of predicted polyadenylation sites. For each
site supported by more than one sequencing read, we extracted the 50 bases upstream of each site.
We plot the fraction of sites matching each hexamer. Only ATTAAA shows a significant enrichment
downstream of our predicted sites. C. Predicted sites cluster close to known cleavage sites.
For each site supported by more than one sequencing read and containing an AATAAA hexamer
in the 15-30 bases upstream, we calculated the distance to the nearest known cleavage site in the
Ensembl, UCSC, RefSeq and Vega databases. We plot a histogram of these distances (removing
all distances greater than 100 bases). There is a clear peak near known cleavage sites.
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Figure 9: Enrichment of transcription upstream of putative poly-A cleavage sites. We
divided putative cleavage sites according to their distances from known cleavage sites, and calculated
the median RNA-Seq read depth in the 50 bases upstream and downstream of the site. The read
depth of a base in a lane is defined as the fraction of all reads in the lane that cover the base.
Plotted are these median read depths for sites at different distances from known sites. In all cases,
the upstream bases show dramatically more evidence for transcription than the downstream bases,
as is expected if the predicted cleavage sites indeed represent the ends of mRNAs.
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Figure 10: Validation of exon-exon junctions identified ab initio with RNA-Seq. We
divided putative exon-exon junctions identified in the RNA-Seq data according to the number of
reads supporting the junction. For each class, we calculated the fraction of junctions that overlap
known junctions (from the Ensembl, Refseq, UCSC, and Vega annotations), as well as the fraction
consistent with a GT-AG consensus splice site and the fraction consistent with a control “flipped”
splice site of GT-TC. Plotted are these fractions. We conclude that the majority of these inferred
exon-exon junctions are truly the result of splicing reactions.
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Figure 11: “Mappability” of genes. A. Mappable versus true length. For each gene, we
calculated the “mappable” length of the gene by simulating 35bp sequence reads tiling the gene and
determining what fraction are mapped back to the correct location. Plotted is the log of the true
length of the gene (the sum of the lengths of all exons) versus the log of the “mappable” length.
One base was added to the mappable length to avoid infinite values in the log. B. Histogram of
the fraction of a gene that is mappable. For each gene, we took the mappable length of the
gene and divided it by the true length. Plotted is the histogram of these fractions.
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Figure 12: GC content influences inference of expression levels from RNA-Seq. We split
all exons into 200 approximately equally-sized bins based on GC content. Then, for each lane, we
counted the number of reads falling into exons in that bin, then divided this by the number of reads
falling into that bin summing across all lanes. If there were no effect of GC content on sequencing
depth, this fraction should be approximately equal across GC bins. Plotted for four lanes is the
log2 of this ratio divided by the fraction expected if GC content played no role in sequencing. In
each plot, the grey line is the expectation under the null. There is a strong effect of GC content
in these lanes. The red line shows a spline fitted to the points; as described in the Supplementary
Methods, the counts are adjusted based on this spline fit.
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Figure 13: Spatial distribution of eQTLs around genes. We performed “local” eQTL studies
using expression levels estimated from either RNA-Seq data or Illumina expression array data.
We then used the hierarchical model of Veyrieras et al. (2008) to refine the spatial distribution of
eQTLs around genes. We divided regions outside genes into bins of 1 kb, and genic regions into 20
bins, and estimated in each bin the probability that a SNP in that bin is a QTL. In black are genic
bins, and in blue are non-genic bins. In the top panel is this distribution estimated from an eQTL
study using expression levels estimated from Illumina microarray data, and the bottom panel is
the distribution estimated from an eQTL study using expression levels estimated using RNA-Seq
data. We believe that the higher 3’ peak in the array data is due to sQTLs affecting 3’ probes in
that data set.
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Figure 14: Replication of eQTLs identified using exon arrays. We performed eQTL studies
using expression levels estimated using exon microarray and sequencing data from the same 53
individuals to identify eQTLs. For all eQTLs identified at an FDR of 10% in the eQTL study using
arrays, we compared the effect sizes in the two technologies. In black are the effects for all QTLs
identified in the study exon using arrays, and in red are those which also have p < 0.05 in the study
using sequencing.
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Figure 15: The power to detect an eQTL varies as a function of expression level. A.
Overall gene expression QTLs. We split genes into bins based on mean expression level, and
calculated the fraction of genes in each bin with an eQTL (at an FDR threshold of 10%). The
probability to detect an eQTL approaches a plateau at an average rate of about 1 read/million. This
corresponds to about 10 reads/individual, given the sequencing depth in our study (a minimum
of two lanes per individual, and about 5 million exonic reads per lane). 65% of genes that show
evidence of expression (ie. that have reads in more than half the individuals) are expressed above
this level. B. Splicing QTLs. We split exons into bins based on mean expression level, and
calculated the fraction of exons in each bin with an sQTL (at an FDR threshold of 10%). The
probability to detect an sQTL peaks at an average rate of about 1 read/10,000. 0.5% of exons that
show evidence of expression are expressed at this level.
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Figure 16: Replication in the Nigerian population of eQTLs identified in a European
population. We obtained P-values from the top 500 SNP-gene pairs from an RNA-Seq eQTL
experiment done using LCLs derived from a European population (Montgomery et al., 2009), and
calculated P-values for the same associations in our data. Plotted are histograms of the P-values
in our data for the top 250 and 250-500th ranked associations in the European population (after
excluding the 40 SNPs which are not segregating in our population). There is a clear enrichment
for low P-values, especially for the strongest associations identified in the European population.
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Figure 17: The correlation in effect sizes between allele-specific expression and eQTL
studies increases as a function of read depth. This is a replotting of Figure 2C in the main
text. Here, all points are labeled according to how many total reads could be assigned to either the
high- or low-expression haplotype across all individuals. Genes with more reads (and thus more
confidence in the effect sizes) show a stronger correlation between the two estimates.
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Figure 18: SNPs in splice sites show a skew towards significant P-values. We examined
the P-values for SNP-exon pairs in the sQTL study where the SNP falls in the two bases of the
consensus splice sites on either side of the exon. Plotted is the histogram of these P-values. There
is a modest skew towards low values.
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Figure 19: SNPs in splice sites are rare but enriched for SNPs influencing exon inclusion.
A, B. SNPs in splice sites are rare. We counted the number of SNPs at different positions for
the 5’ and 3’ splice sites. At both ends, there is a strong depletion of SNPs in the canonical two
bases, and somewhat less depletion around them. C. SNPs in the canonical splice sites are
enriched among sQTLs. We used the hierarchical model to estimate the log (base e) odds ratio
for SNPs in different annotations. In this figure only the canonical splice sites of two base pairs
are labeled as splice sites. D. Equal enrichment of sQTLs at the 3’ and 5’ splice sites. As
in C, but here the splice sites are split into two annotations–one for the 3’ splice site and one for
the 5’ splice site. In this figure, the 5’ splice site is defined as all SNPs falling two bases exonic to
six bases intronic of the 3’ end of an exon, and the 3’ splice site is defined as all SNP falling one
base exonic to 20 bases intronic of the 5’ end of an exon. In both C. and D., the 95% confidence
intervals for the splice site annotations extend above 15, but have been truncated for visualization.
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Table 1: Numbers of QTLs at different FDR thresholds. For each type of QTL (splicing QTL
or expression QTL), we give the number of genes with evidence for a QTL at different gene-level
FDR thresholds. Thresholds were determined by permutation (see Section 6.3)

1% FDR 10% FDR 20% FDR
eQTLs 411 929 1353
sQTLs 111 187 237
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Table 2: Summary of data analysed. For each lane (indexed in the first column), we give the
sequencing center where the lane was sequenced, the cell line ID, the total number of reads, the
number that map (uniquely or not) to the genome (excluding splice junctions), the number that
failed to map to the genome (this number includes those that later mapped to splice junctions),
the number that map uniquely (MAQ quality score > 10), the number of unique matches to
exons, and the number that map to exon-exon junctions. Cell line IDs with a “ 2” appended
indicate that this was a second library prepared for this individual. All data will be available at
http://eqtl.uchicago.edu.

Index Center Ind Total Mapped Unmapped Unique Exons Junctions
1 yale GM19210 9956027 9121764 834263 7000757 6027329 523086
2 yale GM19209 10301610 9427778 873832 7188718 6293180 568979
3 yale GM19098 10280860 9414645 866215 7275600 6377479 611530
4 yale GM19201 9408711 8639716 768995 6462860 5542133 493631
5 yale GM19153 8474542 7740449 734093 5816765 5095746 471178
6 yale GM19144 8327861 7599754 728107 5955437 5322540 501437
7 yale GM18909 9130603 8221992 908611 6168587 5497691 485255
8 yale GM19152 10247210 9365185 882025 7095188 6051552 570723
9 yale GM18511 10547619 9554796 992823 7244277 6371359 583744
10 yale GM19108 10627854 9644337 983517 7324437 6418129 580037
11 yale GM18498 2 9739474 8796843 942631 6788485 6204043 584575
12 yale GM18499 5782532 5265454 517078 3985735 3471763 326223
13 yale GM18520 7695310 6990931 704379 5459155 4915610 477229
14 argonne GM19238 7218325 6165771 1052554 4938010 4149331 589841
15 argonne GM19239 7738999 6694790 1044209 5423972 4561020 667990
16 argonne GM19098 8128155 7048150 1080005 5752368 5017657 738741
17 argonne GM19144 8476906 7317427 1159479 6059447 5384173 791630
18 argonne GM19201 8540954 7489161 1051793 5924925 5050654 695532
19 argonne GM19210 8432368 7401488 1030880 5991812 5100610 673856
20 argonne GM19153 7125012 6172680 952332 4910951 4275796 622273
21 argonne GM18909 9798209 8451674 1346535 6668302 5929889 773970
22 argonne GM19147 10054713 8595867 1458846 6741998 6073542 776037
23 argonne GM19152 10618007 9275215 1342792 7400400 6309094 859193
24 argonne GM18499 10614370 9225356 1389014 7367668 6439366 854033
25 argonne GM19209 10706267 9398941 1307326 7532355 6572236 859191
26 argonne GM19143 10115208 8862148 1253060 7119353 5876990 772722
27 yale GM19257 7469692 6670565 799127 4863191 4305079 381559
28 yale GM18861 4642527 4268333 374194 3228806 2707867 276474
29 yale GM19131 8414765 7705984 708781 5905823 5007738 475434
30 yale GM19192 8552871 7667518 885353 5807836 5079639 455853
31 yale GM18916 7559177 6877582 681595 5203985 4421816 406726
32 yale GM19222 4567036 4207450 359586 3165854 2577827 244420
33 yale GM19225 8249884 7222871 1027013 5166613 4501171 361846
34 yale GM18913 9006101 7985185 1020916 6094254 5394769 519078
35 yale GM18853 9717230 8992384 724846 6706468 4517073 303699
36 yale GM18862 8619671 7825936 793735 5961325 4769737 392085

42

doi: 10.1038/nature08872 SUPPLEMENTARY INFORMATION

www.nature.com/nature



Index Center Ind Total Mapped Unmapped Unique Exons Junctions
37 yale GM19147 7578019 6789755 788264 5012080 4528700 388164
38 yale GM19143 8381930 7652587 729343 5819895 4852784 446158
39 yale GM19190 6729781 6068707 661074 4438392 3959957 356918
40 yale GM18501 6422000 5858443 563557 4583877 3964512 406574
41 yale GM18856 5267997 4713897 554100 3592544 2980711 283438
42 yale GM18912 4211405 3922569 288836 2787784 2228699 173436
43 yale GM19102 4025513 3761590 263923 2626390 2097345 151618
44 yale GM19119 3816178 3523702 292476 2554531 1709033 137370
45 yale GM19171 6154300 5550470 603830 4255000 3689054 367607
46 yale GM19200 6213671 5664154 549517 4236623 3669605 358187
47 yale GM18517 9367811 8537621 830190 6691939 5953135 567691
48 yale GM19128 9498521 8879533 618988 6385615 5287926 370872
49 yale GM19130 8914041 8240501 673540 6156110 5201677 473464
50 yale GM19238 8406706 7711358 695348 5738323 4815662 439082
51 yale GM19239 9085407 8330518 754889 6315716 5291029 499192
52 yale GM18504 7113128 6395759 717369 4900926 4276159 393638
53 yale GM18516 7818182 7187650 630532 5458447 4590102 398880
54 yale GM18522 7691810 7001604 690206 5399961 4777886 456879
55 yale GM19093 6997219 6365558 631661 4961534 4346717 412851
56 yale GM19172 7086910 6413209 673701 4837168 4177112 377074
57 yale GM19140 8970177 8090500 879677 5932405 5140808 453660
58 yale GM18508 8701858 7892549 809309 5918297 5112250 483474
59 yale GM18519 8838591 8005087 833504 5939852 5133797 473576
60 yale GM19127 9353324 8553933 799391 6247433 4888659 362927
61 yale GM18505 8849477 8056290 793187 6038849 4970405 442502
62 yale GM19138 9041280 8045028 996252 6231520 5456418 558903
63 yale GM18502 8909231 7974623 934608 5904514 5106499 482832
64 yale GM19114 8969212 7962131 1007081 5567206 5028496 380492
65 yale GM18507 10329429 9249468 1079961 6949451 5946587 562540
66 yale GM18504 2 8729513 7809568 919945 5911828 5163744 467580
67 yale GM19193 9370200 8492872 877328 5935598 4931809 340311
68 yale GM18516 2 7602729 6893859 708870 5231672 4491184 417772
69 argonne GM18511 8968585 7789041 1179544 6215977 5447017 732044
70 argonne GM18520 9176125 8051008 1125117 6534641 5853051 802342
71 argonne GM18498 2 8699228 7626730 1072498 6045089 5505361 712491
72 argonne GM19131 9200019 8059266 1140753 6583416 5568512 774192
73 argonne GM19108 9033582 7897772 1135810 6297058 5496814 720205
74 argonne GM19190 8965588 7816579 1149009 6040516 5335611 712061
75 argonne GM18861 8705183 7515118 1190065 6175818 5313901 804192
76 argonne GM19257 8287438 6845762 1441676 5406030 4824945 632270
77 argonne GM19192 7650417 6414542 1235875 5196193 4582571 594097
78 argonne GM19222 8249437 6961569 1287868 5618603 4770907 668587
79 argonne GM18916 8167882 6871544 1296338 5571326 4802559 650169

43

doi: 10.1038/nature08872 SUPPLEMENTARY INFORMATION

www.nature.com/nature



Index Center Ind Total Mapped Unmapped Unique Exons Junctions
80 argonne GM18862 9436367 8216981 1219386 6671875 5307009 645247
81 argonne GM18853 9648196 8430593 1217603 6801848 4533072 440460
82 argonne GM18913 8291212 7019537 1271675 5591618 4892969 704865
83 yale GM19203 9630700 8730129 900571 6300704 4988789 380447
84 yale GM19101 9320429 8556624 763805 6453666 5420576 495348
85 yale GM19116 9693662 8917973 775689 6783335 5618018 504349
86 yale GM19099 9955015 8996444 958571 6965741 5939733 581438
87 yale GM18517 2 10007597 9053289 954308 7003362 5955312 566479
88 yale GM18498 9971094 8978277 992817 6789530 5980146 550784
89 yale GM19160 9662020 8736354 925666 6722735 5525217 489294
90 argonne GM19140 8067824 6865408 1202416 5370156 4644358 611174
91 argonne GM19127 8570023 7466185 1103838 5834141 4563887 503161
92 argonne GM18505 7132811 6191462 941349 4874997 3972916 527485
93 argonne GM18502 8344912 6936263 1408649 5412538 4657657 650309
94 argonne GM18508 8454404 7119598 1334806 5666294 4889027 679966
95 argonne GM19138 8690202 6793511 1896691 5541884 4797358 731950
96 argonne GM18519 8634607 7347164 1287443 5760231 4944469 675359
97 argonne GM18858 7917503 6771204 1146299 5353299 4624623 630949
98 argonne GM19225 8448726 6816830 1631896 5217382 4594078 527568
99 argonne GM18504 2 8197125 6985762 1211363 5728894 4953045 627623
100 argonne GM19160 9208450 7846485 1361965 6259641 5198198 634017
101 argonne GM18507 8330364 6983286 1347078 5507691 4681165 620232
102 argonne GM19114 8677053 7343705 1333348 5555657 5005472 537090
103 argonne GM18516 2 9088080 7857707 1230373 6395267 5363250 728211
104 yale GM19204 6353169 5663615 689554 4410901 3962139 434402
105 yale GM18510 6248122 5600379 647743 4244746 3703474 367575
106 yale GM18871 6261611 5529754 731857 4206834 3673798 385869
107 yale GM18486 5930518 5238224 692294 4165337 3680065 361735
108 yale GM18870 6833330 6103176 730154 4727155 4053282 392882
109 yale GM19159 6382899 5717368 665531 4510193 4113029 401651
110 yale GM19160 2 6515037 5811434 703603 4447812 3686468 328529
111 argonne GM19101 8870597 7496430 1374167 6113831 5163101 726940
112 argonne GM19128 9988733 8978485 1010248 6993734 5806133 613057
113 argonne GM19130 10349515 9037537 1311978 7227185 6177664 830191
114 argonne GM19203 9338220 8067073 1271147 6219082 4931719 555461
115 argonne GM18517 10116924 8802465 1314459 7315397 6473398 888056
116 argonne GM18517 2 9127309 7831347 1295962 6441933 5449522 766332
117 argonne GM19099 9474797 8078694 1396103 6663680 5665072 829477
118 argonne GM18504 5363063 4303002 1060061 3049747 2641834 319251
119 argonne GM18516 5528980 3877649 1651331 2363163 1965419 215001
120 argonne GM18522 9185184 7730490 1454694 6217851 5475846 760097
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Index Center Ind Total Mapped Unmapped Unique Exons Junctions
121 argonne GM19093 11714315 10091916 1622399 8258579 7115109 1022337
122 argonne GM19172 11662307 10048372 1613935 8001354 6846782 923465
123 argonne GM18498 11630601 9955243 1675358 8032567 7043748 972880
124 argonne GM19116 10528137 9220686 1307451 7551936 6234101 851491
125 argonne GM18871 7201594 6107752 1093842 4904199 4256022 624062
126 argonne GM19204 8512123 7315680 1196443 6012341 5339940 831963
127 argonne GM19159 6511480 5588092 923388 4628648 4181760 572495
128 argonne GM18486 7749699 6589147 1160552 5475058 4783469 665098
129 argonne GM19171 2 7677962 6468687 1209275 5228082 4559507 667316
130 argonne GM18912 2 6848584 5895181 953403 4500683 3594833 405842
131 argonne GM18523 5919358 4829663 1089695 3900792 3331278 460872
132 argonne GM19193 6340598 5277427 1063171 4061047 3376781 335365
133 argonne GM19160 2 5152078 4235522 916556 3427215 2847121 355728
134 argonne GM18852 5649346 4781203 868143 3869576 3366738 463310
135 argonne GM18855 6928515 5463263 1465252 4443657 3935800 538637
136 argonne GM18870 6042345 5097747 944598 4172144 3565614 489162
137 argonne GM18510 6373677 5420620 953057 4362898 3799046 528971
138 yale GM19200 2 9279557 8258122 1021435 6345161 5610031 553069
139 yale GM18912 2 9081942 8214308 867634 5921002 4841708 389631
140 yale GM18501 2 8097072 6987268 1109804 5558866 4817720 517161
141 yale GM18856 2 8946747 8005738 941009 6283089 5469719 539203
142 yale GM18505 2 7677809 6995732 682077 5436042 4857629 494048
143 yale GM18502 2 8277356 7375622 901734 5719473 5110116 531274
144 yale GM18855 7930075 6972243 957832 5383556 4783877 456648
145 yale GM18852 9606138 8599424 1006714 6654315 5814495 571014
146 yale GM18858 8800059 7903672 896387 6056067 5315096 509672
147 yale GM19171 2 6077346 5336917 740429 4130026 3661495 361784
148 yale GM19137 6574947 5862646 712301 4555920 4036064 402163
149 yale GM18523 4528349 3867749 660600 2909873 2523694 242956
150 argonne GM19137 8012428 6718005 1294423 5510072 4849310 658141
151 argonne GM19200 2 7227700 5937544 1290156 4737945 4194635 531457
152 argonne GM18502 2 6988357 5959134 1029223 4862630 4317666 648810
153 argonne GM18856 2 6087872 5208619 879253 4317440 3743774 528054
154 argonne GM18505 2 7950616 6945039 1005577 5669009 5023360 738492
155 argonne GM18501 3545671 3105596 440075 2439412 2035888 244615
156 argonne GM18856 1256211 1076337 179874 799362 635045 65973
157 argonne GM18912 3996364 3659112 337252 2631561 2071471 187452
158 argonne GM19102 3989379 3647559 341820 2587256 2014135 175871
159 argonne GM19119 2326743 2092136 234607 1483912 953518 80277
160 argonne GM19171 2021638 1752899 268739 1299517 1096290 116862
161 argonne GM19200 2091947 1877598 214349 1346952 1129660 117858
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