
  

Supplementary Methods 
1. Cell line selection and annotation 

After curating a list of 1461 cancer cell lines available from public repositories, 
we targeted 1021 cell lines for possible acquisition. A total of 947 human cancer cell 
lines were obtained, cultured and processed from commercial vendors in the U.S., 
Germany, the U.K., Japan, Italy, and South Korea. These include:  

ATCC (http://www.atcc.org/) 
DSMZ (http://www.dsmz.de/),  
ECACC (http://www.hpacultures.org.uk/collections/ecacc.jsp) 
HSRRB (http://www.jhsf.or.jp/English/hsrrb.html) 
RIKEN (http://www.brc.riken.jp/lab/cell/english/) 
ICLC (http://www.iclc.it/Listanuova.html) 
KCLB (http://cellbank.snu.ac.kr/english/index.php)  

Vendors are listed in Supplementary Table 1. A small number of lines were 
obtained from academic labs. The final cell line collection spans 36 cancer types. 
Representation of cell lines for each cancer type was mainly driven by cancer mortality in 
the United States, as a surrogate of unmet medical need, as well as availability. Briefly, 
for cancer types with >7,000 deaths/year, a maximum of 60 cell lines were obtained; for 
the other types, the minimum number of cell lines per cancer type was set to 15 whenever 
possible.  

We created an annotation pipeline that would take cell line names as input to 
generate “COSMIC-compatible” anatomic and histologic annotations for the collection 
(http://www.sanger.ac.uk/genetics/CGP/cosmic/data/cosmic_classification_alias_list_27_
01_11.xls). In some cases the COSMIC classification was known, but in others the 
annotation was inferred by keywords derived from scientific or commercial literature. If 
no prior internal consensus decision on the annotation could be gleaned, then the 
CosmicMint (ftp://ftp.sanger.ac.uk/pub/CGP/cosmic/cell_line_export/) was queried to 
find a putative assignment. If an assignment could not be pulled from the CosmicMint, 
then keywords for primary anatomic site and histology were used to infer the most likely 
COSMIC-compatible annotation. Gender, race, presence of metastases, and anatomic site 
from which the tumor cells were obtained were also assigned based on literature or 
vendor information when available. In cases of CosmicMint-assigned or keyword-
inferred annotations, the results were manually reviewed by internal pathologists and 
biologists. 

Additional steps were taken to ensure that cell line names where consistent in 
instances where syntax or punctuation differences occurred between names or aliases. 
Here, we verified that the “punctuation-free” name and primary site combination was 
uniquely and correctly identified. Consider the “T.T” and “TT” cell lines as an example: 
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their “clean” primary site disambiguated names became TT_OESOPHAGUS and 
TT_THYROID respectively. 

 
Multiple quality control steps were incorporated at each stage of cell culture and 

data production to ensure consistency of all datasets. We confirmed the identity of the 
cell lines at multiple steps using SNP fingerprinting. The possibility of cross-
contamination was ruled out by comparing SNP genotypes derived from the SNP arrays 
generated by the CCLE effort as well as external cell line characterization studies (see 
“Genomic characterization“ and “Cell lines identity validation by SNP genotyping”). 

 

2. DNA and RNA extraction 

Cells were cultured according to vendors’ instructions for propagation and 
preservation. DNA was isolated from frozen cell pellets that contained 1-10 x 106 cells 
(average cell count ~4.5 million cells) using the Qiagen Gentra Puregene method. 
Briefly, Cell Lysis and RNAase A solutions were added to each frozen pellet and 
vortexed, and samples were incubated until fully homogenized. Protein Precipitation 
solution was added and samples were vortexed vigorously for 20 seconds. Samples were 
centrifuged at 3000 g for 15 minutes, and the supernatant was poured into a new tube. 1 
mL of 100% isopropanol was added and mixed by inversion to precipitate the DNA. 
Samples were centrifuged at 3000 g for 5 minutes to pellet the DNA. The supernatant 
was discarded and the pellet was dried for 1 minute. Next, 70% ethanol was added (1 
mL) and the sample was pelleted by centrifugation at 3000 g for 2 minutes. The 
supernatant was discarded and pellet was allowed to dry for 10 minutes before hydration 
with 100-200 µL of DNA Hydration solution (Qiagen). DNA pellets were rehydrated for 
1 hour at 65 oC or overnight at room temperature and stored at 4 oC. For long-term 
storage, all samples were stored at -20 oC. DNA samples were quantified using Picogreen 
(ThermoScientific Varioskan Flash instrument). Additionally an aliquot of each sample 
was also run on a quality gel (Invitrogen 1% Agarose E-gel) to assess the quality of the 
material. 

RNA was isolated from frozen cell pellets containing 1-10 x 106 cells using Trizol 
(Invitrogen). Briefly, 1 mL of Trizol was added to each pellet and the pellet was 
resuspended by pipetting. The lysate suspension was transferred to a 1.5 mL Eppendorf 
tube and incubated at room temperature for 5 minutes. Next, chloroform (200 µL) was 
added to each sample and mixed by pipetting. Samples were centrifuged at 13,000 rpm 
for 10 minutes at 4 oC. The aqueous (upper) phase was transferred to a fresh 1.5 mL 
Eppendorf tube, and isopropanol (500 µL) was added. Samples were mixed and 
incubated at room temperature for 10 minutes, followed by centrifugation at 13,000 rpm 
for 10 minutes at 4 oC. The supernatant was discarded. The remaining RNA pellet was 
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washed with 75% ethanol and centrifuged at 5,000 rpm for 5 minutes at 4 oC. Ethanol 
was removed carefully so as not to dislodge the pellet, and the RNA pellets were then 
allowed to dry for 10 minutes (room air). RNA pellets were rehydrated in 60 µL of DEPC 
treated water. Samples were incubated at 5 minutes at 55 oC and stored at -80 oC. RNA 
samples were quantified using both the Nanodrop 8000 spectrophotometer 
(ThermoScientific) and via Agilent 2100 Bioanalyzer. Only samples with a RIN of 7.0 or 
higher were considered passing. Samples that failed quality control were re-isolated from 
a second frozen pellet. 

 

3. Genomic characterization 

SNP Arrays:  

Cell line genomic DNA was hybridized to the genome-wide human Affymetrix 
SNP Array 6.0 according to the manufacturer’s instructions and analyzed as described 
previously1. Briefly, DNA was digested with NspI and StyI enzymes (New England 
Biolabs), ligated to the respective Affymetrix adapters using T4 DNA ligase (New 
England Biolabs), amplified (Clontech), purified using magnetic beads (Agencourt), 
labeled, fragmented, and hybridized to the arrays. Following hybridization, the arrays 
were washed and stained with streptavidin-phycoerythrin (Invitrogen). Array preparation 
and scanning was performed by the Genetics Analysis Platform (GAP) at the Broad 
Institute. 

The raw CEL files were normalized to copy number estimates using a 
GenePattern pipeline, as described previously1 and hg18 Affymetrix probe annotations. 
Normalized copy number estimates (log2 ratios) were segmented using the Circular 
Binary Segmentation (CBS) algorithm, followed by median centering of the segment 
values to a value of zero in each sample. Next, quality checking of each array was 
performed, including visual inspection of the array pseudo-images, probe-to-probe noise 
variation between copy-number values, confidence levels of Birdseed2 genotyping calls, 
and appropriate segmentation of the copy-number profiles. Finally, the Genomic 
Identification of Significant Targets in Cancer (GISTIC) algorithm3 was used to identify 
focal regions of copy number alterations in individual samples. A gene-level copy-
number was also generated, defined as the maximum absolute segmented value between 
the gene’s genomic coordinates, and calculated for all genes and miRNA using the hg18 
coordinates provided by the refFlat and wgRna databases from UCSC Genome Browser 
(http://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/). 

Expression arrays: 

mRNA expression data was obtained using Affymetrix Human Genome U133 
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Plus 2.0 arrays according to the manufacturer’s instructions. Array preparation and 
scanning was performed by the Genomics Analysis Platform at the Broad Institute. Gene-
centric expression values were obtained using updated Affymetrix probe set definition 
files (CDF files) from Brainarray4; and background correction was accomplished using 
RMA (Robust Multichip Average)5 and quantile normalization6. Quality assessment was 
performed to identify low performing microarrays, using the R package affyPLM7. 
Outliers in the distribution of NUSE, RLE, background signal and percentage of 
“present” genes were flagged to be re-processed. In addition, all microarray 
pseudoimages were checked visually. 

Mass spectrometric mutation detection: 

Mutation data was generated for specific cancer gene loci using the mass 
spectrometric genotyping based OncoMap platform, and data analysis was performed as 
previously described8. In brief, we used a panel of 456 genotyping assays representing 
392 mutations (380 unique amino-acid substitutions) in 33 genes (Supplementary Table 
2). In a first phase, we identified candidate mutations in a multiplexed fashion, using 19 
pools of 24 assays, and with relaxed detection thresholds. All positive mutation calls 
were subsequently validated using non-multiplexed assays and hME chemistry8 
(Sequenom). 

Solution phase hybrid capture and massively parallel sequencing: 

Sequencing data generation: 1,651 protein-coding genes were selected for 
sequencing based on their known or potential involvement in tumor biology, according to 
one or more of the following criteria: (1) genes identified as somatically altered in cancer 
based on (A) occurrence in at least 4 instances, collectively, from recently published 
literature1,9-13, (B) occurrence in 2 – 3 instances from the aforementioned studies and 
also present in a significantly amplified or deleted focal peak in primary tumors14 or cell 
lines (this study), (C) membership in the Cancer Gene Census15, or (D) significant 
mutation frequency across 441 tumors16;  (2) genes identified in either the literature, or 
meeting abstracts and presentations, as putative oncogenes, tumor suppressors, members 
of cancer related pathways, or having a cancer-related function(s); or (3) protein kinases.  

Multiplexed libraries for exome capture sequencing were constructed as 
previously described17 utilizing the custom SureSelect Target Enrichment System 
(Agilent Technologies). Cell line genomic DNA was sheared and ligated to Illumina 
sequencing adapters, including 8 bp indexes. Adaptor ligated DNA was then size-selected 
for lengths between 200-350 bp and hybridized with an excess of bait in solution phase, 
as described previously17,18. Barcoded exon capture libraries were then pooled and 
sequenced on Illumina instruments (76 bp paired-end reads)17. The 8 bp index was used 
to assign sequencing reads to a particular sample in the downstream data aggregation 
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pipeline. 

The median value for the average coverage across cell lines was 121x, while the 
median value for the fraction of targeted sequences with depth of coverage equal to or 
higher than 10x reached 84.3%. 

The sequencing data-processing pipeline (“Picard pipeline”): We generated a 
BAM file for each sample using the sequencing data processing pipeline known as 
“Picard” (http://picard.sourceforge.net). Picard consists of four steps, described in detail 
in19, but with the following modifications in the “Alignment to the genome” step: 
Alignment was performed using BWA20 (http://bio-bwa.sourceforge.net) to the NCBI 
Human Reference Genome GRCh37. 

Quality control: We verified concordance between genotypes detected by 
sequencing and SNP arrays to ensure that there were no mix-ups between samples. In 
addition, sequencing reads aggregated from different barcoded pools were checked for 
genotype concordance, to ensure sample identity. 

Local realignment: Sequence reads corresponding to genomic regions that may 
harbor small insertions or deletions (indels) were jointly realigned to improve detection 
of indels and to decrease the number of false positive single nucleotide variations caused 
by misaligned reads, particularly at the 3’ end21. Sites that are likely to contain indels 
were defined as sites of known germline indel variation from dbSNP, sites containing 
reads initially aligned by BWA with indels and sites adjacent to the cluster of detected 
nucleotide substitutions. 

Variant calling and annotation: Nucleotide substitutions were detected with 
MuTect (http://www.broadinstitute.org/cancer/cga/MuTect) and short indels were called 
with Indelocator (http://www.broadinstitute.org/cancer/cga/Indelocator), as described in 
Supplementary Material for prior studies19,22. Both programs were applied using a mode 
that does not require matching normal DNA and thus identifies all variants that differ 
from a reference genome. Variants were annotated using the Oncotator 
(http://www.broadinstitute.org/cancer/cga/Oncotator) software. 

Variant filtration by exclusion of variants with low allelic fraction: The allelic 
fraction was calculated for each detected variant per cell line as a fraction of reads that 
supported an alternative allele (e.g., different from the reference) among reads 
overlapping the position. Only reads with allelic fractions above 0.25 were used in the 
downstream sensitivity prediction analysis.  

Variant filtration by exclusion of common germline variants: Variants for 
which the global allele frequency (GAF) in dbSNP134 or allele frequency in the NHLBI 
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Exome Sequencing Project (http://evs.gs.washington.edu/EVS, data release ESP2500) 
was higher than 0.1% were excluded from further analysis.  
 

Variant filtration by exclusion of variants observed in a panel of normals: 
Variants detected in a panel of 278 whole exomes sequenced at the Broad as part of the 
1000 Genomes Project were excluded from further analysis. Beyond removal of 
additional germline variation, this step also allowed elimination of common false 
positives that originate predominantly from alignment artifacts. 

DNA identity analysis by mass spectrometric SNP genotyping: 

The identity of all DNA samples was assessed by mass spectrometric genotyping 
of two multiplexed panels of 24 SNPs (Sequenom, San Diego, CA).  

 

4. Cell line identity validation by SNP genotyping 

The Birdseed2 algorithm was used to call the genotypes from CCLE Affymetrix 
SNP 6.0 array data (processed as described above). Next, 20,000 SNPs were randomly 
chosen from among those interrogated by the arrays. The percentage of identity between 
the genotype calls of any two cell lines was then calculated in order to identify pairs that 
may have derived from the same individual. This analysis yielded a bimodal distribution, 
with a small number of cell line pairs showing a score > 80% (suggestive of genetic 
“identity”; Fig. S11). SNP array data for 14 replicates of a series of 15 Hapmap samples 
were also included to confirm that this threshold was consistent with identity percentages 
observed between known identical (or different) individuals across replicates (not 
shown).  

All cell line pairs showing more than 80% genotypic identity were subject to more 
detailed review. In some cases, they corresponded to pairs known to have been sampled 
from the same individual (e.g. a primary tumor- and a metastasis-derived cell line). Other 
unexpected cases may reflect heretofore unrecognized cross-contamination during in 
vitro cultivation at some point during the cell lines’ history. In ambiguous cases, cell lines 
were re-purchased from the original vendor and all data derived from the initial stock was 
discarded. 

As an additional confirmation of cell line identity, CCLE SNP array data was 
compared to publicly available data from the CGP cell line project 
(http://www.sanger.ac.uk/genetics/CGP/Archive/), after processing this data as described 
above. Cell lines with matching names but non-matching SNP genotypes—or cell lines 
with matching genotypes but non-matching names/aliases—were manually reviewed. In 
cases of doubt, cell lines were re-purchased from the original vendor and all ambiguous 
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data was discarded, as described above. 

 

5. Gene set activity scores 

Gene expression values were Z-normalized and additively combined into 
“pathway scores” for gene sets derived from 1) Molecular Signatures Database 
(MSigDB)23 version 2.5 and 2) MetaBase from GeneGo Incl (http://www.genego.com). 
In particular, we used the following subsets: 386 positional gene sets (C1), 630 canonical 
pathways (C2) and 837 motif gene sets (C3) from MSigDB; 570 canonical pathways, and 
716 transcription factors directional gene sets from GeneGo.  

 

6. Cell line-to-primary tumor comparison 

The cell lines and primary tumors were compared by measuring the feature 
correlations from one sample type to the other, broken down by cancer lineages.  Because 
there is no direct correspondence between cell lines and tumors, the feature sets for each 
cell line were correlated with the average across tumors in that lineage, and vice-versa.  
Thus, the resulting correlation matrices are asymmetric: the top left showing how well the 
tumor features correlate with the average of the cell lines in a lineage, and the bottom 
right showing the converse. The diagonal shows the agreement between sample types 
within each cancer lineage.   

Copy-number comparison: 

To compare chromosomal copy number alterations between cell lines and primary 
tumors samples, we used segmented DNA copy number profiles from the Tumorscape14 
website (http://www.broadinstitute.org/tumorscape/). Here, 12 tumor types were selected 
that were common to both CCLE and Tumorscape and contained at least 15 samples in 
each tumor type. The resulting dataset spanned 452 cell lines and 1,515 primary tumors. 
We then gathered the breakpoints of all cell lines and primary tumors from the segmented 
profiles and recorded the copy-number values for each sample at positions proximal to 
each breakpoint. That is, for breakpoint Bj at genomic position Pj, the copy-number value 
recorded for each sample was the copy-number value at Pj -1. Regions of known 
germline copy-number variation were removed from the data. Next, we calculated the 
means of the copy-number values (G scores24) for each tumor type separately for the cell 
lines and primary tumors to obtain two matrices of G scores at all breakpoints and across 
all tumor types. Finally, we calculated the pair-wise Pearson correlation coefficient of 
copy-number profiles between the two matrices. 

Expression comparison:  
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We assembled a set of Affymetrix U133+2.0 expression arrays from public 
repositories using the expO (http://www.intgen.org/expo/) dataset (GEO accession 
GSE2109, consisting of 2,158 arrays from solid tumors), MILE25,26 (GEO accession 
GSE13159, consisting of 2,096 arrays from hematopoietic tumors), other datasets for 
primary tumors (GEO accession GSE12102 – 37 samples), and 679 expression arrays 
from the CCLE. All arrays were normalized as a single collection using the approach 
described above. All cancer types with at least 10 primary tumor samples and 7 cell lines 
were retained for downstream analysis (these represented 18 tumor types in total). Next, 
we restricted the dataset to the 5,000 genes with the largest interquartile range (IQR).  

The following functions were then performed for cell lines and primary tumors 
separately: for each cancer type, we fitted a linear model using Linear Models for 
Microarray Data (LIMMA)27 and calculated the average fold-change for each gene 
between that cancer type and a sampling of all other cancer types. This was done with n 
arrays by tissue-type (for cell lines, n ≥ 15 and for primary tumors, n ≥ 20) to ensure 
homogeneous tissue-type representation in the reference set. Finally, we calculated the 
pairwise Pearson’s correlation coefficient between the fold-change values obtained for 
tumors and cell lines. The final correlation matrix represents the average of 10 iterations 
of the above procedure, each with different samplings. 

Mutation-rate comparison 

Primary tumor mutation data were downloaded from the COSMIC database v56 
(http://www.sanger.ac.uk/genetics/CGP/cosmic/ using the file name 
CosmicCompleteExport_v56_151111.tsv). Cell lines and primary samples were 
annotated as belonging to tumor types displayed in Fig. 1d of the main text. 17 tumor 
types with more than 20 cell lines in the CCLE and 20 primary samples in COSMIC were 
kept for the analysis. The COSMIC dataset was filtered 1/ to consider only primary tumor 
data and exclude cell lines, 2/ for coding mutations in genes common with the CCLE 
hybrid capture set of 1,651 genes, 3/ for genes that had more than 90% of target bases 
covered in more than 75% of the CCLE cell lines in the sequencing data described above 
and 4/ for genes mutated in more than 4% of the primary samples in at least one tumor 
type and with a synonymous to non-synonymous ratio higher than 9:1. In the end, 62 
genes were retained for the analysis. For each tumor type and each tested gene, we 
calculated the percentage of primary samples or cell lines with reported coding 
mutations. Finally, we determined the pairwise Pearson’s correlations between the 
matrices of mutation frequencies across tumor types, for primary samples and cell lines, 
in all common genes. 

For some lineages (e.g., urinary tract, liver, pancreas, and thyroid cancer) the 
correlations were weaker in one or more comparisons (Fig. 1b-d and Supplementary 
Fig. 5). For example, urinary tract cancer cell lines and tumors matched well in 
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expression space, but they differed in oncogene mutation frequencies. This discordance 
was driven primarily by a paucity of FGFR3-mutant CCLE lines (Supplementary Fig. 
5), and likely reflects the fact that most urinary tract cancer cell lines derive from high-
grade, invasive carcinomas as opposed to low-grade tumors in which FGFR3 mutations 
are more prevalent28. Liver cancer cell lines and tumors differed across all three 
comparisons, possibly because many hepatocellular carcinoma lines were derived from 
patients exposed to hepatitis B virus29. In contrast, the liver tumors to which they were 
compared were mostly associated with hepatitis C virus30. Surprisingly, none of the 
glioma cell lines contained IDH1 mutations despite its high mutation frequency in 
primary tumors. Nonetheless, glioma cell lines generally correlated positively with their 
primary tumor counterparts, despite published reports to the contrary31. This pattern may 
reflect increased representation of this cancer type in the CCLE as compared to previous 
studies. As expected, the mutation frequencies of lineages where TP53 mutations are 
predominant (e.g. esophagus, liver, head & neck) correlated most strongly when TP53 
was included (r=0.95, 0.64, 0.65, respectively, Supplementary Fig. 5). 

 
7. Pharmacological characterization 

Cells lines (504 total, constituting 480 unique lines) were chosen for profiling 
based on ease of in vitro cultivation under assay conditions. Suspension cell lines were 
generally grouped together to facilitate process flow.  

All cell lines were cultured in RPMI or DMEM with 10% fetal bovine serum 
(FBS; Invitrogen). Cells lines were cultured in T-175 or 3 layer T-175 “triple” flasks 
using standard tissue culture techniques performed robotically (CompacT, The 
Automation Partnership). Cell lines were incubated at 37 ºC and 5% CO2. Prior to sub-
culturing, adherent cells lines were dislodged using TrypLE (Invitrogen). From frozen 
stocks, cells were expanded through at least 1 passage (1:3 dilution) and usually 2 to 3 
passages before being added to 1,536-well assay micro-titer plates. Cell count and 
viability was measured using Trypan dye exclusion with a ViCell counter (Beckman-
Coulter). All cell lines were tested for and shown to be free of mycoplasma using a PCR-
based detection methodology (http://www.radil.missouri.edu). 

Our initial set of compounds (termed NP24) included both targeted therapeutics 
and cytotoxic drugs (Supplementary Table 6). Compounds were dissolved in 90% 
DMSO/10% water at 2 mM and stored at -20 ºC until use. Prior to screening, the stock 
solutions were arrayed in microtiter plates and serially diluted 3.16 fold, yielding a 
concentration range of 2 mM to 636 nM. Purity and integrity of all compounds and 
solutions was checked using standard liquid chromatography-mass spectrometry, 
verifying UV adsorption and mass of the major UV peaks. 
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All assays were automated and performed with an ultra-high throughput screening 
system built by the Genomics Institute of the Novartis Research Foundation 
(http://www.gnfsystems.com)32. Cell lines were dispensed into 1,536-well plates 
(optimized for tissue culture) with a final volume of 5 µL and a concentration of 250 cells 
per well. 12 to 24 hours after plating, 20 nL of each compound dilution series were 
transferred to the 1,536-well plates (containing the tumor cells) using slotted pins (V&P 
Scientific http://www.vp-scientific.com/index.html). This yielded final drug 
concentration ranges of 8 µM to 2.5 nM (8 point dose response assays) by 3.16-fold 
dilutions, and a final DMSO concentration of just under 0.4%. The cell–compound 
mixtures were incubated for 72 to 84 hours; afterwards, cell numbers were determined by 
measuring the amount of ATP per well using Cell Titer Glo (Promega). 
Luminescence/well was measured using a ViewLux plate reader (Perkin Elmer). Within a 
cell line plating day, compounds were tested in duplicate; occasionally, lines were 
assayed multiple times (weeks to months apart), yielding additional replicate values. On 
all plates, wells containing vehicle only or the positive control compound MG132 (a 
proteasome inhibitor toxic to most cell lines at 1 µM) were also included. Raw values 
were normalized on a plate-by-plate basis such that 0% was equivalent to the median of 
vehicle wells and -100% equivalent to the median of the MG132 positive control. The 
normalized data was further corrected using a surface pattern model to remove edge and 
region effects. 

All dose-response data was reduced to a fitted model using a decision tree 
methodology based on the NIH/NCGC assay guidelines 
(http://assay.nih.gov/assay/index.php/Table_of_Contents). Models were generated for the 
duplicate data points generated for each cell line run day. In brief, dose-response data was 
fitted to one of three models depending on the statistical quality of the fits measured 
using a Chi-squared test. One approach was the 4 parameter sigmoid model shown 
below: 

 y = A inf+
A0 − A inf

1+
x

EC50

⎛
⎝⎜

⎞
⎠⎟

Hill

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

Alternatively, a constant model y = A inf was employed; or a non-parametric spline 
interpolation of the data points was performed (note that this last model represents less 
than 5% of models). In these models, A0 and Ainf are the top and bottom asymptotes of the 
response; EC50 is the inflection point of the curve; and Hill is the Hill slope, which 
describes the steepness of the curve. Other key parameters derived from the models 
include the IC50, the concentration where the fitted curve crosses -50%; and Amax, which 
is the maximal activity value reached within a model. For the spline interpolation model, 
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IC50 and EC50 parameters were both set to the concentration where the fitted model first 
crosses -50%. Additionally, we calculated two forms of the Activity area for each curve, 
defined as the area between the response curve and a fixed reference Aref = 0 or a variable 
reference Aref = max(0, Alow) where Alow is the activity at the lowest concentration, up to 
the maximum tested concentration. In practice, the Activity area was calculated as the 
sum of differences between the measured Ai at concentration i and the reference level. 
Thus, using the fixed reference, Activity area = 0 corresponds to an inactive compound, 
and 8 corresponds to a compound which had A = -100% at all eight concentrations 
points. The variable reference form was introduced to adjust for curves with large 
positive activities close to zero concentration, which are usually artifacts of imperfectly 
corrected variations on the assay plate. For this measure, the median of all replicate 
activity values was used regardless of cell line run day. To prevent confusion, the Activity 
Area was calculated using Aref = 0 unless otherwise noted. 

For inactive compounds it is formally impossible to derive an IC50; however, the 
analytical algorithms require a value for all cell lines examined. In this instance, we 
simply used the maximum tested concentration as the default value—which serves 
primarily as a placeholder to allow algorithms to work on all samples. It should be noted 
that another sensitivity value that we have used, the activity area, does not suffer from 
this limitation, as it is possible to derive a value for all dose-response curves. 

8. Prediction of drug response 

Two approaches were used: a discrete or “categorical” classifier based on the 
naive Bayes algorithm, and a regression analysis based on the elastic net algorithm. Both 
methods produce a set of genomic predictors of response. Inputs, methodological steps 
and outputs were made consistent between the two approaches for ease of comparison. 
Several parameters from the dose-response curves were used, including log-transformed 
IC50, Amax, or Activity area. Also, different subsets of the feature data were used (all 
features or genomic features only, excluding gene expression data), and the models were 
run both within specific lineages and across all cancer types.  

For predicting response to each compound, we used the following two inputs in 
each of the approaches above: 

(1) a vector,  Y ∈Ρ N ,1 , where N is the number of cell lines treated by that 
compound, and the values represent the responses across the panel of cell lines, computed 
either as the area over the dose-response curve (“Activity Area”), Amax or IC50 using the 
curve-fitting procedure described above. 

(2) a matrix of genomic features  X ∈Ρ N , p , where N is the number of cell lines, 
and p is the number of predictive features (e.g. gene expression, gene copy number, gene 
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mutation values, lineage, pathway activity scores derived from gene expression data 
(described above), or regions of recurrent copy-number gain or loss derived from 
GISTIC). Mutation data is represented as a binary value (pre-normalization) for each 
gene and summarized in different vectors as described below: 

Strongly damaging mutations: These include nonsense, frame-shift and splice-
site mutations that have been observed in less than 5 samples have been combined in a 
list of “highly damaging” or “loss of function” mutations. Since such variants are not 
expected to be highly recurrent, this frequency cut-off served as an additional filter to 
remove germline variations. These mutations were named “Mut LOF” in the feature 
matrix. 

Non-neutral missense variants: These are missense substitutions that created 
amino acid observed at the same position in homologous proteins from two or more 
warm-blooded vertebrates were considered likely to be neutral, and excluded from further 
analysis. Multiple amino acid alignments for 46 vertebrates’ proteomes were obtained 
from UCSC Genome Browser repository. Remaining missense variants were aggregated 
in a list of “non-neutral missenses”. These mutations were named “Mut nnMS” in the 
feature matrix. In addition, we also built vectors of mutations containing both the non-
neutral missenses and the damaging mutations (“Mut LOF+nnMS”). 

 Missense mutations at COSMIC recurrent positions: Subsets of missense 
mutations that have defined genomic positions have been selected from COSMIC 
database v55. Amino acid positions at which mutations were described in three or more 
non-cell line unique samples were considered to be sites of recurrent mutations. Missense 
variants observed in our cell lines sequencing data within a 3 amino acid residues 
distance from recurrent COSMIC sites were aggregated into “Recurrent COSMIC 
missenses” feature list. These mutations were named “Mut cosmicMS” in the feature 
matrix. 

The data utilized for the analyses in this study included 947 cell lines profiled 
with SNP arrays, 917 with expression arrays, 860 cell lines had hybrid 
capture/sequencing data and 479 had been profiled with pharmacologic compounds. A 
total of 435 cell lines had all data types and were used for sensitivity prediction 
(Supplementary table 1). For up-to-date lists of cell lines and associated data from the 
CCLE project, please refer to www.broadinstitute.org/ccle. 

 

8.1. Sensitivity prediction using regression analysis 

We applied an elastic net regression algorithm33,34 combined with a bootstrapping 
procedure to derive predictive models that explained the drug sensitivity profiles based 

WWW.NATURE.COM/NATURE | 12

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature11003



  

on genetic features of the cell lines. The elastic net algorithm is particularly well suited to 
inference in this domain because it is designed to work in settings where the number of 
features is far greater than the number of observations (i.e. p >> N). The algorithm also 
combines L1 and L2  regularized regression penalty terms in order to strike a balance 
between obtaining a parsimonious model (through the L1 term), while retaining groups 
of correlated features (through the L2  term), such as co-expressed genes or copy number 
of genes situated within the same amplicon. 

 As input to the algorithm, we used a prediction matrix  X ∈Ρ N , p , as described 
above, where each column of X is normalized to have zero mean and unit standard 
deviation. For each compound, we generated a vector,  Y ∈Ρ N ,1 , with either the Activity 
Area, Amax or the log-transformed IC50. We used the glmnet 1.7 software package35 and R 
2.13.132to solve the following optimization problem: 

 
min

β0 ,β( )∈Ρ p+1
Rλ β0 ,β( )= min

β0 ,β( )∈Ρ p+1

1
2N

yi − β0 − xi, jβ j( )j = i

p∑( )i=1

N∑
2

+ λ 1 − α( )1
2

β l2

2 + α β l1

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣⎢
⎤

⎦⎥  

For computational efficiency, we solved the optimization problem using only features 
that were correlated with the response vector with R > 0.1 based on Pearson correlation, 
regardless of N. In the elastic net equation, α  controls the relative strength of the L1 and 
L2 penalty terms, and λ  controls the overall strength of the regularized regression 
penalty. The optimal setting for α  and λ  is chosen to minimize the root mean squared 
error using 10 leave-group-out cross-validations with 90% / 10% training/test splits for 
each α,λ( ), with 10 values of α ∈[0.2,1.0]and 250 values of λ = eγ  with γ ∈ −6,5[ ].  

 After parameter optimization, a bootstrapping procedure is used to generate 200 
resampled datasets, X BSi ,Y BSi( )i=1,...,200

, where  X
BSi ∈Ρ N , p ,Y BSi ∈Ρ N ,1 , and the samples 

(i.e. cell lines) constituting each bootstrap dataset are obtained by sampling with 
replacement from the complete set of samples. The elastic net equation is solved for each 
bootstrap dataset, using the optimal α  and λ  settings, to generate a matrix of regression 
coefficients  β

BS ∈Ρ p,200 , where each column of β BS  represents the solution for one 
bootstrap dataset. For each predictive feature, j ∈ 1,..., p{ }, the percentage of bootstrap 

datasets in which it was inferred as significant is calculated as
 
rj = 1Ρ \ 0 β j ,k

BS( )( )k =1

200∑ / 200 , 

where  1Ρ \ 0  is the indicator function defined as 
 
1Ρ \ 0 x( )= 0 if x=0,

1 otherwise.
⎧
⎨
⎪

⎩⎪
 Using this 

procedure, rj  provides a robust measure of the predictive value of feature j. 
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 In order to evaluate the prediction performance of each model, we performed 10 
iterations of a 10-fold cross-validation of the entire procedure described above, excluding 
the bootstrapping. This allowed calculation of an average predicted response  Y ' ∈Ρ N ,1  
where each value was the mean of 10 cross-validated predictions. The prediction 
performance of each model was then estimated using Pearson’s correlation coefficient r 
and Kendall’s τ.  

8.2. Sensitivity prediction using categorical analysis 

We also applied a naive Bayes classifier (R package e107136) combined with 
statistical feature selection, to derive predictive models that explain the drug sensitivity 
profiles based on cell line genomic features. An advantage of the naive Bayes classifier is 
that it assumes independence of the input features. Thus, only a small amount of training 
data is needed to estimate the parameters necessary for classification (i.e., means and 
variances of the features). This classifier can therefore handle cases where the number of 
predictive features is significantly larger than the number of samples used for 
classification.  

For each compound, starting from the vector of responses Y above, we considered 
the shape of the rank-ordered plot of response values (for Amax, log-transformed IC50 or 
Activity Area) in order to assign cell lines into sensitive, intermediate and refractory 
classes. Assignments were made before any modeling work was undertaken. (Additional 
details of an automated sensitivity calling method will be presented in a manuscript under 
preparation.) 

Next, using either the non-parametric Wilcoxon Sum Rank Test (for continuous 
features such as gene expression) or a Fisher’s Exact Test (for discrete features such as 
gene mutation), we selected features whose profile was significantly different between 
the “sensitive” and “refractory” populations of cell lines. A feature type-specific 
correction of P-values (e.g., for a given gene expression or GISTIC peak) was performed 
to account for false discovery rate, and a feature was considered statistically significant if 
its FDR corrected P-value37 was less than 0.25. The top 30 such features ordered by P-
value were automatically selected for inclusion into the naive Bayes model, with the 
fraction of features selected within a given feature type reflecting the proportion of that 
feature type in the entire feature matrix.  

To reduce the number of correlated features included in the naive Bayes model, 
the remaining significant features within each feature type were clustered using a 
message-passing algorithm38. Features identified as “cluster representatives” by that 
procedure were included together with the top 30 features above as predictive features 
into the naive Bayes model. We evaluated model performance using five iterations of ten-
fold cross-validation (e.g., 90%/10% training/test splits) and we computed the model 
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performance according to the area under the ROC curve (AUC), sensitivity, specificity, 
positive predictive value, and negative predictive value. The set of predictive features 
considered in the model, their statistical significance, and the effect size (mean fold-
change or odds ratio) was also obtained.  

 

9. AHR validation experiments 

Cell lines and cell culture conditions: CHP-212, SK-MEL-2, NCI-H1299 and 
SK-N-SH cells were obtained from ATCC, IPC-298, TC-71, and MHH-ES-1 were 
obtained from DSMZ, and ONS-76 from HSRRB. IPC-298, SK-MEL-2, NCI-H1299, 
ONS-76, and MHH-ES-1 were maintained in RPMI growth media consisting of RPMI 
1640 plus L-glutamine (Mediatech) with 10% fetal bovine serum (Gemini Bio-Products) 
and 1% penicillin/streptomycin (Invitrogen).  SK-N-SH was maintained in MEM growth 
media consisting of MEM plus L-glutamine (Mediatech) with 10% fetal bovine serum 
(Gemini Bio-Products) and 1% penicillin/streptomycin (Invitrogen). CHP-212 was 
maintained in a 1:1 mixture of MEM with L-glutamine (Mediatech) and F12 medium 
with L-Glutamine (GIBCO) with 10% fetal bovine serum (Gemini Bio-Products) and 1% 
penicillin/streptomycin (Invitrogen). TC-71 was maintained in IMDM growth media 
consisting of IMDM plus L-glutamine (GIBCO) with 10% fetal bovine serum (Gemini 
Bio-Products) and 1% penicillin/streptomycin (Invitrogen). 

Lentivirally delivered short hairpin RNA: The pLKO1-puromycin lentiviral 
vector carrying shRNAs specific for AHR, SLFN11, or Luciferase (Luc) sequences were 
obtained from the Broad Institute RNAi Consortium 
(http://www.broadinstitute.org/genome_bio/trc/). Three independent shRNAs targeting 
AHR, two targeting SLFN11, and one targeting Luciferase were used: shLuc 
(TRCN0000072243, 5’-CTTCGAAATGTCCGTTCGGTT-3’), shAHR (hp1) 
(TRCN0000021254, 5’-CCCACAACAATATAATGTCTT-3’), shAHR (hp2) 
(TRCN0000021255, 5’- GCTTCTTTGATGTTGCATTAA- 3’), shAHR (hp4) 
(TRCN0000021257, 5’-CCATAATAACTCCTCAGACAT-3’), shSLFN11 (hp2) 
(TRCN0000155578, 5’- CCGATAACCTTCACACTCAAA-3’), and shSLFN11 (hp4) 
(TRCN0000152057, 5’- CAGTCTTTGAGAGAGCTTATT). To perform lentiviral 
infections, cells were plated at 50-60% confluence and incubated overnight. The 
following day, the medium was replaced with virus diluted in fresh medium with 8 
μg/mL polybrene, and cells were incubated at 37 °C for 24 hours. Subsequently, the 
medium was removed and replaced with fresh medium containing puromycin (2 μg/mL) 
for selection. Cells were grown in the presence of puromycin for 4 days before they were 
seeded for growth curve experiments and protein/mRNA analysis to determine 
knockdown.  
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Immunoblot analysis: Cells were harvested, washed with PBS, and lysed on ice 
with 1% NP-40 buffer [150 mM NaCl, 50 mM Tris pH 7.4, 2 mM EDTA pH 8, 25 mM 
NaF and 1% NP-40] containing protease inhibitors (Roche) and Phosphatase Inhibitor 
Cocktails I and II (CalBioChem). After 30 min incubation, lysates were frozen at -20 ºC, 
thawed on ice and centrifuged 10 minutes at 4 ºC at full speed. Protein concentrations 
were measured by the BCA method (Pierce). Equal amounts of total protein were 
subjected to SDS gel electrophoresis and transferred to PVDF membrane. The 
membranes were blocked for 1 hour at room temperature with Blocking Buffer (Licor), 
and incubated overnight at 4 ºC with the primary antibody in buffer supplemented with 
0.1% Tween-20. Subsequently, the membranes were washed three times with Tween-
TBS buffer and incubated with secondary antibody diluted in Blocking Buffer with 0.1% 
Tween-20 in dark for 2 hours at room temperature. The membranes were washed two 
times with Tween-TBS for 10 minutes each and a final wash with PBS for 10 minutes. 
Results were obtained using the Odyssey Infrared Imager (Licor). Rabbit polyclonal anti-
SLFN11 antibody was obtained from Sigma-Aldrich (HPA023030) and used at a 1:500 
dilution; mouse monoclonal anti-AHR antibody was obtained from Abcam (ab2770) and 
used at a 1:1000 dilution; mouse monoclonal anti-vinculin was obtained from Sigma-
Aldrich (V9131) and used at a 1:20000 dilution; goat polyclonal anti-actin was obtained 
from Sigma-Aldrich and used at a 1:2000 dilution; goat anti-mouse secondary IRDye 800 
CW antibody was obtained from Licor and used at 1:15000 dilution; donkey anti-goat 
secondary IRDye 800 CW antibody was obtained from Licor and used at 1:20000; goat 
anti-rabbit secondary IRDye 800 CW was obtained from Licor and used at 1:15000 
dilution. 

Analysis of mRNA expression by quantitative RT-PCR (qRT-PCR): Cellular 
RNA was extracted using the RNeasy Mini Kit (Qiagen) following manufacturer’s 
protocol. For qRT-PCR, RNA was reverse-transcribed using SuperScript III First-Strand 
Synthesis SuperMix for qRT-PCR kit (Invitrogen). qRT-PCR was performed in 384-well 
format using LightCycler 480 SYBR Green I Master (Roche) and the 7900HT Fast Real-
Time PCR System (Applied Biosystems). Data presented are the average of two 
individual experiments; within each experiment, technical triplicates were performed. 
Fold changes were calculated relative to control by the 2-ΔΔCt method. The following 
primer sequences were used: AHR forward 5’-CAAATCCTTCCAAGCGGCATA-3’; 
AHR reverse 5’-CGCTGAGCCTAAGAACTGAAAG-3’; CYP1A1 forward 5’-
TCGGCCACGGAGTTTCTTC-3’; CYP1A1 reverse 5’-
TCTTGAGGCCCTGATTACCCA-3’; GAPDH forward 5’-
AAGGTGAAGGTCGGAGTCAAC-3’; GAPDH reverse 5’-
GGGGTCATTGATGGCAACAATA-3’. 

Growth curves: CHP-212, IPC-298, SK-MEL-2, ONS-76, and SK-N-SH cell 
lines were seeded into 96-well plates at densities of 5,000, 4,000, 5,000, 2,000, and 5,000 
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cells per well, respectively, in the appropriate culture medium and each with 6 replicates. 
Proliferation rates were measured either on days 5, 6, 7, and 8 post-infection or on days 4, 
5, 6, 7 using WST-1 (Roche). WST-1 reagent was diluted in medium to a final 
concentration of 10%, incubated with the cells at 37 °C for 2 hours, and the plates were 
read at 440 nm using a SpectraMax 190 microplate reader. Absorbance on each day was 
displayed after background subtraction. 

Pharmacologic growth inhibition curves: CHP-212, IPC-298, SK-MEL-2, NCI-
H1299, ONS-76, SK-N-SH, TC-71, and MHH-ES-1 cell lines were seeded into 96-well 
plates at densities of 10,000, 1,000, 5,000, 5,000, 1,000, 4,000, 3,000, and 8,000 cells per 
well, respectively, in the appropriate culture medium. Twenty-four hours after seeding, 
serial dilutions of the relevant compound were prepared in DMSO and added to cells, 
yielding final drug concentrations ranging from 100 μM to 1 x 10-6 μM for PD-0325901, 
irinotecan, and topotecan; 150 μM to 1 x 10-2 μM for PD-98059, with the final volume of 
DMSO not exceeding 1%. Cells were incubated for 96 hours following addition of drug. 
Cell viability was measured using the WST-1 viability assay (Roche). Viability was 
calculated as a percentage of control (untreated cells) after background subtraction. Six 
replicates were performed for each cell line and drug combination. Data from growth-
inhibition assays were modeled using a nonlinear regression curve fit with a sigmoid 
dose–response. These curves were displayed using GraphPad Prism 5 (GraphPad). 

10. Data sharing/release 

All raw and processed data are available at the CCLE website: 
www.broadinstitute.org/ccle. In addition, the website offers direct links to data 
visualization tools such as IGV39, as well as genepattern-based40 analysis tools for 
expression and copy-number class comparison analyses. 
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