
 

 

METHODS 

Illumina Library Construction/Illumina Sequencing 
All methods in the library construction and whole genome DNA sequencing have been 

described previously44,45. Tumor and normal genomes were sequenced to at least 30-fold 

haploid coverage, with corresponding diploid coverage of at least 99.5%. Detailed information 

regarding runs and lanes generated for the twelve tumour/normal pairs is included in 

Supplementary Table 7.  

Transcriptome sequencing 
During library preparation, the RNA was purified by phenol/chloroform/isoamyl alcohol (Life 

Technologies) extraction followed by sodium acetate / ethanol precipitation after each enzymatic 

step. For library construction 2-5 μg of total RNA was DNAse I (Life Technologies) treated for 15 

minutes at 23ºC, after which polyadenylated (poly-A) RNA was isolated with uMACS columns 

(Miltenyi Biotec). The isolated poly-A RNA served as a template for cDNA synthesis with 

random hexamers using the Superscript Double-Stranded cDNA Synthesis kit (Life 

Technologies). The resulting cDNA was fragmented by a Covaris model E210 according to the 

manufacturer’s recommended conditions to generate fragments with a peak distribution of 

approximately 200bp. PAGE size selection was performed to further restrict the DNA size range 

to 100-300bp prior to DNA end repair, and the addition of library adapters with the NEB Next 

DNA sample prep kit (NEB). After 10 rounds of PCR amplification with primers PE 1.0 and PE 

2.0 (Illumina), the final product was size selected by PAGE (290-325 bp). The resulting libraries 

were quantitated with the QPCR NGS library quantification kit (Agilent Technologies) using a 

PhiX control library (Illumina) as an external standard. Bridge PCR clusters were generated on a 

V4 PE flow cell (Illumina) using a CBOT (Illumina).  

Flow cells were loaded onto an Illumina GAIIx for a paired end 2x101 cycle sequencing 

run using SCS version 2.8 software and SBS version 5 reagents, with the resulting base call 

files (bcl) converted to fastq format and used in the analysis pipeline.  

Alignment, coverage, and quality assessment 
All Illumina paired-end reads from both tumour and matched normal ends were aligned to the 

human NCBI Build 36 reference sequence using BWA (0.5.5) aligner46,47, all lanes were merged 
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and deduplicated using Picard 1.29 (http://picard.sourceforge.net). The genotype files from 

Affymetrix SNP 6.0 and 500K microarrays were used for coverage analysis and for QC purpose. 

A copy number profile of each lane was constructed and compared to those derived by SNP 

array to ensure consistency.  

Effective coverage of the whole genome and whole exome was obtained by 

summarizing coverage of aligned bases with quality score >=15 at each position of the 

reference genome (excluding sequencing gaps and ambiguous bases) using the Coverage 

module of Bambino48. We defined a base "covered" if the "effective coverage" was at least 10x. 

We also excluded all ambiguous bases and sequencing gaps in hg18 from our coverage 

analysis. The exome annotation is based on NCBI RefSeq49.  

Detection of substitution (SNV) and insertion/deletion (indel) sequence mutations 
SNVs and indels were analysed independently by Washington University Genome Institute 

(WU) and St. Jude Children’s Research Hospital (SJCRH) using different approaches. The 

results generated from the two institutes were combined and sent for validation to generate the 

final candidate SNV and indel list for experimental validation. 

At WU. all reads were aligned using BWA (version 0.5.5 by lane), lanes were merged 

and deduplicated using Picard 1.07 (http://picard.sourceforge.net) and then variants called using 

Samtools (svn rev 454)46. Somatic single nucleotide variants were detected as previously 

described44, but using a program that directly accesses a BAM file called SomaticSniper (Larson 

et al. manuscript in preparation). High quality somatic predictions were those sites with a 

somatic score greater than 40 and an average mapping quality greater than 40. This represents 

a slight modification of the previous categorisation described by WU, which required a minimum 

average mapping quality of 70, as reads were aligned using BWA, and BWA calculates its 

mapping qualities differently than MAQ which was used in prior studies. The predicted SNVs are 

compared to the most current version of dbSNP50 (build 129-130). For SNVs, we required both 

a positional and allele match. In addition we also compared the predicted SNVs to SNPs found 

in CEU and YRI trios as described in Ding et al.44. All predicted SNVs were filtered through a 

SNV false-positive filter developed at the Genome Institute that is based on a set of criteria 

including mapping quality score, average supporting read length, average position of the variant 

in the read, strand bias and the presence of homopolymers.  

At WU, indels were called using a modified version of Samtools to identify indel 

mutations that were more likely to have occurred in the tumour than the normal. The following 

scheme was implemented to identify putative somatic indels: analogous to the approach used 
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for SNVs, a comparison of the Samtools likelihoods of the indel in tumour and normal reads was 

performed to generate a somatic score representing the Phred scaled probability that each indel 

is somatic. Indels were removed where any of the following conditions was true: the somatic 

score was 0, the Samtools tumour and normal consensus calls were the same, the Samtools 

call in normal was not wild type, or the number of reads was greater than 100. Furthermore, for 

predictions of 1-2 base pairs in size, we performed a one-sided Fisher’s exact test on the read 

counts supporting the indel in tumour and normal to test if the indel occurred at a lower 

frequency in the normal. One to two base pair indels where the P value was greater than 0.01 

were removed. Finally, predictions found to be contained or adjacent to runs of base quality 2 

bases were removed as these are set to indicate a failure in base calling during the Illumina 

Base Calling Pipeline and many indel predictions were found to arise solely from these reads. In 

addition, Pindel and GATK were used to detect indels51,52. A modified version of Pindel that 

reads directly from the BAM file was used. Insert size estimates required as input were derived 

from BWA. Tumour and normal reads were tagged and pooled, and somatic filtering was done 

by removing all calls which had even one normal read aligning to the same putative event as 

tumour reads. This modified version has since been incorporated into the original Pindel source 

code. GATK was run with all default parameters. This includes GATK IndelGenotype V2.0 with 

window size of 300 base-pairs. 

Indels and SNVs were grouped into tiers based on genome annotation as described 

previously44,45.  
At SJCRH, putative sequence variants including SNVs and indels were initially detected 

by running the variation detection module of Bambino48 using the following three parameters: (1) 

a high quality threshold for pooled tumour and matching normal bam files (min-quality 20 -min-

flanking-quality 20 -min-alt-allele-count 3 -min-minor-frequency 0 -broad-min-quality 10 -mmf-

max-hq-mismatches 4 -mmf-min-quality 15 -mmf-max-any-mismatches 6); (2) a low quality 

threshold for pooled tumour and matching normal bam files (-min-quality 10 -min-flanking-quality 

10 -min-alt-allele-count 2 -min-minor-frequency 0 -broad-min-quality 10); and (3) a high 

tolerance for the number of mismatches for normal bam file alone (min-quality 20 -min-flanking-

quality 15 -min-alt-allele-count 2 -min-minor-frequency 0 -mmf-max-hq-mismatches 15 -mmf-

min-quality 15 -mmf-max-any-mismatches 20). In addition to Bambino, putative indels were also 

found by a de novo assembly process which constructs contigs using unmapped reads and then 

re-maps them to the reference genome followed by a Smith-Waterman alignment to detect 

indels. In this process, unmapped reads include (1) unmapped reads whose mate is mapped to 

the genome; (2) reads with indels in the CIGAR (Compact Idiosyncratic Gapped Alignment 
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Report) string; (3) reads with at least 4 high-quality (quality value >=20) mismatches; and (4) 

reads with high-quality (quality value at least 20) soft-clipped bases in the CIGAR string. All 

putative sequence variants were further assessed to determine their accuracy and somatic 

origin using the processes described below. Velvet53, BLAT54 and SIM55 were the three 

programs used for assembly, mapping, and Smith-Waterman alignment, respectively.  

A putative somatic sequence mutation determined by a SJCRH process was collected 

based on the following criteria: (1) the variant site is absent in the normal-only analysis; (2) 

Fisher’s exact test P value indicates that the number of reads harbouring the non-reference 

allele is significantly higher in tumour; (3) the non-reference allele frequency in normal is <=5%; 

and (4) mutant alleles are present in both orientations. Higher P value and absence of non-

reference allele in normal is required for a variant to be considered somatic if it matches dbSNP 

build 130 or is located in an unmappable region (determined by recurrence of 75mers across 

the reference genome) or is inside a polynucleotide repeat. Substitution variants are classified 

into four categories based on combination of their P value and sequence quality scores: High 

quality, high P value; high quality, low P value; low quality, high P value; low quality, low P 

value. P value refers to the P value of Fisher’s exact test comparing the distribution of the 

alternative allele in tumour and normal. High P value, P<0.05; low P value, 0.05<P<0.10. A final 

review process re-maps and re-aligns the reads harbouring the non-reference allele to the 

reference genome to filter potential false positive calls introduced by mapping in repetitive 

regions and alignment artefacts. For putative somatic indels, the review process re-aligns all 

reads in tumour and normal at the indel site to a mutant allele template sequence constructed 

by substituting the wild-type allele with the indel. Presence of reads in normal that cover the 

mutant allele is considered a germline variant. 

Tier annotation for sequence variations 
Transcripts from Ensembl56 build (54_36) and Genbank57 (build download May 21, 2009) were 

used for annotation. Variants were classified into the following four tiers. (1) Tier 1: Coding 

synonymous, nonsynonymous, splice site, and non-coding RNA variants; (2) Tier 2: Conserved 

variants (cutoff: conservation score greater than or equal to 500 based on either the 

phastConsElements28way table or the phastConsElements17way table from the UCSC 

genome browser, and variants in regulatory regions annotated by UCSC annotation (Regulatory 

annotations included are targetScanS, ORegAnno, tfbsConsSites, vistaEnhancers, eponine, 

firstEF, L1 TAF1 Valid, Poly(A), switchDbTss, encodeUViennaRnaz, laminB1, cpgIslandExt); (3) 

Tier 3: Variants in non-repeat masked regions; and (4) Tier 4: the remaining SNVs. 
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Validation of tier 1 somatic mutations 
All tier 1 predicted somatic SNVs and indels including those found in poorly covered regions by 

whole-genome sequencing were validated by using either genomic PCR and sequencing using 

the Roche 454 (for all samples except SJTALL001) or Sanger sequencing (SJTALL001). A 

fraction of predicted mutations at the 5’ or 3’ UTR were also validated. Primer design and PCR 

amplifications were carried out as previously described45. The PCR products were subjected to 

library construction followed by 454 Titanium sequencing. Read sequences and quality scores 

were extracted with sffinfo (454 proprietary software), and then aligned to NCBI Build 36 using 

SSAHA2 with the SAM output option. Alignments were imported to BAM format using SAMtools. 

A SAMtools pileup file was generated, and read counts were determined by VarScan. In the 

analysis of 454 reads generated by validation experiment, we required a minimum base quality 

of 15, with at least 20 reads aligned, to report the allele frequencies. Of the 228 validated 

somatic mutations, 50 (22%) had poor coverage in the initial whole-genome sequencing: i.e. the 

coverage of the tumour is lower than 16x or that of the matching normal is lower than 8x. The 

lowest covered sites include a NOTCH1 (R1598P) mutation with 5x coverage of tumour and 4x 

coverage of matching normal.  

Analysis of background mutation rate in T-ALL cases 
We followed the current convention which incorrectly assumes that the human genome is a 3-

billion base haploid genome58,59 instead of a ~6 billion-base diploid genome to calculate the 

background mutation rate for comparability with other studies. The analysis used validated silent 

somatic mutations as the non-functional background mutations. We obtained the total number of 

effectively covered coding bases (i.e. covered by >10x in both tumour and matching normal) in 

all RefSeq protein coding exons for each case. The background mutation rate is the silent 

mutation rate in coding region (the number of validated silent somatic mutations divided by the 

total effectively covered coding bases) adjusted by silent-to-non-silent ratio (estimated to be 

0.350 by the TCGA Consortium) across the coding regions. Since our validation included 

mutations in poorly covered regions, only the validated silent mutations that have >10x 

coverage are included in this analysis.  

Recurrence screening for sequence variations 
We performed recurrence screening of a cohort of 94 T-ALL samples from SJCRH, the 

Children’s Oncology Group and L'Associazione Italiana Ematologia ed Oncologia Pediatrica 

(AIEOP) (52 ETP and 42 non-ETP) for the following 42 genes: BCL11B, BRAF, CBL, CTCF, 

DCLRE1C, DNM2, ECT2L, EED, EP300, ETV6, EZH2, FBXW7, FLT3, GATA1, GATA2, 
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GATA3, HISTH1B, HNRPA1, HNRPR, IFNAR1, IFNAR2, IGF1R, IKZF1, IL7R, KRAS, JAK1, 

JAK2, JAK3, KDM5, NF1, NOTCH1, NRAS, PHF6, PTEN, PTPN11, RELN, RUNX1, SETD2, 

SH2B3, SMARCA4, SUZ12 and TYK2. The screening was done using PCR-based 3730 

sequencing by WU and by Beckman Coulter Genomics as previously described44,60. PCR primer 

sequences are available upon request. Putative SNVs and indel variants were detected by 

SNPdetector61 and PolyScan62. Novel, non-silent sequence mutations were selected for 

validation by sequencing both the tumour and the matching normal samples.  

Detection of inherited sequence variations 
Novel, non-silent coding germline variants were identified by the following process using the 

variation detection output generated by Bambino with a high quality threshold for pooled tumour 

and matching normal BAM files. (1) All variants with a non-reference allele covered in both 

forward and reverse orientation and with a non-reference allele fraction (NAF) exceeding 0.30 

for high-quality normal reads or NAF exceeding 0.15 for all normal reads were retained as high-

confidence candidate germline variants. (2) High-confidence germline variants that were not 

found in dbSNP were retained as novel variants. In addition, variants in dbSNP that were also 

present in OMIM or COSMIC63 were retained as these variants are likely to be of biologic 

importance. (3) Novel variants that were found in coding regions of RefSeq were annotated and 

non-silent variants (missense, splice and nonsense) were retained. (4) Variants located in 

polymers (n>=8) or microsatellite repeats (repeat size ranging 2-5 and repeat unit >=6) were 

removed due to high rate of sequencing error. (5) Variants that show a drop in quality score 

compared with the flanking bases were removed. (6) Non-specific variants were identified by 

performing a BLAT search using the reads harbouring the non-reference against the reference 

human genome. Variants with no unique read support were considered to be caused by non-

specific mapping and removed. (7) All reads were realigned to +/-100bp of the variant sites by 

SIM, which implements the Smith-Waterman algorithm. Variant detection was rerun using the 

alignments generated by SIM. This removed false positive variants caused by BWA mis-

alignment. (8) Variants that were located in a SNP cluster (e.g. >=3 novel variants) were 

removed as they are likely to be unspecified repeats in human based on our evaluation of false 

variants found in male X chromosomes. (9) Variants detected in segmental duplication and that 

had abnormal coverage compared with the genome-wide average (FDR q-val <= 0.05) were 

removed.  
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Identification of structural variations using NGS data 
Structural variations including inter-chromosomal translocations (CTX), intra-chromosomal 

translocations (ITX), inversions (INV), deletions (DEL), and insertions (INS) were analysed by 

CREST (Clipping REveals STructure), a novel algorithm that uses the soft-clipped reads to 

directly map the breakpoints of structural variations5. All samples were analysed using the 

paired analysis module, which filters SVs present in the matching normal sample. Two 

additional methods, BreakDancer64 and Geometric Analysis of Structural Variants (GASV)65, 

that use discordant paired-end reads to map structural variations were also run with 

modifications (described below) for comparison purposes.  
BreakDancer was run using the default parameters. For each predicted SV, we first 

checked whether discordant mapping of paired-end reads was caused by repetitive regions in 

the human genome. All supporting reads were extracted in fastq format and each read re-

mapped to the reference genome using BLAT. If a read-pair was mapped within the library 

insert range (mean insert size +/- 3 standard deviation), it was not considered to be a supporting 

read pair for the SV. All SVs with ≥3 supporting read pairs and a BreakDancer score ≥30 after 

the re-mapping were retained and the tumour-only SVs were considered to be putative somatic 

SVs. The putative somatic SVs were then subjected to an assembly process to evaluate their 

validity. All reads mapped within 1kb of the two breakpoints along with their unmapped mate 

pairs are extracted using the mapping information based on the bam files. We then ran phrap66 

to assemble the extracted sequences into contigs using base call, quality value and paired-end 

sequence information. Assembly was carried out in two iterations because the first iteration 

usually generated contigs that represent the wild-type allele unless the alternative allele was a 

homozygous genomic change. The second iteration began with reads not assembled in the first 

iteration, which generated contigs for the heterozygous alternative allele. All contigs were 

mapped to the reference human genome using BLAT. If a contig had two distinct parts (i.e. two 

regions with minimum overlapping) mapped to two different genomic regions with high similarity 

(≥97%) and good read-length (≥30bp), it was considered a cross-junction contig. Once such a 

contig is identified and there is no germline reads mapped to the breakpoints identified in the 

BLAT alignment, the SV is considered an assembly-validated somatic SV. 

GASV (version 1.4) was run using the default parameters. Paired tumour/normal bam 

files were used to identify putative somatic SVs.  
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Experimental validation of structural variations 
All structural variations were validated by Sanger sequencing. Oligonucleotide primers for 

genomic PCR were designed for the 1000bp flanking sequences of each SV using Primer 3 (ref. 
67). In two cases, a second iteration of primer design was carried out because there were 

multiple SVs detected within 1kb to account for the presence of a second SV in the flanking 

region.  

Annotation of structural variations 
SVs with at least one breakpoint in a gene coding region were further analysed for their validity 

to encode a fusion protein. Each predicted fusion transcript was defined as a list of exons. 

There were “normal” exons which correspond exactly to existing annotated exons, and there 

were fused exons which are produced by structural variation events with both breakpoints in 

exons. The sequence of the fused exons is determined using the assembly of reads that cross 

the breakpoints and the annotation of the exons. For each exon in the list, we calculated exon 

length, using the annotation for normal exons and sequence length for fused exons. 

Furthermore, we calculated the number of bases that each exon contributes to the CDS based 

on the annotated CDS start and end positions. The number of “CDS bases” was 0 for exons 

lying outside of the CDS start and stop, the full exon length for exons wholly contained between 

start and stop, and a portion of the exon length for those containing CDS start or stop. If the 

sum of the number of CDS bases is a multiple of 3, then the CDS was considered to be in-

frame. If not, then it was considered out-of-frame. 

Experimental validation of predicted in-frame fusion transcripts 
Fusion transcripts were validated by RT-PCR and direct Sanger sequencing of purified PCR 

products as previously described23. Primer sequences for RT-PCR are shown in Supplementary 

Table 5. 

Identification of copy number variations (CNVs) in whole genome sequencing data 
CNVs were analysed independently by WU and SJCRH using different approaches. All CNVs 

that match T-cell receptors at the following loci were filtered from further analysis: 2p11.2 

(IGK@), 7p14.1 (TRG@), 7q34 (TRB@), 14q11.2 (TRA@) and14q32.33 (IGH@). The final 

results combined the output generated from the two institutes. 

At WU, an in-house developed tool, cnvHMM (unpublished), was used to detect copy 

number alterations genome wide for individual samples. The methods and rational behind this 

tool is described in Ding et al.44. The only difference from what was previously described is the 
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window size used (1000 base-pairs) and the log likelihood ratio (LLR) cutoff used (LLR>= 100). 

For groups of samples, we used CMDS to identify recurrent DNA copy number changes68.  

At SJCRH, CNVs were identified by evaluating the number of sequence reads aligned at 

each base using the novel algorithm CONSERTING (COpy Number SEgmentation by 

Regression Tree In Next-Gen sequencing, manuscript in preparation), which employs a three-

step analysis. First, the genome was divided into fixed-base windows and the average coverage 

depth was calculated for each window. The window size was set to be 100bp in this study. The 

relative coverage depth was defined as the ratio between the average window coverage and the 

median of the average window coverage on a set of reference chromosomes that have no gross 

CNVs based on chromosome-by-chromosome paired tumour/normal coverage analysis. The 

difference of the relative coverage depth between the tumour sample and its matching normal 

sample was corrected for the GC content of the window and used as the signal for calling 

CNVs. Second, each chromosome was segmented using a recursive partitioning method on the 

difference of the tumour versus normal signal. Third, the segments were merged to ensure a 

genome-wide error rate not greater than 0.05. CNVs were manually reviewed by comparison 

with Affymetrix SNP 6.0 or 500K CNV results and structural variation breakpoints identified by 

CREST. Missing breakpoints that define the CNV boundaries were manually mapped at base-

pair resolution by visual inspection of the soft-clipped reads in the immediate neighbourhood of 

the predicted CNV boundaries. All analyses were performed in R69 (64-bit version 2.9.1, with 

basic and tree package, version 1.0-28).  

In addition to CONSERTING, all samples were analysed by CNV-Seq70 at SJCRH for 

the purposes of comparison. For CNV-Seq, uniquely mapped reads with mapping quality >= 35 

were used as the input to calculate the theoretical minimum window size according to a preset P 

threshold of 0.001 and log2 copy number ratio of 0.5 for each pair of tumour and normal 

samples. For each window, the number of read count was replaced with the mean coverage of 

the sample if it is less than that number before global normalisation and calculations of the log2 

ratio of tumour vs. normal and the P value. CBS71,72 was used to segment the log2 ratio values 

per chromosome and to identify candidate gain and loss regions using the following cut-offs: 

abs(seg.mean)>=0.5; >=8 markers per segment; and median CNV-seq P value for a segment 

<= 0.001. Finally, the filtered segments were merged where the inter-segment distance is less 

than 500kb and copy number difference < 0.25.  

One of the samples, SJTALL007, was also analysed by SegSeq73 using the default 

parameters and with the local window size set to 400. The input for SegSeq was generated by 

recording the genomic positions of the first base of each read in tumour and the normal bam 
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files. CNVs less than 75 kb or with copy number ratio (tumour/normal) change less than 20% 

were filtered. For SJTALL007, the initial output from SegSeq includes a total of 98,878 CNV 

segments while the filtered result has 2,848. Only 18 CNV segments were identified by SNP 

array analysis of in this data set.  

Identification of loss-of-heterozygosity 
Regions of loss-of-heterozygosity (LOH) were identified from the high quality single nucleotide 

variants (SNVs). First, heterozygous SNVs with mutant allele frequency between 40-60% in the 

germline sample were used to estimate the LOH signal. For each heterozygous SNV, the LOH 

signal was calculated as the absolute mutant allele frequency difference between the tumour 

sample and the germline sample. Second, chromosomes were segmented and segments were 

merged on the LOH signal by the methods described in the Identification of copy number 

variations section. 

Assessment of Telomere Length 
The total number of telomeric reads were assessed by searching the next generation 

sequencing .bam file for reads containing the repetitive telomeric motif (TTAGGG)4 (ref. 74).  The 

total numbers of reads were then normalised to the average genomic coverage.   

SIFT/PolyPhen2 Analysis 
Predicting deleterious effects of amino acid substitutions (AAS) on protein function is valuable 

for variant prioritization. Several open source programs are available for amino acid substitution 

effect prediction. SIFT75 and PolyPhen2 (ref. 76) were selected due to their availability for 

download to perform analyses locally. The SIFT pipeline was modified to query a local NR 

database. During preliminary analyses, SIFT was found to be highly dependent on the 

sequence database selected. The NR (March 2010) database was chosen for SIFT analysis 

because results using NR corresponded more closely with results from the online version of 

PolyPhen2. UNIREF100 (ref. 77) was used for PolyPhen2 sequence queries.  

RNA-Seq analysis 
All Illumina paired-end reads were aligned to the following 4 database files using BWA (0.5.5) 

aligner: (1) human NCBI Build 36 reference sequence; (2) RefSeq; (3) Sequence file that 

represents all possible combinations of non-sequential pairs of RefSeq exons; (4) AceView flat 

file downloaded from UCSC which represents transcripts constructed from human EST. The 

mapping results from (2) to (4) were mapped to the human reference genome coordinates. The 

final BAM file was constructed by selecting the best alignment in the four databases. Coverage, 
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SNV, indel and SV analyses were carried out by SJCHR using the methods described above. 

One novel indel in EVX1 was detected by RNA-Seq, but not whole genome DNA sequencing 

because the site has low sequence coverage in whole-genome sequencing. Subsequent 

validation by Sanger sequencing in both tumour and normal germline DNA showed it to be a 

germline variant.  

Pathway analysis - enrichment analysis of lesion data by a genomic random interval 

model (GRIN) 
A genomic random interval (GRIN) model was used to evaluate the statistical significance of the 

number of subjects the number of times a somatic genomic abnormality (copy number 

alteration, indel, mutation, or structural alteration) overlapped a gene belonging to a pre-defined 

gene-set. Under the null hypothesis, the GRIN model assumes that a genomic abnormality of 

length L base pairs occurs randomly along any interval locus along a chromosome of length K 

base pairs from (1,L) to (K-L+1,K) with equal probability. Under this model, the probability that 

an abnormality of length L base pairs overlaps a gene beginning at position A and ending at 

position B on a chromosome of length K is  

P(L,K,A,B) = (min(K-L+1,B)-max(0,A-L))/(K-L+1). 

This probability represents the proportion of possible starting loci for an interval of length 

L on a chromosome of length K such that the interval overlaps the gene interval (A,B). An 

example is shown in Supplementary Figure 1. Note that this probability increases in lesion size 

L and gene size B-A and accounts for gene location (A,B) and chromosome size K.  In a similar 

way, we derive the null probability that a random interval of length L overlaps g = 0,1,2,…,G of a 

set of G genes with loci (A1,B1), (A2,B2), …, (AG,BG) by determining the proportion of possible 

start loci for a random interval of length L that overlap g=0,1,2,…,G genes.  

For a set of lesions on the same chromosome, GRIN derives the probability that each 

lesion impacts a given number of genes belonging to the pre-defined gene-set as described 

above. The lesions are assumed to be independent and the probability distribution for the total 

number of gene-lesion overlap events on a chromosome is the convolution of the individual 

lesions’ probability distributions. The null distribution for the total number of gene-lesion 

overlaps for a subject is the convolution of the individual chromosomes’ distributions. The null 

distribution for the number of lesion-gene overlaps across a cohort is the convolution of the 

individuals’ distributions and the null distribution for the number of subjects with at least one 
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lesion-gene overlap is the convolution of the individual-specific Bernoulli distributions with 

success probability defined as observing at least one lesion-gene overlap.  

In most cases, the null distributions described above are computed exactly. In some 

complex cases, the distributions are estimated by Monte Carlo simulation of the loci of the 

lesions. One-sided hypothesis tests are performed by computing the probability that the number 

of lesion-gene overlaps is greater than or equal to the observed number. Similarly, a one-sided 

test is performed for the number of subjects in a cohort with at least one lesion-gene overlap.  

Exome capture and sequencing 
Tumour and normal DNA for samples SJTALL169, 192 and 208 was subjected to exome 

capture using the SureSelect Human All Exon 50Mb XT kit protocol version 1.1 according to the 

manufacturer’s protocol (Agilent, Santa Clara, CA). These samples were selected for 

sequencing based on the criteria of being (1) ETP T-ALL, and (2) lacking lesions targeting 

lymphoid development and/or cytokine receptor / Ras signalling following the first phase of 

recurrence mutation testing of 23 genes (BCL11B, BRAF, DCLRE1C, DNM2, ECT2L, EP300, 

FBXW7, FLT3, GATA3, HISTH1B, HNRPA1, HNRPR, IL7R, KRAS, JAK1, JAK3, NOTCH1, 

NRAS, PHF6, PTEN, RELN, RUNX1 and SMARCA).  

Briefly, 3 micrograms of DNA were sheared by acoustic fragmentation using a Covaris 

E210 and purified using AMPure XP beads (Beckman Coulter Genomics). The quality of the 

fragmentation and purification was assessed using the Agilent 2100 Bioanalyzer. The fragment 

ends were repaired, “A” bases were added to the 3’ end of the DNA fragments and an indexing-

specific paired-end adapter was ligated to the fragments. The adapter-ligated library was 

amplified using 6 cycles of PCR and the quality, quantity and size distribution of the PCR 

products were assessed using the Agilent 2100 Bioanalyzer. 500 nanograms of the sample 

library were hybridised with the biotinylated RNA library for 24 hours at 65ºC. Bound DNA was 

purified using streptavidin coated magnetic beads (Life Technologies) and subjected to 

stringency washes. The captured library was amplified and index tag #3 was added using 12 

cycles of PCR. The quality, quantity and size range of the library was assessed using the 

Agilent 2100 Bioanalyzer. The resulting libraries were quantitated with the QPCR NGS library 

quantification kit (Agilent Technologies) using a PhiX control library (Illumina) as an external 

standard. Clustered flow cells were generated on a Cbot (Illumina) using the TruSeq PE Cluster 

Kit version 2 (Illumina) with 6 picomoles of exon enriched library. The flow cells were loaded 

onto an Illumina GAIIX for a paired end 2x101 cycle sequencing run using SCS version 2.8 

software and SBS version 5 reagents. Three lanes were sequenced for each of the diagnosis 
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and matched remission sample. The resulting base call files were converted to the FASTQ 

format using CASAVA version 1.8.1. SNVs, indels and SVs were detected according to the 

methods described for the analysis of WGS data by SJCRH as described above. Coverage 

metrics are shown in Supplementary Table 8. 

Structural modelling of EZH2 mutations 
Protein structures were obtained from the Protein Databank (PDB) (www.pdb.org) (July 2011 

release)78. Limited structural information is available for the EZH2 protein and a homology 

model was generated based on previous studies34. Briefly, amongst protein sequences in the 

PDB, the sequence of EZH2 showed greatest similarity to that of the SET domain of MLL1 (36% 

identity between residues 599-732 (isoform A) of EZH2 and residues 3816-3950 of MLL1) 

(Supplementary Figure 17). The noted domain of EZH2 was threaded into the structure of the 

MLL1 SET domain (PDB: 2W5Z)79 using the automatic method in Swiss-Model to generate a 

homology model80. Also included in the model are S-Adenosylhomocysteine, the product of 

methyl transfer from S-Adenosylmethionine, and a dimethylated lysine substrate peptide, based 

upon their positions in the MLL1 SET domain structure. The model was judged of suitable 

quality based on the following criteria: acceptable Ramachandran angles, no unfavorable steric 

clashes, and overall structural agreement with experimentally determined SET domains (PDB: 

3OPE81, 3K5K82, 3HNA83, and 2W5Z79). Furthermore, conserved SET domain residues are 

located in similar structural positions in the homology model and the reference MLL1 SET 

domain structure79. Residues (atoms) defined as interacting are those within 4 Å of one another. 

Mutations and graphics were generated using PyMOL84 and Espript85.  

Gene expression profiling 
To examine the level of expression of genes targeted by recurring sequence mutation, we 

examined microarray-based gene expression profiling data of B-progenitor and T-lineage ALL 

and normal haemopoietic cell samples generated using Affymetrix U133A microarrays 

(Affymetrix, Santa Clara, CA) according to the manufacturer’s instructions, with data processed 

using Microarray Suite 5.0 (Affymetrix) as previously described86. This cohort comprised 575 

samples including CD10+CD19+ normal B cells (N=4); CD34+ bone marrow cells (N=4); ETV6-

RUNX1 (N=99); hyperdiploid ALL with greater than 50 chromosomes (N=116); hypodiploid 

(N=23); B-ALL with normal or miscellaneous karyotype (N=153); MLL-rearranged ALL (N=30); 

BCR-ABL1 positive ALL (N=23); T-lineage ALL (N=83); and TCF3-PBX1 positive ALL (N=40)( 

NCBI gene expression omnibus (http://www.ncbi.nlm.nih.gov/geo/) accession GSE33315).  
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 To examine pathway dysregulation in ETP ALL, we performed gene expression profiling 

of 12 ETP and 40 non-ETP T-lineage ALL samples using Affymetrix GeneChip HT HG-U133+ 

PM arrays (Supplementary Table 6; GEO accession GSE28703). Statistical analyses were 

performed using R69, Bioconductor version 2.6 (ref. 87) and Spotfire Decision Site 9.1.1 (Tibco, 

Somerville, MA). For HT U133+ arrays, all samples were normalised by the RMA algorithm. 

Probesets that did not pass the background signal threshold (twice the average signal on the 

control probes with different GC content) across all samples were excluded for differential 

expression analysis, which was performed using limma88 and estimation of false discovery 

rate89. For Affymetrix U133A arrays (GEO accession GSE28497), all samples were normalised 

to target intensity 500 in the MAS 5 algorithm. Probe sets with absent calls for all samples were 

excluded. Gene Set Enrichment Analysis (GSEA-P90,91) and the Database for Annotation, 

Visualization and Integrated Discovery (DAVID) v6.7 (refs. 92,93) were used to assess pathway 

enrichment. For GSEA, we used gene sets obtained from the Molecular Signatures Database, 

and gene sets of normal human haemopoietic progenitors, leukaemia stem cells and B-

progenitor ALL. These included the normal human haemopoietic stem cell (Lin- CD34+ CD38- 

CD45RA- CD90+ CD49f+), granulocyte macrophage precursor (GMP; Lin- CD34+ CD38+ CD7- 

CD10- CD135+ CD45RA+) and human early T cell precursor (CD34+ CD1a- cells isolated from 

neonatal thymi)(refs. 38,39,94 and J.E.D. et al., unpublished data). The signature of leukaemia 

stem cells in acute myeloid leukaemia was obtained from Eppert et al..40 The gene expression 

profile of high-risk B-progenitor childhood ALL cases predicted to be at high risk of relapse was 

obtained from Mullighan et al..41 

Reconstruction of the transcriptional network of ETP ALL 
We used the ARACNE algorithm37,95 to reconstruct gene networks that are differentially 

expressed in ETP versus non-ETP T-ALL tumours. Expression profiles of 40 non-ETP and 12 

ETP tumour samples were characterized using Affymetrix HU133 PM Plus 2.0 microarray and 

normalised using the RMA algorithm. A total of 12,789 probe sets in 7,251 genes have 

differential expression in these two subgroups (P<0.05 in limma analysis). Using these probe 

sets, a consensus bootstrapping network was built based on 100 bootstrap step with P<1e-5 

and DPI tolerance 0.1. Transcription networks (e.g. the regulons) were inferred by using only 

genes annotated as transcription factors with a more stringent significance threshold (i.e. P<1e-

7). For each regulon, a principal component analysis was run using a data matrix of (m samples 

x n probe sets). Spearman rank correlation between the phenotype (ETP versus non-ETP) and 
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the first principal component on the sample axis (m values) was calculated to assess the 

significance of association between each regulon and ETP/non-ETP status.  

Transformation assays of IL7R mutants in Ba/F3 cells 
The IL7R LL242-243>DTRVYNSICL, SLILIVPCACELinsA254, IL241-242TC, I241>ITLYCKT, 

LL242-243>SPCI, V253>GFSV and GCinsL243 mutations were introduced into MSCV-mIL7R-

IRES-GFP and MSCV-mIL7R-IRES-hCD4 retroviral plasmids using the Quikchange II XL kit 

(Stratagene, Santa Clara, CA) as previously described96. Production of ecotropic retroviral 

supernatants, transduction of murine haemopoietic Ba/F3 cells, cytokine withdrawal and 

proliferation assays were performed as previously described96. Briefly, vectors were packaged 

into replication-incompetent, ecotropic retroviral particles by the triple plasmid (pMD gagpol and 

pCAG4-Eco) system. Murine pro-B Ba/F3 and P2RY8-CRLF2-GFP-expressing Ba/F3 cells23 

were transduced with wild-type or mutant Il7r retroviral supernatants. Transduced cells were 

maintained in RPMI-1640 with 10% FCS, penicillin-streptomycin, and L-glutamine. To assess 

growth factor independence, cells were washed 3 times and were plated at 500,000 cells per 

millilitre in media without cytokine. Growth was monitored daily by using a ViCell cell counter 

(Beckman Coulter, Danvers, MA). 

Transformation assays of IL7R mutants in the MOHITO T-cell line 
The mouse cytokine dependent leukaemic T-cell line MOHITO was recently established from a 

BALB/c mouse, which had spontaneously developed a T-ALL like disease25. Cells were cultured 

in RPMI-1640 (Life Technologies) supplemented with 20% fetal calf serum containing 5 ng/ml 

IL-2 and 10 ng/ml IL-7 (Peprotech).  

Viral production and retroviral infection of MOHITO cells was performed as described 

previously with minor modifications25,97. Briefly, non-tissue culture treated 6-well plates were 

coated with RetroNectin solution overnight in the fridge (Takara Bio Inc.) and blocked with 0.5% 

FBS in PBS for 30 minutes before use. Viral supernatant was pre-loaded onto coated plates by 

centrifugation (1000 g, 120 minutes, 30°C). After centrifugation, viral supernatant was removed, 

plates were washed with 2 ml PBS and cells were added at a density of 0.5x106 cells/ml. 

Retroviral transduction was achieved using standard spin-infection procedure (2000g, 60 

minutes, 30°C). Cells were placed in an incubator for 72 hours to recover before determination 

of transduction efficiency and performance of subsequent experiments. Cells were split 24 

hours before transduction was performed to achieve exponential growth. 

 For transformation assays, MOHITO cells were washed twice in PBS to ensure complete 

removal of cytokines. After the last wash step cells were resuspended in cytokine-free culture 
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media at a cell density of 0.3 x 106 cells/ml. 200 μl of prepared cell suspensions were seeded 

out in 96-well plates (n=3). The number of GFP-positive cells was determined at day of seed-out 

and at indicated time points afterwards by flow cytometry. Ectopic expression of BCR-ABL1 

transforms MOHITO cells rapidly to cytokine independence and was included as a positive 

control25. Western blotting of MOHITO cells expressing Il7r mutant alleles was performed using 

30μg of whole cell lysate prepared using NuPAGE LDS buffer (Life) electrophoresed through 4-

12% NuPAGE Bis-TRIS gels that after transfer were probed with mouse Il7ra (CD127) antibody 

(R&D Systems) and beta-actin (AC-15, Sigma Aldrich) under reducing (dithiothreitol or beta-

mercaptoethanol) and non-reducing conditions. 

Phosphoflow analysis of MOHITO cells 
For analysis of phosphosignalling, MOHITO cells were starved overnight (RPMI/0.5% BSA) or 

left in serum, treated with or without 3 μM JAK inhibitor 1 (EMD Biosciences) for 1 hr. MIG and 

WT-Il7r cells were stimulated with recombinant IL-7 at 10ng/ml for 15 minutes before fixation 

and permeabilisation. Cells were stained with anti-pSTAT5 (Y694; Cell Signaling Technology) 

and Alexa-Fluor 647 conjugated anti-rabbit IgG secondary antibody (Life Technologies). The 

samples were collected on a FACSCalibur (BD Biosciences) using Cell Quest software (BD 

Biosciences), and analysed with FlowJo (Tree Star).  

Lineage-negative enrichment and colony assays of murine haemopoietic cells 
Experiments were approved by the St Jude Children’s Research Hospital Institutional Animal 

Care and Use Committee. Bone marrow mononuclear cells (BMMC) were harvested from 8-wk-

old wild-type (WT) or Arf-/- C57BL/6 mice and labelled with biotin-conjugated lineage antibodies 

(Ly-6G, CD11b, CD45R, CD5, TER-119; PharMingen), followed by incubation with streptavidin-

coated magnetic beads (Dynabeads M-280 Streptavidin, Dynal). Lineage-negative cells were 

purified by magnetic separation and cultured for 48 hr in IMDM/20% FCS supplemented with 

penicillin-streptomycin, L-glutamine, recombinant mouse IL-3 (10 ng/ml), IL-6 (20 ng/ml), IL-7 

(10ng/ml), Flt-3 ligand (40ng/ml) and stem cell factor (SCF; 50 ng/ml) (Peprotech). Cells were 

infected on RetroNectin-coated plates for 48 hr (Takara Bio Inc.) with MSCV-IRES-GFP 

retrovirus expressing WT or mutant Il7r (IL241-242TC, LL242-243>SPCI, GCinsL243, 

V253>GFSV). Transduced GFP+ cells were obtained by fluorescence-activated cell sorting. For 

clonogenic assays, 10,000 cells were plated in duplicate in Methocult M3231 (Stem Cell 

Technologies, Inc., Vancouver, BC, Canada) with the appropriate factors (SCF, Flt-3 ligand, IL-

7) and colonies were scored 7 days later. For re-plating, 10,000 cells were cultured in identical 

conditions, with colonies counted on day 12.  
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Phosphoflow analysis of primary human T-ALL leukaemic cells 
Patient T-ALL leukaemia samples from the Children’s Oncology Group tissue bank were 

thawed, washed, and adjusted to 2x106 cells/ml in serum free media containing 0.5% BSA. 

JURKAT, a non-ETP T-cell ALL sample, and normal human thymocytes (obtained with informed 

consent from children undergoing cardiac surgery) were included as controls. After resting cells 

for one hour at 37°C, 0.5x106 cells were plated and stimulated with 200 μM pervanadate for 20 

minutes. Cells were subsequently fixed, permeabilised, and stained with antibodies specific for 

CD3-PECy7 (BD), CD7-PECy5 (eBioscience), Caspase-3-V450 (BD), phospho-Stat5-APC 

(BD), phospho-AKT-PE (Cell Signaling), phospho-S6-APC (BD) and phospho-ERK-PE (BD) as 

previously described98. Samples were analysed on an LSRII flow cytometer (BD Biosciences). 

Data were analysed using Cytobank (Stanford University) and FlowJo 8.8.2 (Tree Star) 

software. 

Analysis of genetic alterations and outcome 
Outcome data were available for 102 of the 106 patients examined. Associations between 

genetic alterations and treatment outcome (induction failure, event free survival and relapse) 

were performed as previously described41,99-102. Analyses were performed using SAS (SAS 

v9.1.2, SAS Institute, Cary, NC) and SPLUS (SPLUS 7.0, Insightful Corp., Palo Alto, CA) and 

StatXact (v 8.0.0, Cytel Inc, Cambridge, MA). Univariable and multivariable analyses 

considering genetic lesions, ETP status and age were performed. Presentation peripheral blood 

leukocyte count and minimal residual disease (MRD) were not considered as these data were 

not available for several cohorts. Genetic variables examined include all recurring sequence and 

structural genetic alterations studied in T-ALL tabulated in Supplementary Table 18.  
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