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Supplementary Information 
 
Supplementary Methods 
 
Overview. An overview figure that summarizes data compilation and analyses steps and their 
rationale is presented as Fig. S1. 
 
Chl data compilation. Publicly available upper ocean transparency- and in situ-derived total 
chlorophyll (Chl) measurements were extracted from the National Oceanographic Data Center 
(NODC), the Worldwide Ocean Optics Database (WOOD), and the Marine Information 
Research Center (MIRC); (Table S1). All duplicated Chl measurements were removed. These 
data were collected over the course of a century by different institutions and methods, hence their 
precision and accuracy may vary. The accuracy of in situ- (ChlI) and transparency-derived (ChlT) 
Chl concentration may be affected by several factors, including weather conditions, 
instrumentation, collection technique, collection depth, and temporal changes in sampling 
methodology. Furthermore, all Chl data sources can be subject to errors associated with data 
transcription and digitization. Both ChlT and ChlI data were systematically filtered to remove 
measurements associated with these sources of error. While some erroneous measurements may 
possibly persist, analysis indicates that these represent a small fraction of the total measurements 
and can be considered as random variation.  
 
Only ChlI collected in the upper 20 m were extracted. Mean Chl values were calculated over 
depth for each sampling cast to minimize statistical dependence. Following data extraction, we 
examined ChlI to investigate the effect of collection methods on their accuracy. Chl collected 
using underway collection methods contained atypical frequency distributions. The remainder of 
collection methods yielded log-normal distributions, which are more typical. Since the accuracy 
of underway data could not be empirically verified they were removed from the analysis 
(n=110,935).  
 
All nearshore measurements (< 25 m depth or < 1 km from the nearest coastline) were removed 
from the analysis (n=252,640). Chl values which exceeded >50 mg m-3 globally or >5 mg m-3 in 
open ocean waters (> 200 m depth or >200 km from the nearest coastline) were flagged as 
biologically improbable outliers and removed (n=23,379). Chl measurements were also 
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examined by their accession number (submitting institution) and cast number to determine the 
proportion of measurements which were outliers within each accession number and cast. If over 
25% of measurements within a given accession number were flagged as questionable, all data 
from that accession number were removed. This same technique was applied to each individual 
in situ cast. This was aimed at removing data gathered from casts where the instrumentation 
might not have been calibrated correctly or from accession numbers where systematic data entry 
errors might have occurred.  
 
 
Similarity of Chl data. For comparison, ChlI and ChlT were individually binned into 0.25° x 
0.25° cells. For each cell, monthly mean values were calculated individually for both ChlI and 
ChlT for each available year. Mean Chl values were calculated using a modified objective 
weighting algorithm developed for scatterometer data1,2. Spatial weighting functions were 
calculated as, 
 

WS,ij = (S2 – sij
2)/(S2 + sij

2)                                                                                          (1) 
 
Where S is the chosen value for the spatial distance scale (0.25°), and sij is the distance of the jth 
observation from the center of the ith cell. Temporal weightings were calculated as, 
 

WT,kj = (Tk
2 – tkj

2)/(Tk
2 + tkj

2)                                                                                       (2) 
 
Where T is the number of days in the kth month, and tkj is the time separation of the jth 
observation from the center of the kth month. Weightings were combined for each unique cell 
and month as, 
 

Chli,j,k = (WS,ij + WT,kj)/2                                                                                             (3) 
 
This produces weightings of 1 at the center of the grid point and middle of the month to near 0 at 
periphery of the cell and ends of the month. Great circle distances between observations and the 
center of each cell (sij ) were calculated using the Haversine formula3. Pearson correlation 
coefficients were then calculated to examine the strength of the linear relationship between ChlI 
and ChlT. Strong positive relationships were observed between mean ChlI and ChlT (r=0.52; 
P<0.001), with increasing strength through time. The linear relationship was insensitive to 
proximity to the coast, although the variability in Chl was slightly higher for shelf areas. 
  
To further explore the linear scaling of these data, model II linear regression models were used4,5. 
Model II regression analysis is appropriate when both variables in the regression equation are 
random (i.e. subject to error). We log-transformed both Chl data sets in order to achieve bivariate 
normality and fitted major axis (MA) model II regressions to the data. If Chl estimates from the 
two data sources were identical, one would expect a Pearson correlation coefficient of 1, a linear 
slope of 1, and an intercept of 0. We observed strong linear relationships between ChlI and ChlT 
in shelf and oceanic regions, and globally (Fig. S2). To further examine spatial patterns of 
similarity, we extracted the standardized residuals from these regressions fitted to the entire 
dataset and calculated the absolute mean residual for each 5° x 5° cell. This value corresponds to 
the average difference between ChlT and ChlI, minimizing the confounding effects of spatial and 
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temporal variation. Spatial examination of the mean residuals indicated that there was a greater 
discrepancy between ChlI and ChlT in more coastal areas (Fig. S2b. Excluding more coastal ChlT 
measurements had a minor effect on the linear regression statistics and the higher residual 
variability remained in coastal regions. Linear regression techniques were also used to examine 
the effects of in situ collection methods on the linear agreement between ChlT and ChlI. These 
differences were negligible. 
 
Blended Chl were compared against satellite-derived Chl concentrations extracted from the Sea-
viewing Wide Field-of-view (SeaWiFS; Fig. S3a), and Coastal Zone Color Scanner projects 
(CZCS; Fig. S3b). Spatial patterns of the blended Chl data broadly approximated those from 
remote sensing radiometry and major spatial features such as the oligotrophic gyres, equatorial 
upwelling, and enhanced phytoplankton production in coastal and high latitude regions were well 
reproduced (Fig. S3c).  
 
The similarity of ChlT and ChlI was also examined using regression trees. Regression trees use 
recursive partitioning to split data to explain the largest amount of variation possible. Regression 
trees were fit to each of our 10 focal regions and globally using the main model covariates and a 
dummy variable (βD) corresponding to the data type (0=in situ; 1=transparency). This data type 
variable only appeared in 2 of 11 regression trees and was confined to the lowest branches, 
indicating that data type explained very little variation in overall Chl concentration. 
 
Estimation of Chl trends. Trends in relative Chl concentration for each ocean region and 10° x 
10° cell were estimated from blended data using generalized additive models (GAMs)6. GAMs 
are a flexible extension of generalized linear models that allow the specification of the linear 
predictor (response) as a generalized linear or smooth function of covariates. This approach can 
be advantageous when it is suspected that the response varies as a complex non-monotonic 
function of covariates, or where one expects complex interactions among covariates. The 
application of GAMs to ecological data is rapidly growing in recently published works, 
especially in the field of biological oceanography7-8. 
 
 
Statistical models 
 
The model covariates were selected to explain the largest proportion of the variation in Chl while 
remaining parsimonious. Phytoplankton growth and abundance vary spatially and temporally 
with changes in photosynthetically active radiation and nutrient availability, among other factors. 
We attempted to explain variability related to these processes by including model covariates for 
mean seasonality (day or month of the year), the water depth of sampling locations where Chl 
observations were taken (bathymetry), temporal change (year), and spatial changes (latitude and 
longitude).  
 
Local-scale Chl trends were estimated by fitting individual GAMs to data in each 10° x 10° cell. 
For these models, we specified Chl as a linear function of year, as a smooth function of 
bathymetry, and as a discrete function of month of the year. Spatial Chl variability was explained 
by using individual smooth functions of latitude and longitude. Following this, local Chl trends 
for each cell containing adequate data (n=364) were estimated as follows: 
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η(µi) = B0 + B1Yeari + B2Monthi + f1(Bathymetryi) + f2(Latitudei) +  f3(Longitudei) + єi      

(4)
 

 
where η is the monotonic link function of the expected mean Chl concentration µ i, B0 is the 
model intercept, Bi are parametric and fi are nonparametric effects estimated from the data and єi 

is the model error term. A Gamma distributed error structure and a log link were used. 
 
 
To estimate regional Chl trends, more abundant data within each basin-scale region (n=10) led to 
modified covariate specification. For bathymetry, we used a 3-level discrete variable defined as: 
i) less than 200 m, ii) between 200 and 1000 m depth, or iii) greater than 1000 m). Seasonality 
relates to variation in both sunlight and nutrients throughout each year. To explain variation in 
Chl associated with seasonality we assumed that Chl varied as a smooth function of day of the 
year. This allowed different patterns of seasonality to be fitted within each region. Since many 
regional patterns of phytoplankton seasonality are well-known (e.g. Arctic, versus temperate and 
tropical regions), examination of the estimated seasonality patterns provided a useful verification 
to ensure the model was correctly specifying mean seasonal Chl variability. Statistical 
dependence, whereby observations are not independently distributed, arises frequently in 
ecological data. For phytoplankton, spatial dependence not captured by bathymetry or 
seasonality may be due to physical oceanographic features such as fronts and eddies, or localized 
enrichment due to upwelling or anthropogenic contributions. A smooth spatial variable (latitude, 
longitude) was used to capture potential spatial dependence not explained by bathymetry or 
seasonality. The inclusion of this term also captured variability associated with spatial 
differences in sampling effort. Regional Chl trends were estimated by fitting GAMs to the 
blended data in each region, in order to estimate Chl as a log-linear function of time as  
 

η(µi) = B0 + B1Yeari + B2Bathymetryi + f1(Dayi) + f2(Latitudei, Longitudei) + єi,             (5) 

and to estimate Chl as a log-smooth function of time as 

η(µi) = B0 + f1Yeari + B2Bathymetryi + f2(Dayi) + f3(Latitudei, Longitudei) + єi,               (6) 

Additional details regarding the specification of parametric and nonparametric effects for local 
and regional models are presented in Table S2. 
 
Global rates of phytoplankton change were derived by estimating the random-effects meta-
analytic means across the 10 individual regional estimates9. Global rates were estimated as both 
inverse variance- and geographic area-weighted means, but results obtained by these weightings 
were almost identical. Inverse variance-weighted means were used for inference. 
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Additional robustness analyses 
 
Regional trends were estimated for ChlT and ChlI separately as a smooth function of time in each 
region to determine if trends were similar between data types. Despite large differences in the 
spatial and temporal coverage of the individual data types, estimated regional Chl trends 
appeared similar (Fig. S4). There were minor discrepancies between trends derived from the two 
data sources in some regions. These differences were likely the result of limited data availability 
in these regions, rather than differences between data types. Regional models were also fitted to 
the blended dataset for global and open ocean areas individually for each region (Fig. S5). 
Although the overall global rate of change was similar, several Southern Hemisphere region 
estimates were different in the open oceans. Spatial analysis of the residuals from these regional 
models indicated more outlying residuals in the Southern Hemisphere (Fig. S5c). An emergent 
pattern from these analyses is an elevated degree of uncertainty for trends estimated for Southern 
Hemisphere regions where data availability is relatively low.   
 
Local-scale trends were estimated for ChlT and ChlI individually as well (Fig. S6). Despite the 
variable temporal coverage of the data within each 10° x 10° cell, trends estimated from each 
data source individually were broadly similar in most areas. The magnitude of change in each 
cell was generally greater when estimated from ChlI, which may reflect greater Chl changes over 
more recent time periods.  
 
After blending in situ and transparency data, the temporal availability of data within each 10° x 
10° cell was variable. Following our robustness approach for the regional models, we estimated 
local-scale trends from blended data using only data since 1950 as well as the full series (Fig. S7). 
The spatial patterns of Chl trends was largely unchanged. The linear correlation between 
estimates using all data against those using only data since 1950 was high (r=0.985; P<0.0001), 
and the estimated direction of temporal change different in only 2% (n=4) of all cells showing 
statistically significant effects (n=198). Using only data since 1950 resulted in 61% (n=120) of 
cells showing statistically significant declines and appeared to amplify the trends observed when 
using all data.  
 
For in situ data, we also tested the effect of Chl sampling depth (m) and temporal changes in 
sampling methodologies within the local and regional model frameworks. Results indicated that 
there is little variability in Chl concentration associated with sampling depth within the upper 20 
m. 
 
 
Notes on model inference, specification and diagnostics 
 
Because maximum likelihood (ML) estimation is inappropriate when including smooth functions 
as model covariates, all GAMs were fit using penalized likelihood (PL) approximation by 
penalized iteratively re-weighted least squares (P-IRLS). In PL approximation the model 
negative log likelihood is modified by adding a penalty which is scaled by a smoothing 
parameter (λ) for each nonlinear function. The λ parameter represents the tradeoff between 
model fit and model smoothness and is estimated by generalized cross-validation (GCV) or Un-
biased Risk Estimation (UBRE). Because overfitting is common when using GCV estimation, 
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the influence of the effective degrees of freedom on nonlinear estimation was inflated by a factor 
of 1.4 (ref. 10). All additive and generalized additive models were estimated using the statistical 
software R (V. 2.10) and packages (mgcv) developed by Wood11.  
 
Model assumptions were checked for all regions and all individual 10° x 10° cells, and residuals 
were examined against all covariates to determine if they were adequately specified. Regional 
model residuals were also examined spatially to examine any factors affecting model fits (Fig. 
S5c). Most outlying residuals occurred in the Southern Hemisphere, likely reflecting the relative 
scarcity of data in these regions, rather than improper model specification. The presence of 
collinearity among model covariates was examined by calculating the variance inflation factor 
(VIF); (ref. 12) for all models. VIF values over 5 were considered evidence of collinearity. 
 
Statistical autocorrelation, which violates the assumption of independence among observations, 
is common in spatio-temporal data sets. If not properly accounted for, autocorrelation can 
artificially inflate the degrees of freedom and bias the significance test. We accounted for 
temporal autocorrelation by including a temporal smooth effect and for spatial autocorrelation by 
including a latitudinal and longitudinal smooth effect within all GAMs. We then tested the 
effectiveness of these measures by examining the model residuals. If autocorrelation was still 
present, spatial and temporal patterns would be apparent in the model residuals. Omni-directional 
semi-variogram and correlogram analyses13 of model residuals in each region before and after 
fitting the spatial variable indicated that our modeling approach was very effective at minimizing 
spatial autocorrelation (Fig. S8a). Although residuals from models without spatial effects 
exhibited clear spatial structure (Fig. S8b), those from models including spatial effects did not 
(Fig. S8c). Temporal autocorrelation was examined by calculating the mean model residual at 
10-day intervals and fitting temporal autoregressive models. No significant temporal structure 
was observed in the model residuals.  
 
Physical and climate data and analyses. To calculate the bathymetry associated with each Chl 
sampling station, we used global gridded bathymetry data (30-arc second resolution), extracted 
from the General Bathymetric Chart of the Oceans database (GEBCO_08). To calculate the 
distance from the nearest coastline, we used data extracted from the Global Self-consistent, 
Hierarchical, High-resolution Shoreline Database (GSHHS v1.10). The bathymetry and distance 
from the nearest coastline were calculated for each Chl measurement using Generic Mapping 
Tools software (GMT); (http://gmt.soest.hawaii.edu); (Table S1).   
 
We extracted climate anomalies corresponding to the El Niño Southern Oscillation (ENSO); 
(Dec-Mar average), the Pacific Decadal Oscillation (PDO), the North Atlantic Oscillation Index 
(NAO), the Atlantic Multidecadal Oscillation (AMO), the Indian Ocean Dipole Index (IOD), the 
Arctic Oscillation Index (AOI), and the Antarctic Oscillation Index (AAO) from the standard 
sources listed in Table S1. The bivariate ENSO index represents reconstructed SST anomalies 
and Southern Oscillation Index (SOI) anomalies. The IOD represents the normalized anomalous 
SST gradient between the Western Equatorial Indian (50°E to70°E and 10°S to10°N) and the 
South Eastern Equatorial Indian Oceans (90°E to 110°E and 10°S to 0°N) termed the Dipole 
Mode Index (DMO); (ref. 14). The NAO represents the first principle component from a rotated 
principle components analysis (RPCA) applied to monthly standardized pressure anomalies 
across the North Atlantic (20° to 90°N); (ref. 15). The AMO represents the area-weighted SST 
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(Fig. S8c). Temporal autocorrelation was examined by calculating the mean model residual at 
10-day intervals and fitting temporal autoregressive models. No significant temporal structure 
was observed in the model residuals.  
 
Physical and climate data and analyses. To calculate the bathymetry associated with each Chl 
sampling station, we used global gridded bathymetry data (30-arc second resolution), extracted 
from the General Bathymetric Chart of the Oceans database (GEBCO_08). To calculate the 
distance from the nearest coastline, we used data extracted from the Global Self-consistent, 
Hierarchical, High-resolution Shoreline Database (GSHHS v1.10). The bathymetry and distance 
from the nearest coastline were calculated for each Chl measurement using Generic Mapping 
Tools software (GMT); (http://gmt.soest.hawaii.edu); (Table S1).   
 
We extracted climate anomalies corresponding to the El Niño Southern Oscillation (ENSO); 
(Dec-Mar average), the Pacific Decadal Oscillation (PDO), the North Atlantic Oscillation Index 
(NAO), the Atlantic Multidecadal Oscillation (AMO), the Indian Ocean Dipole Index (IOD), the 
Arctic Oscillation Index (AOI), and the Antarctic Oscillation Index (AAO) from the standard 
sources listed in Table S1. The bivariate ENSO index represents reconstructed SST anomalies 
and Southern Oscillation Index (SOI) anomalies. The IOD represents the normalized anomalous 
SST gradient between the Western Equatorial Indian (50°E to70°E and 10°S to10°N) and the 
South Eastern Equatorial Indian Oceans (90°E to 110°E and 10°S to 0°N) termed the Dipole 
Mode Index (DMO); (ref. 14). The NAO represents the first principle component from a rotated 
principle components analysis (RPCA) applied to monthly standardized pressure anomalies 
across the North Atlantic (20° to 90°N); (ref. 15). The AMO represents the area-weighted SST 
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average over the North Atlantic (0° to 70°N). The PDO is described by the leading principal 
component of monthly SST anomalies in the North Pacific Ocean (>20°N). The Arctic 
Oscillation (AO) index or Northern Annular Mode, represents sea level pressure anomalies 
across the Arctic and North Atlantic Oceans (>20°N). The Antarctic Oscillation (AAO) index or 
Southern Annular Mode represents the leading principle component of geopotential height 
anomalies south of 20°S (ref. 16). High-pass convolution filters (window=9) were applied to all 
indices to remove high-frequency variability from the series.  
 
We examined the effects of climate indices by taking yearly model predicted Chl in each of 10 
regions (i.e. with seasonal, spatial, and depth effects controlled for), converting these to de-
trended, normalized anomalies and cross-correlating them against relevant climate indices in 
each region.  

 
Sea surface temperature (SST) data were extracted from the Hadley Centre Sea Surface 
Temperature data set (HadISST; 1899-2009); (ref. 17). Wind intensity data were extracted from 
the National Oceans and Atmospheric Administration (NOAA) Objectively Analyzed Air-Sea 
Fluxes (OAFlux) from the Global Oceans database (1958-2009); (ref. 18). We calculated mixed 
layer depth (MLD) from subsurface ocean profiles of temperature and salinity extracted from 
Hadley EN3 v.2a (Met office; 1950 -2009); (Table S1); (ref. 19). We used a finite MLD 
definition based on ∆density (σt) = 0.125 kg m (refs. 3,20,21). The finite difference criterion was 
chosen opposed to a gradient criterion to estimate MLD because it has been experimentally 
shown to be more stable22. The initial temperature and density values were chosen at a depth of 
10 m to eliminate any potential bias in the profile due to ‘skin effects’ at the ocean surface23. 
Linear interpolation was used to calculate the exact values for MLD. 
 
Global changes in physical variables were estimated by fitting linear models containing 
covariates for year and month to data in each 1° x 1° and 10° x 10° cell (Fig. S9). Regional 
changes were estimated by fitting additive models containing covariates for year, month, and 
location (latitude, longitude) in each region. Since these data were extracted on a global 180° x 
360° grid, each individual 1° x 1° grid cell was area-weighted to account for this. To examine the 
effects of changing SST, MLD, and wind intensity on Chl, all datasets were merged by location 
(1° x 1° cell), year, and month, and both local and regional models were re-fitted with a physical 
driver effect estimated.  This approach allows isolation of the effects of physical drivers on Chl 
while removing variability associated with other model covariates (i.e. year, day, latitude, 
longitude and depth). Since VIF analysis indicated collinearity among some physical variables, 
individual models containing each physical variable were fit. 
 
 
Potential sources of error. Limitations in spatial and temporal data availability increase 
uncertainty in model inference. In the Southern Hemisphere for instance, confidence intervals 
were wider, estimates fluctuated more, and model residuals were greater, indicating increased 
uncertainty in these areas due to a relative scarcity of data. We have accounted for this 
uncertainty by inverse variance-weighting regional estimates when deriving the global mean Chl 
trends, and also by providing trend estimates using only post-1950 data for comparison. Despite 
these measures, the patchy nature of the data remains a potential source of uncertainty, especially 
in the Southern Hemisphere. Furthermore we note that our regional models estimate Chl trends 
averaged over larger spatial scales and provided little insight into mesoscale differences in trends. 
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We attempted to partly remedy this issue by estimating ‘local-scale’ phytoplankton trends at 10° 
x 10° resolution (Fig. 2). Yet, these local-scale models made spatial comparisons difficult due to 
the different temporal data coverage among cells. Likewise, inconsistency of temporal sampling 
effort between provinces and cells raises the possibility that sampling intensity was not adequate 
to fully resolve temporal changes in some regions.  
 
Another potential source of error may be associated with the change in filters used to separate 
phytoplankton for the extraction of Chl. The earlier use of Whatman GF/C glass fiber filters may 
have underestimated the concentration of Chl (ref. 24). This potential bias is only relevant for in 
situ data and would result in an apparent increase in Chl. Hence, if there were any biases 
introduced by changes in filters, it would render our estimates of Chl decline conservative. 
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Supplementary Table S1 | Data sources. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameter Source Temporal Webpage Ref. 

Chl WOOD 1954-2008 www.wood.jhuapl.edu/wood/  

Chl NODC 1954-2008 www.nodc.noaa.gov/  

Chl NASA (CZCS) 1978-1986 http://oceandata.sci.gsfc.nasa.gov 25 

Chl NASA (SeaWiFS) 1997-2009 http://oceandata.sci.gsfc.nasa.gov 26 

Transparency WOOD 1899-2004 www.wood.jhuapl.edu/wood/  

Transparency NODC 1899-2008 www.nodc.noaa.gov/  

Transparency MIRC 1899-2008 www.mirc.jha.jp/en/outline.html  

Sea surface temperature Hadley ISST 1870-2009 http://hadobs.metoffice.com/ 17 

Wind intensity OAFlux 1958-2005 http://oaflux.whoi.edu/index.html 18 

Temperature/Salinity profiles Hadley EN3 v.2a 1955-2009 http://hadobs.metoffice.com/ 19 

Bathymetry GEBCO NA www.gebco.net/  

Coastal distance NGDC NA http://www.ngdc.noaa.gov/mgg/shorelines.html 27 

Bivariate ENSO index NOAA 1871-2001 www.esrl.noaa.gov/psd/data/correlation 28 

North Atlantic oscillation  NOAA 1950-2009 www.cpc.noaa.gov/products/precip/Cwlink 15 29 30 

Indian Ocean dipole NOAA 1856-2007 www.jamstec.go.jp/frcgc/research/d1/iod/HTML 14,31 

Atlantic multidecadal oscillation NOAA 1856-2009 www.esrl.noaa.gov/psd/data/timeseries/AMO/ 32 

Pacific decadal oscillation JISAO 1900-2009 www.jisao.washington.edu/pdo/PDO.latest 33,34 

Arctic oscillation JISAO 1899-2002 www.jisao.washington.edu/ao 35 

Antarctic oscillation NOAA 1979-2009 www.cpc.ncep.noaa.gov/products/precip/CWlink 36 
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Supplementary Table S2 | Details of GAM effects estimated in the models. 

Model Effects Specification 

Local year continuous* 

 bathymetry discrete* 

 day cyclic spline** 

 latitude  cubic spline** 

 longitude cubic spline** 

Regional (year as continuous) year continuous* 

 bathymetry discrete* 

 day cyclic spline** 

 latitude,longitude tensor product spline** 

Regional (year as discrete) year discrete* 

 bathymetry discrete* 

 day cyclic spline** 

 latitude,longitude tensor product spline** 

Regional (year as smooth) year cubic spline** 

 bathymetry discrete* 

 day cyclic spline** 

 latitude,longitude tensor product spline** 

Notes: * denotes parametric effects, ** denotes nonparametric effects. 
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Supplementary Table S3 | Regional trends in Chl estimated by GAMs with a continuous log-
linear time trend. 

 
Region Slope SE P R2 GCV Min year Max year 

Arctic -0.010 0.001 <0.0001 0.436 0.814 1899 2003 

N Atlantic -0.008 0.000 <0.0001 0.263 0.933 1903 2006 

E Atlantic -0.013 0.001 <0.0001 0.202 0.963 1911 2003 

S Atlantic -0.018 0.001 <0.0001 0.316 0.952 1911 2003 

N Indian 0.002 0.001 0.268 0.281 0.650 1942 1997 

S Indian 0.020 0.001 <0.0001 0.714 0.821 1936 2007 

N Pacific -0.004 0.000 <0.0001 0.212 0.782 1907 2008 

E Pacific -0.009 0.000 <0.0001 0.375 0.722 1907 2007 

S Pacific -0.005 0.002 0.037 0.538 0.766 1956 2007 

Southern -0.015 0.002 <0.0001 0.218 0.987 1912 2006 

Notes: The slope is the estimated instantaneous linear rate of change in abundance, SE = 
standard error, P is probability that the slope is not different from zero, R2= the proportion of 
variance explained by the covariates, GCV=generalized cross validation score.
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Figure S1 | Schematic of statistical analyses. Flowchart and table depicting the data processing steps, 
their objectives, rationale, and implementation.
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Figure S2 | Comparison between transparency- and in situ-derived Chl data. (a) Linear relationship 
between transparency- and in situ-derived Chl represented by model II major axis regression model (red 
line). Points are log10 mean Chl per year, month, and 0.25 degree cell. Color of the points represents the 
number of observations within each bin. Dashed line represents an idealized slope of 1. Pearson 
correlation coefficient (r) and sample size (n) are shown. (b) Absolute standardized mean model 
residuals from linear models in (a) binned to 5 degree cells. White areas are cells where no matchups 
exist.
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Figure S3 | Chl climatology comparisons. (a-c) Averaged Chl concentration derived from (a) the Sea-
viewing Wide Field of view Sensor (SeaWiFS), (b) the Coastal Zone Color Scanner (CZCS), and (c) blended 
transparency and in situ data. All data were log-transformed and averaged per 5 degree cell for 
comparison. Seasonal effects were not removed.   
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Figure S4 | Regional Chl trends by data source. Estimated smooth rates of Chl change from GAM 
models fitted to each data source (n=2) and basin (n=10). Blue colors indicate trends estimated using 
transparency data and green using in situ data. Shaded areas are the 95% confidence limits for each 
trend. 
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Figure S5 | Regional Chl trends by ocean zone. Estimated rates of Chl change in each region (n=10) from 
GAM models fitted to all available data (a), and using data in open ocean areas, where water depths are 
>200 m (b). Means and 95% confidence intervals are shown. (c) Mean standardized residuals from 10 
regional models in (a) plotted on a 1˚ X 1˚ degree grid. Colors depict the mean magnitude of unexplained 
residual variation in each cell. Grey colors depict missing data.
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Figure S6 | Local Chl trends separated by data source. Mean instantaneous rates of Chl change 
estimated for each 10˚x10˚ cell containing adequate data. Trends were estimated for in situ (a) and 
transparency data (b). Yellow and red represent cells where Chl concentration has increased, blue 
represents Chl decrease, and white indicates cells lacking sufficient data.  
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Figure S7 | Spatial variability in phytoplankton trends using post-1950 data. (a) Baseline year and 
temporal span of Chl data used in local models. (b) Mean instantaneous rates of Chl change estimated 
for each 10˚ x 10˚ cell (squares; n=358). Yellow and red indicate cells where Chl concentration has 
increased, blue indicates Chl decrease, and white indicates cells lacking sufficient data. Cells bordered in 
black denote statistically significant rates of change (P<0.05).  
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Figure S8 | Effects of removing spatial autocorrelation. (a) Omnidirectional correlogram analysis of 
mean model residuals from all regional models per 1° cell before (dashed line) and after (solid line) 
including the spatial effect. (b-c) Spatial examination of regional GAM residuals before (b) and after (c) 
including the spatial effect. Colors depict the mean model residual in each 1° X 1° cell. 
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Figure S9 | Physical drivers. (a) Estimated changes in SST (1° resolution 1899-2009), (b) MLD (1° 
resolution 1955-2009), and (c) Wind intensity (1° resolution 1958-2009) over the available time periods. 
Blue depicts declines and yellow and red depict increases. 
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