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Supplementary Methods S1: Biospecimen collection and clinical data

Sample inclusion criteria and pathology review

Biospecimens were collected at diagnosis from patients with endometrioid adenocarcinomas
and serous carcinomas according to consent provided by the relevant institutional review
boards. Patients were selected only if their treatment plan required surgical resection and had
received no prior treatment for their disease, including chemotherapy or radiotherapy. The
targeted accrual was 200 Grade 1/2, 200 Grade 3, and 100 serous cancer subtypes. Cases were
staged according to the American Joint Committee on Cancer (AJCC) staging system. Each
frozen primary tumor specimen had a companion normal tissue specimen which could be
blood/blood components (including DNA extracted at the tissue source site), adjacent normal
tissue taken from greater than 2 cm from the tumor, or both. No cases had qualifying
metastatic tumor in addition to the primary tumor. Normal endometrium from 11 patients
without a history of cancer was included in this study. Each tumor specimen was shipped
overnight from one of 17 tissue source sites using a cryoport that maintained an average
temperature of less than -180°C. Tumor and adjacent normal tissue specimens (if available)
were embedded in optimal cutting temperature (OCT) medium and a histologic section was
obtained for review. Pathologic diagnoses were made at local tissue source sites using
diagnostic formalin-fixed and paraffin-embedded (FFPE) sections. Each H&E stained section of
frozen OCT-embedded tumor processed centrally by TCGA was reviewed by a board-certified
pathologist to confirm that the tumor specimen was histologically generally consistent with the
diagnosis and the adjacent normal specimen (when provided) contained no tumor cells. Per
TCGA protocol requirements, the sections were required to contain at least 60% tumor cell
nuclei with less than 20% necrosis for inclusion in the study.

RNA and DNA were extracted from tumor and adjacent normal tissue specimens using a
modification of the DNA/RNA AllPrep kit (Qiagen). The flow-through from the Qiagen DNA
column was processed using a mirVana miRNA Isolation Kit (Ambion). This latter step generated
column purified RNA preparations that included RNA <200 nt suitable for miRNA analysis. DNA
was extracted from blood using either the QiaAmp blood midi kit (Qiagen).

Each specimen was quantified by measuring Abs,;so with a UV spectrophotometer or by
PicoGreen assay. Analytes were resolved by 1% agarose gel electrophoresis (DNA) or
Bioanalyzer RNA6000 nano assay (RNA) to confirm high molecular weight fragments. A custom
Sequenom SNP panel or the AmpFISTR Identifiler (Applied Biosystems) was utilized to verify
tumor DNA and germline DNA were derived from the same patient. Five hundred (500)
nanograms each of tumor and normal DNA was sent to Qiagen for REPLI-g whole genome
amplification using a 100 pg reaction scale. Only those specimens yielding a minimum of 6.9 ug
of tumor DNA, 5.15 pg RNA, and 4.9 pg of germline DNA were included in this study. In
addition, DNA specimens with fragmentation resulting in low molecular weight smears or RNA
with RIN < 7.0 were excluded in this study.

At the time of study closure, 837 endometrioid adenocarcinomas and serous carcinomas cases
were received by the BCR and 65% passed pathology and molecular quality control. The
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biospecimens included in this report come from 373 endometrioid adenocarcinomas and
serous carcinomas cases included in batches 49, 59, 73, 75, 81, 92, 94, 104, 110, 118, 121, 125,
137, 143, 156.

Microsatellite Instability Testing

Microsatellite instability (MSI) status of endometrioid adenocarcinomas and serous carcinomas
was evaluated in the Biospecimen Core Resource at Nationwide Children’s Hospital. A panel of
four mononucleotide repeat loci (polyadenine tracts BAT25, BAT26, BAT40, and transforming
growth factor receptor type IlI) and three dinucleotide repeat loci (CA repeats in D25123,
D5S346, & D175250) was used including the recommended markers from the National Cancer
Institute Workshop on MSI in 2002." Two additional pentanucleotide loci (Penta D & Penta E)
were included in this assay to confirm sample identity. Electrophoretic mobility in these
microsatellites from tumor and matched non-neoplastic tissue or mononuclear blood cells was
compared after multiplex fluorescent-labeled PCR and capillary electrophoresis to identify
variation in the number of repeats. Equivocal or failed markers were re-evaluated by singleplex
PCR or through re-analysis of the entire MSI panel. Tumor DNA was classified as microsatellite-
stable (MSS) if zero markers were altered, low level MSI (MSI-L) if one to two markers (less than
40%) were altered and high level MSI (MSI-H) if three or more markers (greater than 40%) were
altered. Penta D and E markers were scored in the same manner as the MSI markers; however,
they did not contribute to MSI class calculation.

Individual markers were assigned a value of 0 through 6 based on the presence or absence of a
MSI shift, homo/heterozygosity in the normal sample, and loss of heterozygosity (LOH) if
observed in the tumor. LOH for a marker was assigned if the ratio of allele peak heights
between tumor and matched normal control was less than 0.7 or greater than 1.6. Markers
were classified as follows: 0= Marker not evaluable. 1= MSI; homozygous in Normal. 2= MSI;
heterozygous in Normal with discernible LOH. 3= MSI; heterozygous in Normal where LOH was
either not present or could not be calculated due to MSI interference with peak heights. 4= No
MSI; homozygous in Normal. 5= No MSI; heterozygous in Normal with discernible LOH. 6= No
MSI; heterozygous in Normal where LOH is not present. A single marker found to be “not
evaluable” was allowed in MSI cases if the marker would not influence the overall call for the
case.

Clinical data analyses

Clinical data included in this report were downloaded from the TCGA Data Portal on May 13,
2012. Age was recorded at initial pathologic diagnosis as reported by tissue source sites (TSSs).
International Federation of Gynecology and Obstetrics (FIGO) stage was provided by TSSs using
various staging systems. If the FIGO 2009 staging system for endometrial cancer was not
specified by the TSS, the FIGO stage was recalculated into the 2009 staging system directly from
submitted pathology reports into major substage divisions (stage I, Il, Ill, and IV). Body mass
index (BMI) was calculated using the following formula: BMI = weight (kg) / [height (m) * height
(m)]. All serous and mixed cases were designated as grade 3 based on customary practices.
Overall survival was calculated from date of pathologic diagnosis to date of death or last follow-
up. Progression interval was censored for patients who had a status of “with tumor” in the
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data field for person_neoplasm_cancer_status, but did not have a date of progression listed in
the data field for “days_to_new_tumor_event_after_initial_treatment”. A summary of key
clinical data is provided in Table S1.1 and Supplementary data file S1.1. The 373 patients had a
median age of 63 years (range, 31-90 years). Of the 88 patients who have received adjuvant
chemotherapy, 86 (98%) received a platinum-containing regimen, most commonly a
platinum/taxane doublet (90%).
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Table S1.1 Tumor stage, histology, grade, and adjuvant treatment for 370 patients, n (%)*.

Endometrioid Endometrioid Endometrioid Mixed  Serous
Stage Grade 1 Grade 2 Grade 3 Grade 3" Grade3 Total
| 78 (89) 83 (79) 70 (63) 6 (46) 17(32) 254 (69)
I 3(3) 9(9) 6(5) 2 (15) 5(9) 25 (7)
] 7 (8) 12 (11) 26 (23) 4(31) 25(47)  74(20)
v 0 1(1) 9 (8) 1(8) 6 (11) 17 (5)
Adjuvant Therapy
RT 12 (14) 28 (27) 22 (20) 1(8) 7 (13) 70 (19)
Chemo  2(2) 6 (6) 14 (13) 3(23) 13(25)  38(10)
ChemoRT 2 (2) 9(9) 18 (16) 4(31) 17(32)  50(14)
Unknown 70 (80) 61 (58) 57 (51) 5 (39) 16 (30) 209 (57)
Total 88 (100) 105 (100) 111 (100) 13(100) 53(100) 370 (100)

*3 patients have missing data

*Mixed serous and endometrioid

RT = radiation therapy, Chemo = cytotoxic chemotherapy, ChemoRT = cytotoxic chemotherapy
and radiation therapy, Unknown = data not provided
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Table S1.2 Specimen and assay summary.

Assay

Exome sequencing

Whole genome sequencing

RNA sequencing

miRNA sequencing

DNA methylation (Infinium HM450)
DNA methylation (Infinium HM27)
DNA copy number (Affymetrix SNP6.0)

Reverse phase protein arrays

AT E N SUPPLEMENTARY INFORMATION

Number of endometrial patient specimens

248 pairs
107 pairs
333
367
256
117
363 pairs
293
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Table S1.3 Microsatellite markers.

AT E N SUPPLEMENTARY INFORMATION

GENOME DATABASE/ PRODUCT SIZE
MARKER LOCUS
GENEBANK ID (basepairs)
4911-12
GDB: 9834508
BAT25 KIT gene, intron 16 148
U63834
(T25 repeat)
2p22-21
GDB: 9834505
BAT26 hMSH2 gene, exon 5 116
U41210
(A26 repeat)
Chromosome 11,
BAT40 Intron 2 GenBank: M38180 94-112
(within 3-B-HSD gene)
MIM: 190182
TGFBRII 3p22 Unigen HS: 82028 60-80
Locus ID: 7048
2pl6.3 GDB: 187953
D2S123 114~174
(CA repeat) 216551
5q22.2 GDB: 181171
D5S346 96~122
(CA repeat) M73547
17912 GDB: 177030
D17S250 146~165
(CA repeat) X54562
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Data File S1.3. Key Clinical Data.
datafile.S1.1.KeyClinicalData.xls

Section References
1. Umar, A. et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer
(Lynch syndrome) & microsatellite instability. J Nat/ Cancer Inst 96: 261-268 (2004).

WWW.NATURE.COM/NATURE | 9



doi:10.1038/nature12113 AT E N SUPPLEMENTARY INFORMATION

Supplementary Methods S2: Copy number analysis

SNP Based Copy Number Analysis

DNA from each tumor or germline-derived sample was hybridized to the Affymetrix SNP 6.0
arrays using protocols at the Genome Analysis Platform of the Broad Institute.! From raw .CEL
files, Birdseed was used to infer a preliminary copy-number at each probe locus.> For each
tumor, genome-wide copy number estimates were refined using tangent normalization, in
which tumor signal intensities are divided by signal intensities from the linear combination of all
normal samples that are most similar to the tumor.? This linear combination of normal samples
tends to match the noise profile of the tumor better than any set of individual normal samples,
thereby reducing the contribution of noise to the final copy-number profile. Individual copy-
number estimates then undergo segmentation using Circular Binary Segmentation.* As part of
this process of copy-number assessment and segmentation, regions corresponding to germline
copy-number alterations were removed by applying filters generated from either the TCGA
germline samples from the ovarian cancer analysis or from samples from this collection.

Segmented copy number profiles for tumor and matched control DNAs were analyzed using
Ziggurat Deconstruction, an algorithm that parsimoniously assigns a length and amplitude to
the set of inferred copy number changes underlying each segmented copy number profile.4
Analysis of broad copy number alterations was then conducted as previously described.’
Significant focal copy number alterations were identified from segmented data using GISTIC
2.0.> Hierarchical clustering of copy number data was performed using R on thresholded
relative copy number data in significantly reoccurring amplifications or deletions regions
identified by GISTIC 2.0 analysis.”
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Figure S2.1. GISTIC 2.0 analysis of significantly reoccurring somatic copy number alterations
from tumors in each copy number cluster. Significantly reoccurring focally amplified (red) and
deleted (blue) regions are plotted along the genome by false-discovery rates. Annotations
include well-localized regions with 13 or fewer genes and a false discovery Q < 0.15. Known
cancer genes or genes identified by genome-wide loss-of-function screens are shown next to

peaks. The number of genes included in each region is given in brackets.

In the peak marked

by *, the region identified by GISTIC was expanded to include an adjacent oncogene. No
significantly reoccurring amplified or deleted regions were identified in analysis of copy number
cluster 1. Copy number clusters 2 and 3 had focal and/or broad SCNAs, distinguished primarily
by more frequent 1q amplification in cluster 3 than cluster 2. Additional recurring SCNAs in
clusters 2 and 3 included focal 11g13.3 amplification, which encompassed CCND1. Focal
changes in cluster 4 contained most serous and ‘serous-like’ tumors which were similar to those
in serous tumors alone.
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Data File S2.1: GISTIC amplification and deletion peak annotations.

Data file listing individual genes within GISTIC amplification and deletion peaks with
chromosomal location, peak boundaries, and false discovery rates.
datafile.S2.1.UcecGisticPeaks.xls

Section References

1. McCarroll, S.A. et al. Integrated detection and population-genetic analysis of SNPs and copy
number variation. Nat Genet 40:1166-1174 (2008).

2. Korn, J.M. et al. Integrated genotype calling and association analysis of SNPs, common copy
number polymorphisms and rare CNVs. Nat Genet 40:1253-1260 (2008).

3. The Cancer Genome Atlas Research Network, Integrated genomic analyses of ovarian
carcinoma. Nature 474:609-615 (2011).

4. Olshen, A.B. et al. Circular binary segmentation for the analysis of array-based DNA copy
number data. Biostatistics 5:557-572 (2004).

5. Mermel, C.H. et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of
focal somatic copy-number alteration in human cancers. Genome Biol 12:R41 (2011).
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Supplementary Methods S3: DNA sequencing — exome and genome

Supplementary Methods for Exome Sequencing

The exomes of 248 tumor and normal pairs were targeted using Agilent SureSelect v2 or
Nimblegen SeqCap v2, and sequenced on Illumina GAllx or HiSeq 2000 platforms. An average of
86.5% of targeted base pairs received a read-depth of at least 20x. Somatic single nucleotide
variants (SNVs) were called using Samtools,* VarScan 2,” and SomaticSniper,3 while small indels
were called using GATK,* VarScan 2,% and Pindel.” After combining these SNVs and indels across
callers, they were filtered for potential false-positives based on criteria described by Koboldt et
al.,”> and a few additional stringent filters, including one that removes short indels near
homopolymers. Most short indels near homopolymers belonged to cases with microsatellite
instability (MSI), but they could not be confidently distinguished from commonly seen
sequencing artifacts at homopolymers. The final list of somatic mutations in endometrial cancer
was studied using the MusSiC suite of tools.®

Somatic variants across 222 non-ultramutated cases were targeted for resequencing with new
cDNA libraries. In the final curated list of somatic variants, 98.7% of SNVs and 81.7% of indels
had at least 1 supporting read in the tumor, and <3% supporting reads in the normal. Variants
with <8% supporting reads in the tumor and <3% in the normal, were not considered validated.

Germline variants were obtained from the results of Samtools, VarScan 2, GATK, and Pindel.
They were then shortlisted by filtering out variants that fit these criteria:
1. Annotated to transcripts that are unvalidated, provisional, of have reported errors
Annotated to known problematic genes like olfactory receptors
Annotated to non-coding RNA genes, or other non-coding loci
Near the 3’ end of a transcript, within 5% its length, unless in a protein domain
Seen in more than 2% of the cases in the cohort (248 cases)
Minor allele frequency of more than 1% in either 1000 genomes or NHLBI

ouhkwnN

Somatic mutations identified from whole exome sequencing

A total of 184,824 somatic mutations comprising 181,930 point mutations and 2,931 indels
(ranging from 1 to 82 bps) were identified in the targeted exons and splice junctions. Roughly
80% of these events (146,814 point mutations and 438 indels) were from 26 tumors,
characterized by the recurrent hotspot mutations P286R and V411L in POLE, a catalytic subunit
of DNA polymerase epsilon that is involved in nuclear DNA replication and repair (Figure 2).
These ultramutated tumors have a distinctive mutation spectrum, exemplified by elevated
frequency of C->A transversions, as compared to lung cancer among smokers.” The 35,116
point mutations across the remaining 222 non-ultramutated tumors included 23,051 missense,
9,359 silent, 1,678 nonsense, 31 read-through, 601 splice-site mutations, and 396 in non-coding
RNA genes. The 2,493 remaining indels included 1,459 frame-shift, 829 in-frame, 103 splice-
site, and 102 in non-coding RNA genes. Of these 222 tumors, 175 were histologically classified
as endometrioid, 43 as serous, and 4 as mixed. The 175 endometrioid tumors were comprised
of 68 instances of grade 1, 68 of grade 2, and 39 of grade 3. Using 5 Bethesda markers for
microsatellite instability (MSI), 109 endometrioid tumors were classified as microsatellite stable
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(MSS), 3 as MSI-Low (MSI-L), and 63 as MSI-High (MSI-H). Based on these classifications, various
subcohorts of the 222 non-ultramutated tumors were processed using the MusSiC suite of tools®
to identify significantly mutated genes (Data File S3.2), mutation hotspots, mutual exclusivity or
co-occurrence of mutations in genes, and correlations to clinical data.

Mutational significance in endometrioid histology

Across the 175 non-ultramutated endometrioid tumors, 37 significantly mutated genes (SMGs)
were identified, with a convolution test false discovery rate (FDR) of 2% or less (Data File S3.2).
In addition to previously implicated®® genes PTEN (77.7%), PIK3CA (53.1%), PIK3R1 (37.1%),
CTNNB1 (36.6%), ARID1A (35.4%), KRAS (24.6%), CTCF (20.6%), RPL22 (12.6%), TP53 (11.4%),
FGFR2 (10.9%), ARID5B (10.9%), ATR (6.9%), and CCND1 (5.7%), several additional SMGs were
identified, including MLL4 (9.1%), BCOR (8.0%), SPOP (5.7%), SIN3A (5.7%), MKI67 (5.7%),
FBXW?7 (5.1%), FOXA2 (5.1%), and NRAS (2.9%). Consistent with previous results,™® our analysis
showed that grade 3 endometrioid tumors had a higher frequency of TP53 mutations (30.8%)
than in grade 2 (11.8%) or grade 1 (0%), while CTNNB1 mutations were more frequent in grade
1 (47.1%) and grade 2 (36.8%) than in grade 3 (17.9%). Further, 61 of the 136 tumors with
altered PTEN had multiple non-silent PTEN mutations in the same tumor (52 tumors with 2
each, 9 with 3 each). Comparison of tumors with high mutation rates due to microsatellite
instability (MSI) and lower mutation rates, revealed that MSI endometrioid tumors had a higher
frequency of MLL4 mutations (22.2%) than in microsatellite stable (MSS) tumors (1.8%). ARID1A
had a similar mutation frequency in MSI-H (34.9%) and MSS (35.8%) endometrioid tumors, but
ARID5B mutations were more frequent in MSI-H (20.6%) than in MSS (5.5%) endometrioid
tumors. RPL22 mutations were all frame-shift indels near homopolymers (Lys15), and
significantly more frequent in MSI-H (34.9%) than in MSS (0%). Similarly, ATR mutations were
mostly frame-shift indels, and more frequent in MSI-H (15.9%) than in MSS (1.8%).

Several of the novel SMGs identified have been implicated in cancers of other tissue types. For
example, FBXW?7 (F-box/WD repeat-containing protein 7) and MKI67 (Proliferation-related Ki-
67 antigen) are frequently mutated in colorectal cancers.** MLL4 (myeloid/lymphoid or mixed-
lineage leukemia 4) shares a functional domain with epigenetic regulator MLL2, which is
frequently mutated in non-Hodgkin lymphomas.*? Recurrent SPOP mutations have also been
reported in prostate cancer at, or near the F133 residue.’® Interestingly, we identified 4 novel
recurrent SPOP mutation sites (E50, M117, R121, and D140) across the 248 endometrial
tumors, with E50K mutations recurrent in 3 tumors. 8 of 14 non-silent BCOR mutations
identified across the 175 endometrioid tumors were N1459S, a highly recurrent site in our data
set that has not been reported in COSMIC. BCOR mutations have been identified in various
cancer types, including acute myeloid leukemia with normal karyotype.'*

Transcriptional repressor CTCF and transcriptional activator FOXA1 are frequently mutated in
ductal breast cancer and occur mutually exclusively.” CTCF is a negative regulator of FOXA1, a
key determinant of estrogen receptor function and endocrine response.'® Although FOXA1
mutations were absent across non-ultramutated endometrial tumors, FOXA2 mutations were
observed in 9 of the 175 endometrioid tumors, 4 of which co-occurred with CTCF mutations.
FOXA1 and FOXA2 have distinct transcriptional circuitry,”” and play a role in determining the
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gender specificity of liver cancer.'® They were also shown to oppositely regulate genes like
DIO1,* a thyroid hormone activator, which was mutated in 3 of the 175 endometrioid tumors.
It has also been shown that FOXAI-chromatin interaction is crucial in activating a cell-type-
specific enhancer downstream of the cyclin D1 oncogene (CCND1), the latter being the primary
recruitment site of estrogen receptor alpha (ESR1) in estrogen-responsive breast cancer cells.?
Mutations were also seen near the phosphorylation site (T286) of Cyclin D1 (CCND1) in 10 of
the 175 endometrioid tumors, as was previously reported.”* And a similar hotspot of mutations
in ESR1 (Y537N, Y537S, Y537C, and D538G) was seen in 4 of the 175 endometrioid tumors,
mutually exclusively of the 9 tumors with FOXA2 mutations.

Mutational significance in serous histology

In the 43 serous tumors, 14 SMGs were identified with an FDR of 10% or less (Table S3.1),
including previously implicated genes TP53 (90.7%), PIK3CA (41.9%), FBXW7 (30.2%), and
PPP2R1A (27.9%). Additional SMGs included CHD4 (16.3%), CSMD3 (11.6%), COL11A1 (11.6%),
PRPF18 (7%), SPOP (7%), and CDH19 (7%). Non-silent mutations were also seen in FGFR2 (7%),
ARID1A (7%), FOXA2 (4.6%), and USP36 (4.6%), though they were not identified as significantly
mutated possibly due to small sample size. While the majority of non-silent FGFR2 mutations
were seen in the 175 non-ultramutated endometrioid tumors (20 tumors), three serous tumors
also harbored non-silent FGFR2 mutations, including the recurrent N550K in one case.

Correlations to histological classifications and mutation spectra

The non-silent mutation statuses of 66 SMGs were correlated against qualitative clinical data
types using Fisher’s test, and against quantitative data types using the Wilcoxon rank-sum test.
These 66 SMGs were selected from the union of SMGs in the 175 non-ultramutated
endometrioid (58 SMGs) and 43 ultra-mutated serous (14 SMGs) samples (Data File S3.2). A
loose FDR threshold of 15% was used in both cohorts (<15% in at least 2 of the 3 tests). In
correlations to histology, endometrioid tumors were differentiated from serous tumors by
frequent mutations in PTEN (p=5.5E-24), CTNNB1 (p=1.8E-08), ARID1A (P = 9.5E-05), CTCF (P =
0.0001), and KRAS (P = 0.0003), while serous tumors were identifiable by mutations in TP53 (P =
6.4E-23) and PPP2R1A (P = 4.8E-04). The 66 SMGs indicated above were run through MuSiC's
clinical-correlation tool against the samples in the Figure 2 mutation spectra cohorts to identify
48 genes (Data File S3.1) that most significantly differentiated (FDR<1%) the cohorts. These 48
genes were then manually shortened to the genes in Figure 2d, based on mutation frequency
and clustering across the cohorts.

Mutations in PTEN and PIK3CA compared to other tumor lineages

PIK3CA mutations are present in greater than 10% of breast, colorectal, head and neck, and
lung squamous carcinomas. In endometrioid tumors, 33% of the PIK3CA mutations resided in
exon 2, more than twice as many as were found in these other tumor types, including uterine
serous carcinomas. Also, 22% of PTEN mutations occurred at R130, which is more than four
times the rate seen in glioblastoma or in solid tumors with frequent PTEN mutations. Thus the
location of recurrent mutations in PIK3CA and PTEN in endometrial carcinoma was different
than in most other tumor lineages.
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Figure $3.1 Non-silent mutation matrix for 13 SMGs with significantly different frequencies
across the mutation spectra cohorts. A green bar indicates that at least 1 non-silent SNV or
indel was identified in the tumor. PTEN and TP53 distinguished the CN-high serous-like tumors
from the remaining tumors. PIK3CA and PIK3R1 mutations were mutually exclusive and PIK3R1
was mutated significantly less in the CN-high group. ARID1A and ARID5B mutations also appear
to be mutually exclusive and both have low mutation frequency in CN-high group. KRAS and
CTCF mutations are rarely seen in the CN-high group. CTNNB1 mutations appear more
frequently in MSS tumors with lower mutation rates, than in endometrioid tumors with MSI.
RPL22 mutations were almost exclusive to cases with MSI. FBXW7 and PPP2R1A mutations
appear mutually exclusive, and are more common in CN-high serous-like tumors. ARID1A had a
similar non-silent mutation frequency in MSI (36.9%) and MSS endometrioid tumors (42.2%),
but a low frequency in high SCNA serous tumors (5%).
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Date File S3.1 List of SMGs with significant frequency differences between mutation spectra
cohorts.

The non-silent mutation status of 66 SMGs was collected across the 232 cases in Figure 2. The
mutation frequency of each gene in the 4 groups, was tested against the expected mutation
frequency by permutation, using Fisher’s test. Multiple testing correction was applied using a
false-discovery rate (FDR) threshold of <1%, leaving behind 48 SMGs that are significantly
differently mutated across the 4 mutation spectra groups.
datafile.S3.1.SmglListMutationCohorts.xls

Date File S3.2 SMG lists in 15 subcohorts of 248 endometrial cases

These are results of 3 tests for significantly mutated genes (SMGs) from the MuSiC suite of
tools, performed across 15 subcohorts of 248 tumor-normal pairs with exomes sequenced.
Columns A to F contain gene names, the number of non-silent mutations, the altered cases, and
the frequency of altered cases across that cohort. Column G contains the number of bases
across the exons of that gene, which have sufficient coverage for variant detection (summed
across samples in the cohort). Column H reports the number of non-silent mutations per million
base pairs with sufficient coverage. The remaining columns report p-values and false discovery
rates (FDR) for each gene tested by the three tests as described in the MuSiC manuscript6 -
Fisher’'s Combined P-value (FCPT), Likelihood Ratio (LRT), and Convolution (CT). Genes are
included if the FDR cutoffs are <15% in at least two tests as implemented in MusSiC.°
datafile.S3.2.SmglistTopGenes.xls
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Supplementary Methods for genome sequencing:

WGS (low-pass) Based Analysis of Structural Variations.

From 700 to 500 ng of each sample gDNA were sheared using Covaris E220 to about 250 bp
fragments, than converted to a pair-end Illumina library using KAPA Bio kits with Caliper
(PerkinElmer) robotic NGS Suite according to manufacturers’ protocols. All libraries were
sequenced by HiSeq2000 using one sample — one lane, pair-end 2x51bp setup. Tumor and its
matching normal were usually loaded to the same flowcell. Average sequence coverage was
found to be 6.07, read quality 38.6, 94% reads mapped. Raw data were converted to FASTQ
format then were fed to BWA alignment software to generate .bam files.

Identification of copy number variants. To characterize somatic copy number alterations in
the tumor genome, we applied a new algorithm called BIC-seq to low-coverage whole-genome
sequencing data. First, we counted the uniquely aligned reads in fixed-size, non-overlapping
windows along the genome. Given these bins with read counts for tumor and matched normal
genomes, BIC-seq attempts to iteratively combine neighboring bins with similar copy numbers.
Whether the two neighboring bins should be merged is based on Bayesian Information Criteria
(BIC), a statistical criterion measuring both fitness and complexity of a statistical model.
Segmentation stops when no merging of windows improves BIC, and the boundaries of the
windows are reported as a final set of copy number breakpoints. Segments with copy ratio
difference smaller than 0.1 (log2 scale) between tumor and normal genomes were merged in
the post-processing step to avoid excessive refinement of altered regions with high read
counts.

Translocation discovery with BreakDancer and MEERKAT. Structural Variation detection is
performed with the program BreakDancer on a .bam file constructed from HiSeq sequencing of
each tumor pair. The first step requires a configuration file of each bam file for each tumor pair
with the bam2cfg.pl perl module of the program. After the configuration file, the perl module
BreakDancerMax.pl is run on the configuration file in order to call structural variants in the
tumor and control files. Each tumor structural variant file is filtered with its matched normal to
remove any false positives. Structural variations are also detected by Meerkat which require at
least two discordant read pairs supporting one event and at least one read covering the
breakpoint junction. Each variant detected from tumor genome is filtered with all normal
genomes to remove germline events. The structural variants are filtered out if both breakpoints
fall into simple repeats or satellite repeats.

We detected 1,166 candidate structural variant (inter-, intra-, del-, inv-) events
(average=11/tumor). Among the translocation events that involved at least one gene, 358 had
one of the breakpoints in an intergenic region, whereas the remaining 551 juxtaposed coding
regions of two genes in putative fusion events of which 423 were predicted to code for in-frame
events (Table S3.1).
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Validation of translocation hits. To understand the translocations at the structural level, we
PCR amplified the junction fragments using primers from regions of the two chromosomes
close to the region of putative breakpoints and the DNA from this product was subjected to
sequencing using the Sanger method on a capillary electrophoresis unit. We attempted to
validate the translocations using two different approaches. MEERKAT determines
translocations on the basis of discordant reads as well as reads that span the translocation
junction (split reads). We also attempted to validate several translocations by attempting to
PCR amplify the junctions of the translocation and sequencing the products. Based on these
two approaches we validated 29/50 (58%) of translocations. Therefore, it is possible that the
false discovery rate could be as high as 42%.
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Table S3.1 Genes involved in recurrent translocations in endometrial cancer from 106 tumor /

normal pairs.
Detected by Detected by
Genes Type Samples DNA RNA
Interchromosomal,
ARHGAP Deletion, Intrachromosomal 7 All
Intrachromsomal, Deletion,
BCL Interchromosomal 5 All 2
Interchromosomal,
AKAP Deletion, Intrachromosomal 5 All
EIF2C2 Intrachromsomal 3 All
CRHR1-MAPT Intrachromsomal 2 All
GNG5-RPF1 Inversion 2 All
CACNA2D2 Inversion, Deletion 2 All
Inversion,
ASXL2 Interchromosomal 2 All
Interchromosomal , Tandem
CSNK1D/1E/1G2 Duplication 4 2 4
CRHR1-MAPT Interchromosomal 2 All
NCOA3-EYA2 Tandem Duplication 1 1
GADD45GIP-CSTF1  Interchromosomal 1 1 1
CDK12* Inversion or Translocation 3 1 2
ERBB2-TSPAN11 Interchromosomal 1 1
PIK3CA-KCNMB3 Inversion 1 1
SRP68* Deletion or Translocation 2 1 1
EYA2-SLC2A10 Tandem Duplication 1 1 1

* Fusions with
different partners
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Figure S3.2 Recurrent translocations involving members of the BCL family of genes.

A. Circular diagrams showing CNV and translocations in four tumors. Translocations involving
BCL genes are indicated in blue. B. Translocation involving TEX33 and BCL2L11 genes. Exon-
intron structures of the two genes and the sites of breakpoints are shown. C. Sequence at the
translocation breakpoints. A PCR fragment spanning the translocation breakpoint was isolated
and sequenced. A second sequence spanning the breakpoint was identified by our MEERKAT
software. Nucleotides in red correspond to TEX33 gene and nucleotides in blue correspond to
BCL2L11 gene. D. Predicted structure of the fusion protein resulting from the translocation. The
fusion results in the loss of the BIM domain of BCL2L11 that is required for intrinsic
mitochondrial mediated apoptosis. Loss of the BIM domain may cause reduction in apoptosis.
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Supplementary Methods S4: RNA sequencing.

Identification of Gene Expression-Based Subtypes

The gene expression profiling of 333 endometrial tumors was filtered to eliminate unreliably
measured genes and to limit the clustering to relevant genes.”” Genes that are not well-
characterized on the basis of HGNC’s description or have small expression values in at least
one-fourth of the samples® were removed. We then filtered out genes with small signal-to-
noise ratio (SNR) where SNR was calculated per gene by subtracting from the gene estimate the
mean expression value across patients and then dividing it by its standard deviation across
patients." Next, we calculated the gene expression profile variances across the samples that
were subsequently used to rank the genes in a descending order. The final filter excluded
genes with smaller variability and selected the top 15 percent of genes with the highest values
of variances. Implementation of these filters resulted in 1368 genes with reliably measured and
highly variable expression. The expression data were then median centered and log
transformed.

Next, we applied k-means unsupervised clustering with a randomized selection of the initial
cluster centroids from the samples as our basis for consensus clustering, to detect robust
clusters. This clustering approach uses a two-phase iterative algorithm that assigns samples to
clusters so that the sum of distances from each sample to its cluster centroid, over all clusters,
is @ minimum. The distance metric was one minus the Pearson’s correlation coefficient and
each centroid is the component-wise mean of the points in that cluster, after centering and
normalizing those points to zero mean and unit standard deviation. The procedure was
repeated over 1000 times, each with a new set of initial cluster centroid positions to avoid a
local minimum. Silhouette width values were calculated accordingly for all samples. Silhouette
width is defined as the ratio of each sample’s average distance to samples in the same cluster
to the smallest distance to samples not in the same cluster.

Average silhouette width and percentage of samples with larger silhouette width of greater
than 0.2 were calculated for different number of clustering, k (Figure S4.4). Except the two-
cluster assignment that is essentially driven by the histopathological classification, clustering
with k = 3 gave the highest average silhouette value and percentage of number of patients with
larger silhouette values, and was thus subject to further investigation.

We applied significance analysis of microarray (SAM)* to identify marker genes that are
associated with the transcriptome subtypes. Each class was compared to the other two classes
combined, and each class was compared to the other individual classes in a pairwise manner.
We provided both rank order and test statistic for all of these analyses." Genes exhibiting
positive expression difference and statistical significance in all these analyses were selected as
gene signatures associated with the subtypes. A combined P value for each gene was
calculated and used for ranking the genes in the gene signatures. The subtype of TCGA samples
and the normalized gene expression profiling were visualized in the heatmap using the 450
genes (Figure S4.1, 150 top ranked genes per class selected from the gene signatures).5 The
identified gene signatures were then subject to pathway analysis (Ingenuity Pathway Analysis,
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version 12710793) and the statistical significance of pathway enrichment was determined by
Fisher’s exact test (Figure S4.5). The results from the pathway analysis were used to term the
gene expression clusters. In addition, both hormone receptors (ESR1 and PGR) were
significantly higher in the hormonal subtype at both RNA and protein levels (Figure S4.6). A
similar approach was applied to the RPPA profiling in order to identify the differentially
expression cancer- related proteins and phosphor-proteins that are associated with the gene
expression subtypes (Supplementary Methods S5).

Unsupervised Clustering

Unsupervised k-means clustering of 333 endometrial tumors using 1,368 mRNAs that had most
variable expression identified three robust clusters, termed ‘mitotic’, ‘hormonal’, and
‘immunoreactive’ based on pathway analysis (Fig. S4.1). The mitotic subtype (n=126) was
characterized by TP53 mutation and included most of the serous/mixed histology tumors (57 of
62) and endometrioid grade 3 tumors (57 of 102). High expression of ESR1, PGR, and their
downstream targets in the hormonal subtype (n = 111) revealed unique biology in this group of
patients, who may be more responsive to hormonal therapy (Fig. $S4.3). Intriguingly, immune
response genes characterized the immunoreactive subtype (n = 96); however, this subtype
showed the same level of infiltrating immune cells as the other subtypes (Fig. S4.7). It is
possible that tumor cells contributed to the immunoreactive gene expression; alternatively,
immune cells in the immunoreactive subtype might be activated, contributing to the unique
tumor environment. Both hormonal and immunoreactive subtypes were primarily composed
of endometrioid grade 1 or 2 tumors and PTEN mutated cases.

Lymphocyte Contents Across the Gene Subtypes

To determine whether or not the cluster assignment was biased from the immune cell infiltrate,
we examined the percentage of lymphocytes, macrophages and neutrophils from both the top
and bottom sides of non-malignant tissue. The one-way ANOVA test showed that there was no
significant difference in the percentage of individuals or their summation (Figure S4.7),
suggesting that the immunoreactive subtype was due to the underlying molecular features
instead of contamination from the inflammatory cells in the tumor tissue.
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Figure S4.1 Gene expression subtypes in endometrial carcinomas.

Three gene expression subtypes were identified via unsupervised k-means clustering of TCGA
endometrial tumors and significantly correlated with clinical (histology and endometrioid
grade) and molecular (TP53 / PTEN mutations) features, and mutation clusters.
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Figure S4.2 Gene expression across integrated subtypes. (A) MLH1 mRNA expression is
significantly lower in the MSI cluster. (B) PGR mRNA expression is significantly higher in the CN
low cluster. (C) CDKN2A mRNA expression is significantly higher in the CN high cluster.
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Figure S4.5 The most significantly enriched pathways in different gene expression subtypes.
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Figure S4.6 Both hormone receptors (ESR1 and PGR) were significantly higher in the hormonal
subtype at both RNA and protein levels.
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Identification of fusion genes from RNA sequencing data - Methods

To identify fusion genes based on whole transcriptome sequencing data, full 76 bp Illumina
reads were first aligned against Ensembl 68 transcript sequences. Reads that did not align
against the transcriptome were then aligned against the GRCh37 human reference genome. In
both steps, alighments were performed using Bowtie version 2.0.0-beta7, with the mismatch
threshold parameter set to —score-min L,0,-0.2 to allow for a maximum of two nucleotide
mismatches. Reads that did not align to the transcriptome or genome were split to produce 25
bp anchors from both ends of the read. The anchors were aligned against the GRCh37 reference
genome with zero mismatches allowed. Anchor pairs where one or both anchors did not align
to the genome were discarded, as were anchors that aligned within 100 kb of one another or
within a single gene. To determine the exact location of the fusion junction corresponding to
each remaining anchor pair, the anchors were extended to full 76 bp reads, with the breakpoint
positioned so that the number of nucleotide mismatches between the breakpoint flanks and
the 76 bp read was minimized. Microhomologies at the fusion junction often render it
impossible to exactly locate the breakpoint, so a range of breakpoint locations was accepted if a
microhomology was found. If a region of microhomology overlapped an exon boundary, the
RNA level breakpoint was fixed to the exon boundary.

Fusion genes involving immunoglobulin or HLA loci were discarded, because these
hypervariable regions often produce many false positive fusions. Fusion genes involving
ribosomal RNA genes and related proteins were also discarded, as highly expressed genes such
as these often display a high number of PCR chimaeras, technical artifacts where pieces of two
transcripts are merged together during PCR amplification.

Putative fusion genes were also discarded if they involved more than 2 nucleotide mismatches
in all junction overlapping reads, or if all the reads together did not cover at least 40 bp on both
sides of the junction. Fusion gene candidates were also discarded if the flanks of the two
breakpoints were too homologous. Finally, a fusion gene candidate was discarded if the
candidate was also found in one of the three available normal tissue samples.

Identification of fusion genes from RNA sequencing data - Results

We identified NCOA3-EYA2 fusions in two endometrial cancer patients. Patient TCGA-AP-A053
harbored a fusion that fused NCOA3 exon 1 to EYA2 exon 2. Patient TCGA-D1-A179 harbored a
fusion that fused NCOA3 exon 21 to EYA2 exon 8. The two genes are both located in
chromosome 20, with EYA2 situated directly upstream of NCOA3. The fusion gene probably
arises due to a 500 kb tandem duplication in this locus. NCOA3 is a nuclear receptor coactivator
that is frequently amplified and overexpressed in breast and ovarian cancers. It is therefore
possible that NCOA3-EYA2 fusions merely represent a passenger event that arises as a side
effect of NCOA3 amplification.

A single GADD45GIP1-CSTF1 fusion was detected in patient TCGA-D1-A17K. In the fusion,
GADDA45GIP1 exon 1 is fused to CSTF1 exon 6. The fusion is caused by interchromosomal
rearrangement and does not produce a functional fusion protein as the fusion fuses the CDS of
GADDA45GIP1 to the 3’ UTR of CSTF1. GADD45GIP1 is a nuclear-localized protein that regulates
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the cell cycle by inhibiting G1 to S phase progression. CSTF1 is a cleavage stimulation factor. We
hypothesize that the fusion causes GADDA45GIP1 loss of function, leading to cell cycle
deregulation.

We observed a complex CDK12 rearrangement in patient TCGA-AP-A053. This patient harbored
the fusions PSMD3-CDK12 and CDK12-EIF4A3. In the former fusion, PSMD3 exon 7 is fused to
CDK12 exon 6, resulting in the formation of a non-frameshifted fusion protein. The location of
the two genes suggests that the fusion is probably caused by a 500kb tandem duplication on
17q. The genes CDK12 and PSMD3 flank the ERBB2 locus on chromosome 17, suggesting that
the fusion is a passenger event that arose as a side effect of ERBB2 amplification.
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Table S4.1: Putative fusion candidates identified from RNA sequencing data

Fusion Junction Frequency | Mechanism Predicted biological impact
hr20:+:46130763 -
i r Variant #1 produces full length
EYA2. Variant #2 produces an
chr20:+:45618640; L . . . .
NCOA3-EYA2 chr20:+:46280020 - 2/322 Tandem duplication |n-fram.e chlm.erlc pr9te|n.
S Fusion is possibly a side effect
chr20:4:45717878 of NCOA3 amplification.
chr10:-:104445573
ARL3-ACO1 -> 1/322 Interchromosomal In-frame chimeric protein.
chr9:+:32440463
chr9:+:74764598 -> . . .
GDA-EPS8L2 chrll:+:720062 1/322 Interchromosomal In-frame chimeric protein.
chrl2:-:6463604 -> L SCNN1A coding region fused
SCNN1A-LPAR5 chrl2:-:6730630 1/322 Tandem duplication with LPARS 5’-UTR.
chrl1:-:1509858 -> . . . .
SSU72-ASCC1 chr10:-:73887925 1/322 Interchromosomal Frameshifted chimeric protein.
chr2:+:153437563 - . .
FMNL2-GPBARL | > 1/322 Deletion ;I'\I/'t::' LGZP;‘;dé;gSfej'T‘;” fused
chr2:+:219127403 ’
chr7:-:99677159 -> L 5’-UTR of ZNF3 fused with the
ZNF3-ACTL6B chr7:-:100247758 | 1/ 3%2 Tandem duplication ACTL6B coding region.
chr22:+:30762237 -
CCDC157-GJB1is al ibl
MTMR3-GJB1 > 1/322 Interchromosomal (same junction |ssea jznpc(;s)y N
chrX:+:70443542 ) a '
chrl6:+:69600277 -
NFAT5-SNTB2 > 1/322 Tandem duplication In-frame chimeric protein.
chrl6:+:69279505
chr20:+:45523626 - , .
EYA2-SLC2A10 > 1/322 Tandem duplication fruizzttezcs'i(s:;:?g: i
chr20:+:45353680 )
chrl:+:44160565 -> . .
KDM4A-PNKD chr2:+:219182678 1/322 Interchromosomal PNKD breakpoint is intronic.
chrl7:-:79589192 -
NPLOC4-SIRT7 > 1/322 Tandem duplication Frameshifted chimeric protein.
chrl7:-:79872406
KIAAO100- chrl7:-:26945809 - o . . .
MYO18A > 1/322 Tandem duplication In-frame chimeric protein.
chrl7:-:27449271
chr22:+:38329119 -
MICALL1-IFT122 > 1/322 Interchromosomal In-frame chimeric protein.
chr3:4+:129236312
chrl:-:31532051 > L . . .
PUM1-NKAIN1 chrl-:31661034 1/322 Tandem duplication In-frame chimeric protein.
chrl7:+:73781065 -
UNK-MYOQO15B > 1/322 Tandem duplication Frameshifted chimeric protein.
chrl7:+:73620851
chrl7:-:80223562 - . . . .
CSNK1D-POLR2E > chr19:-:1090144 1/322 Interchromosomal Frameshifted chimeric protein.
DOTI1L-CSNK1G2 | chr19:+:2180755-> | 1/322 Tandem duplication DOTLL coding region fused
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chr19:+:1969507

with the CSNK1G2 5’-UTR.

chr2:-:31360824 ->

GALNT14 coding region fused

chr3:-:48520665

GALNT14-BRE 1/322 | i
chr2:+:28117417 / nversion with the BRE 5’-UTR.
chr7:-:95926210 -> L . . . .
SLC25A13-SHFM1 chr7:-:96324203 1/322 Tandem duplication Frameshifted chimeric protein.
chr2:+:159922483 -
TANC1-SLCAA1AP | > 1/322 Intrachromosomal Frameshifted chimeric protein.
chr2:+:27907904
GADDA5GIP- chr19:-:13067677 - Frameshifted chimeric prqteln.
CSTFL > 1/322 Interchromosomal GADDA45GIP1 loss of function ->
chr20:+:54978524 cell cycle deregulation.
chrl7:+:38151321 - In-frame chimeric protein.
PSMD3-CDK12 > 1/322 Tandem duplication Fusion is possibly a side effect
chrl7:+:37657503 of ERBB2 amplification.
chrl7:+:37657692 -
CDK12-EIF4A3 > 1/322 Inversion Involves an unannotated exon.
chrl7:-:78116886
In-frame chimeric protein.
- ->
NSUN5-BCL7B chr7:-:72722428 1/322 Tandem duplication Fusion is possibly a side effect
chr7:-:72957974 e
of FZD9 amplification?
chrl:+:147087648
BCL9 codi ion fused with
BCL9-RASAL2 > 1/322 Deletion . RASZOLZ'?i:sﬁ'O" usedwt
chrl:+:178399568 ’
chr1l7:+:37868300 -
ERBB2-TSPAN11 > 1/322 Interchromosomal Involves an unannotated exon.
chr12:+:31110098
chr3:+:178886391 -
PIK3CA-KCNMB3 > 1/322 Inversion Involves an unannotated exon.
chr3:-:178968722
chrl7:-:74063298 -
SRP68-MIEN1 > 1/322 Deletion In-frame chimeric protein.
chrl7:-:37886544
Frameshifted chimeric protein.
chrl:+:15953293 -> N DDI2 loss of function may lead
DDI2-EFHD2 chrl:+:15752367 1/322 Tandem duplication to loss of DNA damage
response.
chr3:-:66550614 -> . . . . .
LRIG1-SLC25A26 chr3:+:66419902 1/322 Inversion Frameshifted chimeric protein.
chr10:-:22217969 - DNAIJC1 coding region fused
DNAJC1-SFTPD 1/322 Intrach I
> chr10:-:81706418 | */ nirachromosoma with SFTPD 5"-UTR.
chr22:-:38694791 - . . .
CSNK1E-SPATA21 > chrl:+:16717870 1/322 Interchromosomal In-frame chimeric protein.
chr22:+:30279348 - MTMR3 5’-UTR fused with the
MTMR3-HEXIM2 1/322 Interch |
> chr17:+:43246382 | 1/ nterchromosoma HEXIM2 coding region.
chr22:-:38794443 - CSNK1E 5’-UTR fused with the
CSNKIE-DYNLRBL |\ 50-+:33114073 | +/ 322 Interchromosomal DYNLRB1 coding region.
chr8:-:81733609 -> . . .
ZNF704-GFER chrl6:+:2035867 1/322 Interchromosomal In-frame chimeric protein.
chrl7:-:7106222 -> . . . .
DLG4-SHBG chrl7-+:7536522 1/322 Inversion In-frame chimeric protein.
- ->
QRICH1-SHISAS chr3:-:49094295 1/322 Deletion Frameshifted chimeric protein.
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chr16:+:57171194 -

> chr9:+:131122613

CPNE2-NUP93 > chrl6:4:56857619 1/322 Tandem duplication In-frame chimeric protein.
POLR2B-FIP1L1 zg:z:gzggg;;g i 1/322 Tandem duplication In-frame chimeric protein.
AACS-MAL f;ﬁ;j;igi;;zz 1/322 Interchromosomal Frameshifted chimeric protein.
ocosmeran | ST T e | e e | g e e
CTTN-ANO1 ihcrhlrll:z::z:c23297957?;)(256-1 1/322 Tandem duplication In-frame chimeric protein.
TRHDE-LGR5 ihcrhlrzlzzzflzolzgfs_ﬁ 1/322 Tandem duplication Frameshifted chimeric protein.
o | S0 T ot o o
ITCH-RALY ihcfggf:zagz‘r’elllgsaszé 1/322 Tandem duplication g;&i’,‘_%;i_fused with the
KIF26A-CKB c: rclhi:1+z;:1-04618798 1/322 Inversion E:.irzniAh:(::?;ireungzn fused
1103988842
ODF2-SLC27A4 chr9:+:131236020 - 1/322 Tandem duplication Frameshifted chimeric protein.
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Supplementary Methods S5: Reverse phase protein arrays

RPPA experiments and data processing

Protein was extracted using RPPA lysis buffer (1% Triton X-100, 50 mmol/L Hepes (pH 7.4), 150
mmol/L NaCl, 1.5 mmol/L MgClI2, 1 mmol/L EGTA, 100 mmol/L NaF, 10 mmol/L NaPPi, 10%
glycerol, 1 mmol/L phenylmethylsulfonyl fluoride, 1 mmol/L Na3V04, and aprotinin 10 ug/mL)
from human tumors and RPPA was performed as described previously. Lysis buffer was used
to lyse frozen tumors by Precellys homogenization. Tumor lysates were adjusted to 1 pg/uL
concentration as assessed by bicinchoninic acid assay (BCA) and boiled with 1% SDS. Tumor
lysates were manually serial diluted in two-fold of 5 dilutions with lysis buffer. An Aushon
Biosystems 2470 arrayer (Burlington, MA) printed 1,056 samples on nitrocellulose-coated slides
(Grace Bio-Labs). Slides were probed with 170 validated primary antibodies (Data File S5.1)
followed by corresponding secondary antibodies (Goat anti-Rabbit IgG, Goat anti-Mouse IgG or
Rabbit anti-Goat IgG). Signal was captured using a DakoCytomation-catalyzed system and DAB
colorimetric reaction. Slides were scanned in CanoScan 9000F. Spot intensities were analyzed
and quantified using Microvigene software (VigeneTech Inc., Carlisle, MA), to generate spot
signal intensities (Level 1 data). The software SuperCurveGUI,S’5 available at
http://bioinformatics.mdanderson.org/Software/supercurve/, was used to estimate the EC50
values of the proteins in each dilution series (in log2 scale). Briefly, a fitted curve ("supercurve")
was plotted with the signal intensities on the Y-axis and the relative log2 concentration of each
protein on the X-axis using the non-parametric, monotone increasing B-spline model.' During
the process, the raw spot intensity data were adjusted to correct spatial bias before model
fitting. A QC metric® was returned for each slide to help determine the quality of the slide: if the
score is less than 0.8 on a 0-1 scale, the slide was dropped. In most cases, the staining was
repeated to obtain a high quality score. If more than one slide was stained for an antibody, the
slide with the highest QC score was used for analysis (Level 2 data). Protein measurements
were corrected for loading as described*>® using median centering across antibodies (level 3
data). In total, 170 antibodies and 316 samples were used. Final selection of antibodies was also
driven by the availability of high quality antibodies that consistently pass a strict validation
process as previously described.” These antibodies are assessed for specificity, quantification
and sensitivity (dynamic range) in their application for protein extracts from cultured cells or
tumor tissue. Antibodies are labeled as validated and use with caution based on degree of
validation by criteria previously described.’

Two RPPA arrays were quantitated and processed (including normalization and load controlling)
as described previously, using MicroVigene (VigeneTech, Inc., Carlisle, MA) and the R package
SuperCurve (version-1.3), available at http://bioinformatics.mdanderson.org/OOMPA.* Raw
data (level 1), SuperCurve nonparametric model fitting on a single array (level 2), and loading
corrected data (level 3) were deposited at the DCC.

Data normalization
We performed median centering across all the antibodies for each sample to correct for sample
loading differences. Those differences arise because protein concentrations are not uniformly
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distributed per unit volume. That may be due to several factors, such as differences in protein
concentrations of large and small cells, differences in the amount of proteins per cell, or
heterogeneity of the cells comprising the samples. By observing the expression levels across
many different proteins in a sample, we can estimate differences in the total amount of protein
in that sample vs. other samples. Subtracting the median protein expression level forces the
median value to become zero, allowing us to compare protein expressions across samples.
Among 316 samples with RPPA data, 302 have available clinical data; and nine samples were
removed due to the concern of data quality. Further analyses were performed on the remaining
293 samples.

Surprisingly, processing similar sets of samples on different slides of the same antibody may
result in datasets that have very different means and variances. Neely et al.? processed clinically
similar ALL samples in two batches and observed differences in their protein data distributions.
There were additive and multiplicative effects in the data that could not be accounted by
biological or sample loading differences. We observed similar effects when we compared the
two batches of endometrial tumor protein expression data. To remove those technical effects,
we median centered the samples on each slide. Then, we divided the slide by its standard
deviation. The procedure adjusted the location and scale of each slide, so that its median
became zero and standard deviation became one. Multiple slides from different batches could
then be compared against each other. Of course, that meant that we couldn’t directly compare
the expression levels of one protein with another, but RPPA has already that limitation built in.
Our normalization procedure significantly reduced technical effects, thereby allowing us to
merge the datasets from different batches.

Hierarchical clustering

We used bootstrap to resample (N=3000) the proteins to estimate the number of sample
clusters. Pearson correlation was used as distance matrix and Ward was used as a linkage
algorithm in the unsupervised hierarchical clustering analysis. This method clustered samples
and counted how frequently two samples are in the same cluster. The bootstrap resampling
analysis identified five robust sample clusters. The five clusters and their protein expression
patterns can be viewed through the next generation clustered heat map (NG-CHM) pipeline
developed at the University of Texas MD Anderson Cancer Center.

Unsupervised clustering

Unsupervised hierarchical clustering analysis revealed five robust protein clusters (Fig. S5.1).
These five protein subtypes were significantly correlated with histology (P=2.2x10'®) and grade
(P=1.57x10") as well as with the subtypes/clusters defined by other genomic data including
copy number variation (P=1.67x10""), DNA methylation (P=2.42x10"°), MHL1
hypermethylation (P=5.0x10"), microRNA (P=2.54x10"), and mRNA (P=1.4x10""). RPPA cluster
1 (signaling on) was associated with activation of signaling pathways, by expression of hormone
receptors, and by an enrichment of PIK3R1 and KRAS mutations. RPPA cluster 2 (serous) mainly
consisted of serous or serous-like samples with a strong concordance with mRNA cluster 1 and
an enrichment of TP53 mutations. RPPA cluster 3 (signaling off) was associated with low levels
of signaling pathway activity. RPPA cluster 4 (RAS/reactive) had selective activity of the
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RAS/MAPK pathway without PI3K pathway activation as well as evidence for a reactive stroma.
RPPA cluster 5 (reactive) had high levels of collagen VI, caveolin 1, and VEGFR compatible with
activated stroma, and a depletion of PIK3R1 and KRAS mutations.

Supervised clustering

We measured the expression of 170 cancer-related proteins and phospho-proteins using RPPA
in 293 qualified tumor samples. Supervised analysis of the RPPA profiling data identified 36 of
170 cancer-related proteins and phospho-proteins (e.g., TP53, CCNB1, CDK1, ER, PR, AR, p-
STAT3) significantly associated with and supportive of the transcriptome clusters (Fig. S5.2). In
particular, elevated phosphorylated STAT3 (STAT3-pY705) was observed in the immunoreactive
subtype, consistent with a key role of STAT3 transcriptional activity in regulating immune
response. The integrated CN high group had elevated CCNE1, CCNB1, and CDK1 consistent with
an increased proliferative rate as well as elevated p53 and phospho-CHK2 suggestive of
elevated levels of DNA damage. The CN low group had elevated SYK, which is associated with
lymphocytic infiltration.

Correlation and survival analysis

Chi square test was used to evaluate the correlations between RPPA clusters and histology,
grade, stage, or the clusters determined by other genomic data. Log-rank test and Kaplan-Meier
survival curves were used to compare overall survival (OS) or progression-free survival (PFS)
between different clusters of patients. A significance level of 0.05 was used (Table S5.1).

WWW.NATURE.COM/NATURE | 38



doi:10.1038/nature12113

AT E N SUPPLEMENTARY INFORMATION

Table S5.1. Chi square test estimates correlation between RPPA clusters and clinical variables,

clusters defined by other platforms, and gene mutations.

RPPA Clusters vs

P

Clinical Variables

Histology 2.2e-16
Grade 1.57e-07
Stage 0.098

Clusters Defined by Other Platforms

CNA-K4 1.67e-11
Methylation 2.42e-10
MHL1 5.01e-07
Hypermethylation
Micro RNA 2.54e-09
mRNA 1.4e-13
Mutation 0.17
Gene Mutation
PIK3CA 0.57
PIK3R1 0.014
PTEN 2.35e-10
KRAS 0.014
ARID1A 0.13
TP53 3.7e-11
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Figure S5.1 Unsupervised hierarchical clustering of 293 samples and 170 antibodies, showing
5 RPPA clusters. The green cluster (shown in second row from top) corresponds to the serous
and serous-like samples (shown in third row from top). The heat map can be dynamically

explored at:
http://bioinformatics.mdanderson.org/main/TCGA/Supplements/NGCHM-UCEC
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S4.1.
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Data File S5.1 RPPA Antibody List
datafile.S5.1.RPPAAntibodyList.xls
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Supplementary Methods S6: miRNA sequencing

To identify compact lists of genes and miRNA mature or star strands that were differentially
abundant between unsupervised groups of tumor samples, we calculated minimal sets of
strands that allowed a classifier to discriminate samples in a group from all other samples.1
Such a set was defined by a minimum in a profile of the out-of-bag (OOB) error as a function of
the number of most-important variables, using an accuracy importance metric (Fig. S5.2). We
note that discriminatory calculations were done between groups of tumor samples, rather than
between tumor and normal samples.

Unsupervised consensus clustering'’ of miRNA-seq abundance profiles for 367 tumor samples
suggested six sample groups (Supplementary Fig. 6.1). The consensus membership heatmap,
per-group silhouette width profiles, and average silhouette widths of at least 0.84 suggested
that the groups were distinct. Differences between groups were significantly associated with
hypermethylated MLH1, histology, grade, and stage, but not overall or PFS. All groups except
the more heterogeneous group 4 had few discriminatory miRNAs (Supplementary Fig. 6.2).

Unsupervised groups that were more homogeneous in the consensus membership heatmap
and the silhouette width profile tended to have smaller sets of discriminatory miRNAs (e.g.
groups 2, 5 and 6 vs. groups 3 and 4 in Fig. S5.2). A microRNA that was assigned a high classifier
importance had an abundance distribution in a group that was distinct relative to all other
samples (e.g. group 3 in Fig. S5.2). Regardless of the importance assigned by the classifier,
discriminators (mature and star strands) that are more abundant are likely to be more
influential in disease processes,” and we show abundance distributions as box-whisker plots
only for the most highly-ranked and abundant discriminators.

Group 1’s 34 samples were discriminated by the mature and star strands of miR-10b, and -503,
-584, -34a and -361. The abundance of miR-10b’s mature strand was comparable to adjacent
normals for samples in this group, but was far lower in all other tumor groups. While the
downregulated star strand (miR-10b*) has been reported as associated with cell cycle inhibition
in breast tumors,® and this strand was downregulated in all tumor groups except group 1, its
abundance was low in all samples (<60 RPM), and its importance in endometrial disease
processes is uncertain.

Cluster 2 had lower purity values than most other groups (Fig. S5.3c) and a relatively
homogeneous consensus heatmap. The 56 samples in this cluster were discriminated by the
mature strands of miR-143 and -1. Of these, only miR-143 was relatively abundant; its
abundance was lower in all tumor groups than in tissue normals.

Cluster 3’s 36 samples had high purity values but relatively inhomogeneous consensus
membership values. It was discriminated by miR-9, -183 and -182, abundances of which were
high relative to other tumor samples and to normals. The star strand of mir-9 was also
discriminatory, but its abundance in this group was low (median ~100 RPM).
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Cluster 4 consisted of 92 samples and contained most of the serous grade 3 tumors. Its purity
was relatively low (Fig. S5.3c). Consistent with it containing a relatively large fraction of atypical
samples, the cluster had a long list of 18 discriminators. The most important discriminators
were the mature and star strands of miR-21; the star strand was relatively abundant in this
cluster (~3000 RPM).

Cluster 5’s 73 samples contained the highest proportion of hypermethylated MLH1 and high
MSI. It was discriminated largely by the mature strands of miR-148a and -375, both of which
were more abundant in this group than in other tumor groups or in normal tissue. Validated
targets of miR-148a include CDNK1B, DNMT1 and DNMT3B.* Mir-375’s pre-miRNA abundance
was anticorrelated to RPPA data for «cyclin E1 (CCNE1l, r=-0.413, P=5x10'8,
explorer.cancerregulome.org).

Cluster 6’s 76 samples were discriminated by miR-10a, -21, -148a and -103. The abundances of
the first three were relatively high, with that of miR-10a the highest and most distinct. The
abundance of the mir-10a pre-miRNA was anticorrelated to RPPA data for CDKN1A (r=-0.38, P =
6x10°®, explorer.cancerregulome.org).
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Supplemental Figure 6.1. NMF consensus clustering identified six sample groups. The NMF
input was the normalized abundance (RPM) matrix for the 304 most-variant mature and star
strands, for 367 tumor samples. a) Consensus membership heatmap for six clusters. Horizontal
bands below the heatmap show (top to bottom) atypical members of each cluster (black) based
on f=0.95 and f=0.90 per-cluster silhouette width thresholds, then covariates with Chi-square
association P values. b) Profiles of cophenetic correlation coefficient and average silhouette
width for solutions with 2 to 15 clusters, with the preferred six-cluster solution indicated by
gray triangles. ¢) Summary group metrics (number of samples, average silhouette width), and
silhouette width profile with samples in consensus heatmap order. d) Kaplan Meier curves for
overall survival and recurrence/progression.
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Supplemental Figure 6.2. Discriminatory miRNA mature or star strands used by a classifier to
discriminate samples in a tumor group from all other tumor samples. Tables show the miRNA
strands corresponding to the first minimum in a profile of the out-of-bag (OOB) error as a
function of the number of most-important variables, using an accuracy metric.> Box-whisker
plots show per-group RPM abundances for the most highly-ranked and abundant miRNAs, and
include 19 tissue normals. MicroRNA names are a base name with a miRBase v16 MIMAT ID
that is specific to either a 5p or a 3p strand.
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Supplemental Figure 6.3. Relationship of unsupervised clusters to sequencing platform, tumor
purity and BCR batch number. a,b) Distribution of tumor purity from SNP6 data: a) for 282
samples, and b) by BCR batch. The blue box shows samples sequenced on GAllx systems. c)
Distribution and summary table for purity as a function of unsupervised groups. d) NMF
heatmap showing consensus membership values, with sequencing platform, purity profile and
BCR batches indicated.
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Supplementary Methods S7: DNA methylation

Array-based DNA methylation assay

We used two lllumina Infinium DNA methylation platforms, HumanMethylation27 (HM27)
BeadChip and HumanMethylation450 (HM450) BeadChip (lllumina, San Diego, CA) to obtain
gene promoter and gene body DNA methylation profiles of 373 TCGA endometrial cancer
samples and 27 adjacent non-tumor endometrial tissue samples. The Infinium HM27 array
targets 27,578 CpG sites located in proximity to the transcription start sites of 14,475 consensus
coding sequencing (CCDS) in the NCBI Database (Genome Build 36). The Infinium HMA450 array
targets 482,421 CpG sites and covers 99% of RefSeq genes, with an average of 17 CpG sites per
gene region distributed across the promoter, 5’UTR, first exon, gene body, and 3’UTR. It covers
96% of CpG islands, with additional coverage in island shores and the regions flanking them.
The assay probe sequences and information on each interrogated CpG site on both Infinium
DNA methylation platforms can be found in the MAGE-TAB ADF (Array Design Format) file
deposited on the TCGA Data Portal.

We performed bisulfite conversion on 1 ug of genomic DNA from each sample using the EZ-96
DNA Methylation Kit (Zymo Research, Irvine, CA) according to the manufacturer’s instructions.
We assessed the amount of bisulfite converted DNA and completeness of bisulfite conversion
using a panel of MethyLight-based quality control (QC) reactions as previously described." All
the TCGA samples passed our QC tests and entered the Infinium DNA methylation assay
pipeline.

Bisulfite-converted DNA was whole genome amplified (WGA) and enzymatically fragmented
prior to hybridization to the arrays. BeadArrays were scanned using the Illumina iScan
technology, and the IDAT files (Level 1 data) were used to extract the intensities (Level 2 data)
and calculate the beta value (Level 3 data) for each probe and sample with the R-based
methylumi package.

The level of DNA methylation at each CpG locus is summarized as beta (B) value calculated as
(M/(M+U)), ranging from 0 to 1, which represents the ratio of the methylated probe intensity to
the overall intensity at each CpG locus. A P value comparing the intensity for each probe to the
background level was calculated with the methylumi package at the same time, and data points
with a detection P value >0.05 were deemed not significantly different from background
measurements, and therefore were masked as “NA” in the Level 2 and 3 in HM27 and Level 3 in
HM450 data packages, as detailed below.

TCGA data packages

The three data levels are described below and are present on the TCGA Data Portal website
(http://tcga-data.nci.nih.gov/tcga/). Please note that with continuing updates of genomic
databases, data archive revisions become available at the TCGA Data Portal.

HM27: Level 1 - Level 1 data packages contain the non-background corrected signal intensities
of the M and U probes and the mean negative control cy5 (red) and cy3 (green) signal
intensities. A detection P value for each data point, the number of replicate beads for M and U
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probes as well as the standard error of M, U, and control probe signal intensities are also
provided. It is important to note that for some CpG targets, both M and U measurements will
be cy3, and for others both will be cy5. To resolve ambiguities regarding this subtlety of the
Infinium DNA Methylation assay, we have labeled the cy3 and cy5 values deposited to the DCC
as “Methylated Signal Intensity” and “Unmethylated Signal Intensity”. The information of the
color channel for each CpG locus is contained in the MAGE-TAB ADF file deposited in the DCC.
Level 2 - Level 2 data files contain the B-value calculations for each probe and sample. Data
points with detection P values >0.05 were not considered to be significantly different from
background, and were masked as “NA”. Level 3 - Level 3 data contain B-value calculations,
HUGO gene symbol, chromosome number and genomic coordinate for each targeted CpG site
on the array. In addition, we masked data points with "NA" from the probes that 1) contain
known single nucleotide polymorphisms (SNPs) after comparison to the dbSNP database (Build
130), 2) contain repetitive sequence elements that cover the targeted CpG locus in each 50 bp
probe sequence, 3) are not uniquely aligned to the human genome (NCBI build 36.1) at 20
nucleotides at the 3’ terminus of the probe sequence, 4) span known regions of small insertions
and deletions (indels) in the human genome (dbSNP build 130).

HMA450: Level 1 - Level 1 data contain raw IDAT files. IDAT files are the direct output from the
scanning program. Level 2 - Level 2 data contain background corrected signal intensities of the
M and U probes. Level 3 - Level 3 data files contain B-value calculations and masked data points
with "NA" from the probes that are annotated as having a SNP within 10 base pairs of the
interrogated locus (HM27 carryover or recently discovered). The genomic characteristics for
each probe are available for download via lllumina (www.illumina.com).

Unsupervised clustering analysis of DNA methylation data

The shared probe set between HM27 and HM450 platforms (N=25,978) were used for this
analysis. We removed probes that contained any masked data due to detection P value, repeats
and SNPs and non-uniquely mapped probes (n=22,071 remaining). We observed batch and
platform specific effects. To alleviate systematic platform-specific effects (dye bias, background
level, etc) we fit a LOESS regression model between the two platforms using M values, stratified
by the number of CpGs in the probe (CpG=1,2,3,4,5,6+), and normalized the HM450 data
against the HM27 data. M value is the log 2 ratio of Methylated (M) intensity and
Unmethylated (U) intensity and better satisfies the linearity assumption. In order to further
filter out probes with high technical variances, we applied a two-way nested ANOVA for
platform and batch effects with batch nested in platform (M value ~ Platform + Platform/Batch)
and removed probes with above-median F value for either platform or batch. We then selected
probes with standard deviation of >1.8 (n=785 probes) based on M values for unsupervised
clustering. Beta values were used for clustering with a mixture model based method, RPMM
(recursively partitioned mixture model for Beta and Gaussian Mixtures) well suited for beta-
distributed DNA methylation measurements.” We performed RPMM clustering on the above-
mentioned 785 probes for the 373 tumor samples with beta mixture model. A fanny algorithm
(a nonparametric clustering algorithm) was used for initialization and level-weighted version of
Bayesian information criterion (BIC) as a split criterion for an existing cluster as implemented in
the RPMM package. The clustering result was visualized with a modified version of

WWW.NATURE.COM/NATURE | 49



doi:10.1038/nature12113 AT E N SUPPLEMENTARY INFORMATION

heatmap.plus, with samples within each cluster group seriated by hierarchical clustering. The
statistical analysis was done in R.

Unsupervised clustering of DNA methylation data from the 373 endometrial tumor samples
revealed four unique DNA methylation subtypes (MC1-4), typified by a heavily methylated
subtype (MC1) reminiscent of the CpG island methylator phenotype (CIMP) phenotype
described in colon and glioblastoma,*®2° and by a serous-like cluster (MC3) composed primarily
of serous tumors (Supplementary Fig. 7.1). The CIMP phenotype was associated with the MSI
phenotype, attributable to promoter hypermethylation of MLH1. This association was similar to
the colorectal CIMP but not the glioblastoma CIMP, suggesting a potential shared mechanism
for epithelial CIMP tumors. MC2 tumors exhibited relatively high cancer-specific DNA
methylation levels, only lower than MC1. DNA hypermethylation observed in MC4 was the
lowest among the non-serous-like tumors. MC3, the serous-like cluster, had minimal DNA
methylation changes compared to normal endometrium.
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Figure S7.1. Unsupervised clustering of the DNA methylation data reveals four subtypes. A
spectrum of blue to red in the heatmap indicates low to high DNA methylation (0% to 100%).
Four DNA methylation subtypes among the 373 tumors (column) are visualized for 785 CpG
loci (row) used for the clustering. Column-side color bars indicate different features of each
sample, the bottom of which shows grouping of the samples as determined by RPMM
(recursively partitioned mixture model for Beta and Gaussian Mixtures). Within each cluster
the samples are seriated by hierarchical clustering. 27 normal endometrium samples are also
plotted for the same loci for comparison. Platform (light blue — HumanMethylation27; dark
blue — HumanMethylation450) and analytical batch for each sample are plotted on the
bottom to make sure that the clustering results are not driven by technical variations.
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Supplementary Methods S8: Integrative clustering using iCluster

Integrative clustering of somatic mutation, DNA copy number, DNA methylation, and mRNA
expression data was performed using the iCluster framework originally described in Shen et al.!
The problem is formulated as a joint multivariate regression of multiple data types with respect
to a set of common latent variables that represent the underlying tumor subtypes. A penalized
likelihood approach was used with lasso® penalty terms for balancing the fitness and the
complexity of the model. We applied an extended algorithm that generalizes the original
method to encompass both discrete and continuous data types using the generalized linear
model framework (Shen et al, manuscript submitted). In brief, for the binary mutation data

matrix, we assume each entry is a realization of a Bernoulli random variable x; associated with

the jth gene in the ith sample, with marginal mutation probability Jrijand the logit function as

its canonical link to equate to the latent variables. For data types that are on a continuous scale
(copy number, methylation, and mRNA expression data), a Gaussian distribution with identity
link function was used. Data processing procedures for iCluster analysis is performed as
described in the TCGA squamous cell lung cancer study.’

Model selection

The number of clusters (K) is unknown and needs to be estimated. We compute a deviance
ratio metric which can be interpreted as the percentage of variation explained by the current
model, and K is chosen to maximize the deviance ratio. To determine the optimal combination
of the lasso penalty parameter values, a very large search space needs to be covered. We used
an efficient sampling method that utilizes the uniform design (UD).* A theoretical advantage of
the uniform design over an exhaustive grid search is the uniform space filling property that
avoides wasteful computation at close-by points. For each sampled “experimental” point, we fit
an iCluster model with the sampled parameter setting. The best parameter setting was chosen
that minimizes the Bayesian information criterion (BIC).
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Figure S8.1. Integrative Clustering. iCluster reveals two distinct molecular subgroups. Heatmap
displays coordinated patterns of alteration in somatic mutation, DNA copy number, DNA
methylation, and mRNA expression.
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Supplementary Methods S9: Super Clusters

We developed a new clustering algorithm, called SuperCluster, to derive overall subtypes for
the samples based on their cluster memberships of different data types (mRNA, protein, CNV,
etc.). The algorithm adjusted the contribution from each data type so that their weights were
equal. Mutation and CNV clusters were treated as ordinal variables, whereas the others were
treated as nominal. The results are shown in Fig. S11.1 where four super clusters can be seen.
The hyper-mutator super cluster (red) is characterized by hyper mutator samples that have
MLH1 silenced, high overall DNA methylation, and MSI-high status. The low mutator
endometrioid super cluster (orange) is characterized by low mutation rates and few CNVs. The
ultra-mutator super cluster (green) has ultra-mutator samples that don’t have MLH1 silenced
and have a mixture of MSI low and high samples. The serous super cluster (blue) has low
mutation rates, very high CNVs, and enrichment of specific mMRNA, miRNA, protein and DNA
methylation subtypes. It has most of the serous samples and tends to be high grade and stage.
It also has a high rate of recurrence and poor disease related outcome.
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Figure S9.1. (a) Top panel: Overall super clusters derived from clusters on individual data types.
The columns contain samples. The rows contain the cluster memberships of different data
types. The annotation bars on top of the heat map show clinical associations of the super
clusters (not used to derive the clusters). The heat map can be explored dynamically at:
http://bioinformatics.mdanderson.org/main/TCGA/Supplements/NGCHM-UCEC

(b) Bottom panel: Disease related overall survival (left) and progression free survival (right)
showing the serous super cluster has poor outcome.
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Supplementary Methods S10: Batch effects analysis

We used hierarchical clustering and Principal Components Analysis (PCA) to assess batch effects
in the TCGA Uterine Corpus Endometrioid carcinoma (UCEC) data sets. Four different data sets
were analyzed: mRNA seq (lllumina GA RNA Seq), miRNA seq (RNA-seq Illumina HighSeq), DNA
methylation (Infinium HM27K and Infinium HM450K microarray), and SNP (GW SNP 6). All the
data sets were at level 3, since that is the level at which most of the analyses in the paper are
based. We assessed batch effects with respect to two variables; batch ID and Tissue Source Site
(TSS). Two different algorithms were used; hierarchical clustering and PCA. For hierarchical
clustering, we used the average linkage algorithm with 1 minus Pearson correlation coefficient
as the dissimilarity measure. We clustered the samples and then annotated them with colored
bars at the bottom. Each color corresponded to a batch ID or TSS.

For PCA, we plotted the first four principal components, but only plots of the first two
components are shown here. To make it easier to assess batch effects, we enhanced the
traditional PCA plot with centroids. Points representing samples with the same batch ID (or TSS)
were connected to the batch centroid by lines. The centroids were computed by taking the
mean across all samples in the batch. That procedure produced a visual representation of the
relationships among batch centroids in relation to the scatter within batches. The results of the
analysis are show in Figs. 1-12. The results can also be analyzed dynamically online at
http://bioinformatics.mdanderson.org/tcgabatcheffects/

mRNA Seq - lllumina GA RNA-Seq

Figures $10.1-S10.3 show clustering and PCA plots for the mRNA seq data (Illumina GA RNA-Seq
platform). The plots show that the batches and tissue source sites are well mixed, indicating
that batch effects are negligible.
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miRNA expression sequencing (RNA-seq lllumina HighSeq)

Figures $10.4-S10.6 show the clustering and PCA plots for the miRNA expression sequencing
platform (RNA-seq Illumina HighSeq). The results once again show that batch effects are
negligible by both, batch ID and TSS.
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DNA methylation (Infinium HM27K and 450K microarray)

Figures S10.7-S10.9 show clustering and PCA plots for the DNA methylation platforms (Infinium
HM27K and 450K microarray). The results show that about 14 samples stand out whose batch
IDs or tissue source sites were not available at the time the analysis were done. However, it was
unlikely that all 14 came from the same batch or TSS, so we didn’t think that batch effects
correction was warranted. Besides those samples, the batches were well mixed and no major

batch effects were seen.
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Figure S10.7. Hierarchical clustering for DNA
methylation data (HM27K and 450K)
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SNPs (GW SNP 6)

Figures $10.10-510.12 show clustering and PCA plots for the SNP platform. At level 3, the TCGA
SNP data resembles copy number data when we use chromosomal segment counts (rather than
actual SNPs). We mapped the chromosomal segments to genes and then used them to
construct the plots shown in the figures. The copy number data has a lower limit when it comes
to deletions, but copy number gain can potentially have high values, which is why the points
seem skewed in the PCA plots. However, we can see from the plots that the batches and TSSs
are well mixed, with negligible batch effects.
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Conclusions
We tested batch effects in four different platform types; mRNA-seq, miRNA-seq, DNA

methylation, and SNP. None of the platforms showed any major batch effects by either batch ID
or tissue source site.
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Supplementary Methods S11: Pathways and integrated analyses

PARADIGM integrated pathway analysis of copy number and expression data

Integration of copy number, mRNA expression and pathway interaction data was performed on
the 324 samples using the PARADIGM software.' Briefly, this procedure infers integrated
pathway levels (IPLs) for genes, complexes, and processes using pathway interactions and
genomic and functional genomic data from a single patient sample. Expression and gene copy
number data was obtained from the Endometrial Data Snapshot page
(http://23.23.224.116/ucec_tcga/). The mRNA data was converted to relative mRNA
expression levels by taking the log2 ratio of each gene in each sample to the gene’s median
computed over 5 normal controls. Data was rank transformed and discretized prior to
PARADIGM analysis.

Pathways were obtained in BioPax Level 3 format, and included the NCIPID and BioCarta
databases from http://pid.nci.nih.gov and the Reactome database from http://reactome.org.
Gene identifiers were unified by UniProt ID then converted to Human Genome Nomenclature
Committee’s HUGO symbol using mappings provided by HGNC (http://www.genenames.org/).
Interactions from all of these sources were then combined into a merged Superimposed
Pathway (SuperPathway). Genes, complexes, and abstract processes (e.g. “cell cycle” and
“apoptosis”) were retained and henceforth referred to collectively as pathway concepts. The
resulting pathway structure contained a total of 17151 concepts, representing 7111 proteins,
7813 complexes, 1574 families, 52 RNAs, 15 miRNAs and 586 processes.

The PARADIGM algorithm infers an integrated pathway level (IPL) for each gene that reflects a
gene’s activity in a tumor sample relative to the normal controls. Including only pathway
concepts with relative activities distinguishable from normal (0.05 absolute activity) in at least
one patient sample, non-zero activity in at least 10% of the samples and showing variation
between samples (variance > 0.05) yielded over 10,000 concepts. To identify patient subtypes
implicated from shared patterns of pathway inference, we ran Consensus Clustering using the
median-centered IPLs implemented with the ConsensusClusterPlus package in R
[http://www.R-project.org] with 80% subsampling over 1000 iterations of hierarchical
clustering based on a Pearson correlation distance metric (Figure S11.1).

Consensus clustering of ~10K varying IPLs yielded 5 PARADIGM clusters with distinct pathway
activation patterns and significant associations with subtypes obtained from other platforms.
Cluster 1, showing the lowest FOXA1/ER and MYC signaling, appears associated with the
immunoreactive expression subtype. Cluster 3, with relatively high MYC but low FOXA1/ER
signaling, is comprised almost entirely of High CN and proliferative cases (44/49). The
remaining large cluster, Cluster 5, shows high MYC, HIF1 and FOXA1 signaling, and is relatively
enriched in the hormonal mRNA subtype.

WWW.NATURE.COM/NATURE | 62



doi:10.1038/nature12113 AT\ E N SUPPLEMENTARY INFORMATION

324 Uterme Corpus Endometnal Carcmomas (UCEC)

MYC Repressed, WNT,
NRG1/ERBB Signaling

HIF1/Metabolic

13 umu FEF iy
L

il 1 ..;

o i wheas 4 p53, ATM/ATR,
‘i_rﬂ FRIE A AT 1 e 0 0 l‘!' !‘ DNA repair
! “'l! ‘II e 'Tf‘niy!'A.. & :
FOXA1/ER
MYC Activated
R T~ LR SRR TR |
PARADIGM Cluster 3 4 5 12 test
o cruster 1100000555 A A WHIRHAR <o 0001
A Ciuster || NN NN 1 O O A AR MERAD <0001
repa Ciuster | HNIAFIE 11 A 0 RROLEE 0 TR HRNRTD IIIIIIII I (11 Wl | p<o.0001
wautation Ciuster | [N AMVHION MO RLY OFCOOHRMORER)|© (N | | Wl p<0.0001
methyiation Ciuster |1 111 11N 0 AT 1000 O A1 1N 11l p<o.0001
mir ioster | 1 1SS0 EONRAFIEE A0 DSMME A0 OO {1 p<o.0001
wistoogy | |1 [ LUIL 101 JANNIM | || p<0.0001
ves at [ 1IEIEALHUOSIE0E SO00 S M me 1/ T p<0.0001
CN Clusters mRNA Cluster RPPA Cluster Mutation Clusters Methylation Cluster miR Cluster
m B Proliferative 1 W High-CN 1 1
W2 Hormonal | ) Low-CN H: N2
3 B Immunoreactive il 3 M Hypermutated | 3 | K]
m4 4 [l Utramutated 4 4
Histology 5 5
Endometroid TP53 Mutation 6
M Serous No [ Missing
B Mixed M Yes

Figure S11.1. Heatmap display of top 1000 varying pathway features within PARADIGM
consensus clusters. Samples were arranged in order of their consensus cluster membership.
The copy number, mRNA, RPPA, mutation, methylation, and microRNA cluster membership
assignments, histology and TP53 mutation status for each sample are displayed below. For
each variable, the P value from the x2 test of associations with consensus clusters was
displayed. Selected pathways showing distinct activation patterns among the consensus
clusters were labeled (orange bar).
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Histologically serous endometrial cancers share common pathway activation with the CN-
High subtype and p53 mutation.

We employed the Differential Pathway Signature Correlation (DIPSC) algorithm to assess the
correlation between phenotypes such as mutations, subtype, and histology. The DIPSC method
provides us with a measure of the relationship of one phenotype to another by comparing a
phenotype signature — a vector of values associated with PARADIGM IPLs. We exclude all non-
gene IPLs (such as processes) and further filter the data by a more stringent variance filter
(standard deviation > 0.05). For each phenotype, we dichotomize the samples into a
phenotypic set, for example serous histology, and its complement, and derive a phenotype
signature by Two-Set SAM analysis.” The DIPSC method accounts for sample overlap by
performing a bootstrap analysis that randomly assigns samples into independent cohorts.
Pairwise Pearson R correlation is performed between the cohorts. The bootstrap process is
repeated 1000 times to create an estimate of the mean and standard deviation statistic and
determine a P value, which must be lower than 0.01 for inclusion in this study. The final
signature vector is the mean. The final correlation of correlation figure is then assembled using
Cluster 3.0 and visualized with Java TreeView (Figure S11.2A).

DIPSC analysis subsets significantly mutated genes and tumor phenotypes into three major
groups based on the correlation between phenotypic signatures. These pathway signature
correlation groups correspond to distinct mutation subtypes (Group 0: CN-High, Group 1: Non,
Group 2: Hyper and Ultra mutated subtypes). Of note, the phenotypic signature of
histologically serous endometrial cancers clusters with that of the CN-High subtype and p53
mutation; and this group (Group 0) appears very distinct from other endometrial cases (Group
1 and 2). It is also interesting to note that the correlation profile of the CN-High phenotypic
signature suggests it associates primarily, but strongly, with only a small number of mutations
(p53: Rp = 0.7, FBXW7: Rp = 0.425), which is in contrast to the other mutation subtypes,
showing a consistent (but lower) correlation with a larger number of mutations (Figure S11.2B).
We speculate here that the pathway correlations between p53 and FBXW7 mutations within
the CN-High subtype may be of significant functional consequence, as murine models has
implicated FBXW?7 as fail-safe mechanism against tumorigenesis in a p53 deficient background
with potential links to genomic instability.>> However, further studies are needed to evaluate if
FBXW7 in conjunction with p53 mutations play a role in the etiology of the CN-High
endometrial cancers.
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Figure S11.2. DIPSC analysis demonstrates serous endometrial, CN-High subtype, and p53
mutation shares similar phenotypic signatures. (A) Correlation of Differential Pathway
Signatures. Phenotypes of uterine endometrial cancer cluster into three groups that align with
mutation subtypes as described, but the hypermutator and ultramutator subtypes have
stronger within group correlations than between group correlations. (B) Top 10 Differential
pathway correlations of mutations with subtype. The graph shows the correlation profile of
each subtype’s differential pathway signature (blue: CN-High, red: Non, green: hypermutated,
purple: ultra-mutated) with its top 10 correlated mutations.
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Pathway-based biomarkers of CN-High versus Other subtypes.

IPLs differentially activated between the CN-High and the other subtypes (Ultramutator,
Hypermutated, Non) were identified using the t-test and Wilcoxon Rank Sum test with
Benjamini-Hochberg (BH) FDR correction. Only features deemed significant (FDR corrected P <
0.05) by both tests were selected. Pathways enriched among differentially activated IPLs were
assessed using the EASE score with BH FDR correction; and sub-networks were constructed to
identify regulatory hubs based on interconnectivity and visualized using Cytoscape (Figure
S11.3).

~4.2K IPLs were found to be significantly differentially activated between the CN-High vs. other
subtypes. Pathway enrichment and subnetwork analysis independently implicated p53 and
XBP1 signaling as major hubs showing differential activation in the CN-High subtype relative to
other UCEC cases. Lower activation of p53 and FOXA1/ER/XBP1 signaling are observed among
the CN-High cases. These observations are in line with the high TP53 mutation frequencies
(55/60) and low fraction of hormonal expression cluster members (1/60) within the CN-High
subtype.
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Figure S11.3. Differentially activated pathway features between CN-High and others UCEC
subtypes. Largest interconnected regulatory subnetwork of differentially activated IPLs is
displayed, with network hubs showing interconnectivity > 15 edges labeled. A zoomed in view
of the p53, MAPK14 and XBP1/2 and FOXA1 hubs are also shown. Color intensity reflects
activity differences between subtype (red: higher in CN-High, blue: higher in Others). Purple
arrows denote activation. Green tees represent inhibition. Node shapes reflects pathway
concept type (inverted v: abstract concept, diamond: complex, circle: protein). Node size is
scaled to the significance of differential activation.
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TP53 truncating, but not missense, mutations are implicated as loss-of-function mutations by
evaluating the discrepancy between up- and down-stream pathway signals.

As p53 appears to be the key regulatory hub down-regulated in CN-High endometrial cancers,
we employed the PARADIGM-SHIFT algorithm® to compare the pathway impact of truncating
and missense mutations. Samples were defined to have truncating mutations if they were
annotated with insertions, deletions, nonsense, or splice site mutations in TP53. Alternatively,
samples are defined to have missense mutations if they were annotated with missense
mutations in TP53. Under these definitions, there were 180 samples with available copy
number and expression data to run PARADIGM-SHIFT analysis on truncating versus non mutant
and 216 samples to run missense versus non mutant. TP53 mutation neighborhoods were
selected in a supervised fashion by selecting features based on a rank ratio of the features
determined by a linear SVM. PARADIGM-SHIFT (P-Shift) scores for p53 (reflecting the
discrepancy between activity as inferred by up-/down- stream pathway signals) was computed
as the difference in activity between two runs of PARADIGM - one in which only upstream
regulators are connected (R-run) and one where only downstream targets are connected (T-
run). We then assessed the accuracy of the models by using the absolute P-Shift score as a
classifier to predict TP53 mutation status with 5-fold cross validation. The average AUC over
the 5-folds for predicting truncating mutations (against non-mutants) is 0.57. In contrast, the
average AUC for the prediction of missense mutations (vs. non-mutants) is only 0.47, suggesting
that PARADIGM-SHIFT may not be effective at distinguishing missense mutants from non-
mutants.

Comparing the distribution of P-Shift scores between truncating mutants and non-mutants
shows an enrichment of negative P-Shift scores in the truncating mutant samples indicative of a
loss-of-function (LOF) mutation. The significance of this LOF call was determined by running a
background model in which the selected network topology is fixed, but the data is permuted.
Under this background model, the LOF call was found to have a z-score of -1.7. This is in
contrast to when the P-Shift score distributions between missense mutants and non-mutants
are compared, where no significant enrichment is observed under a similarly generated
background model (Figure S11.4A-B). Altogether, these findings suggests that the signaling
consequences of truncating and missense TP53 mutations may not be equivalent; and that only
truncating mutations are implicated as LOF based on the discrepancy of up- vs. down- stream
activity signals. The entire sample set was used for training to determine the functional impact
of truncating mutations of TP53 on the network (Figure $11.4C). Interestingly, the pattern of
activity of upstream regulators NGFR and SORT1 mirrors the profile of P-Shift score, where
samples with high NGFR and SORT1 activities also have negative P-Shift scores. This highlights
NGFR and SORT1 as major contributors to the discrepancy between up/down-stream signals in
TP53 truncation mutants, and implicates these features as potentially important upstream
regulators of p53 signaling in endometrial cancers.
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Figure S11.4. PARADIGM-SHIFT analysis of TP53 truncation vs. missense mutations. (A-B)
Distribution of t-statistics of the difference in P-Shift scores between non-mutants and (A)
truncation mutants, (B) missense mutant under the permuted background models. Red line

shows t-statistic based on actual data.

Circlemap display of mutation neighborhood

selected for TP53 truncating mutations. Solid lines indicate transcriptional regulation and
dashed lines indicate protein regulation. Samples were sorted first by the TP53 mutation status

(inner ring), then by PARADIGM-SHIFT score.
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Machine learning classifiers (based on expression data) classify serous CN-High endometrial
cancers as basal-like and vice versa.

We first asked whether (mMRNA expression) data supports the hypothesis that CN-High
endometrial cancers share common molecular signatures with the TCGA basal breast and
serous ovarian samples. To address this, we asked whether machine-learning classifiers,
trained to recognize basal from luminal samples also classify ovarian and CN-High UCEC
samples as basal. Models are trained on 80% of the breast cancer dataset using many different
algorithms; and the linear model with the highest accuracy in a 5X5 fold cross-validation is
selected. The test set comprise of the remaining 20% of breast cancer samples, and the serous
ovarian and UCEC samples. To estimate the distribution of permuted background scores, we
generated 1000 randomly selected and permutated samples from the test set and scored them
using the predictive model. Each prediction is then assigned a z-score based on this permuted
background score distribution; and samples with scores inside the margin of the permuted
background are deemed ambiguously classified and ignored (Figure S11.5A-B). Similarly, we
also constructed a reciprocal classifier, trained to recognize CN-High from other UCEC cases
from 80% of UCEC cases, and applied it to a test set of the remaining 20% of UCEC, breast and
ovarian samples (Figure S11.5C-D). Performance of the classifiers at distinguishing basal from
luminal breast samples and CN-High from other UCEC samples within the test set is assessed by
ROC analysis.

When we applied the basal-luminal breast cancer classifier, similar to the serous ovarian
samples, most of the CN-High endometrial cancers are predicted to be basal-like. In fact, the
basal-luminal classifier, although trained on breast cancer data, was able to very accurately
distinguish CN-High UCEC samples from other subtypes (AUC = 0.93) when applied to the
endometrial samples. Similarly, a reciprocal classifier, trained to recognize CN-High from other
endometrial subtypes, classifies most of the basal-like breast and serous ovarian cancers to be
CN-High like; and is able to distinguish basal from luminal breast cancers with great accuracy
(AUC=0.97). Altogether, these findings suggest CN-High, basal-like breast and ovarian cancers
share a common molecular signature, which distinguishes them from other endometrial and
luminal breast cancers.
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Figure S11.5. Machine learning classifiers demonstrate similarities between basal breast,
serous ovarian and CN-High endometrial cancers. (A) Plot of basal-luminal prediction scores
by tumor origin and subtype. (B) ROC curves for prediction of CN-High and basal subtypes
within the UCEC and breast test samples respectively using the basal-luminal predictor. (C) Plot
of CN-High-Others prediction scores by tumor origin and subtype. (D) ROC curves for prediction
of CN-High and basal subtype with the UCEC and breast test samples respectively using the CN-
High-Others predictor
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Genes with shared expression patterns in basal breast, serous ovarian and CN-High
endometrial cancers are significantly interconnected by known pathway interactions.
Integrated pathway levels generated from PARADIGM for the 377 TCGA ovarian and 81 basal
breast cancer samples were obtained; and the average IPL across samples was computed.
Among the ~14K features present in the ovarian and breast dataset, 3436 were mapped to IPLs
showing significant differential activation between CN-High vs. others UCEC subtypes identified
as described above. Restricting to these IPLs, a linear fit of average ovarian/basal breast activity
onto the CN-High vs. Others differential score was performed (Figure S11.6A). A ‘CN-High’ score
was computed as the orthogonal projection of the average ovarian activity onto the linear fit.
Features with ‘CN-High’ scores at least one standard deviations from the mean were defined as
significant; and regulatory sub-networks within the SuperPathway structure linking these
features were identified and displayed using Cytoscape (Figure S11.6B).

The PARADIGM inference differentials for CN-High versus other endometrial cancers are
significantly concordant with overall inferred activity in the TCGA basal breast and serous
ovarian cohorts (r=0.47). 961 features were selected as having significant basal breast/ovarian
to CN-High associations using the ‘CN-High’ score. Subnetwork analysis suggests higher activity
of the MAPK14 and MAX hubs and lower activity of the p53 and XBP1-2 hubs are common
pathways features shared between basal breast, ovarian and CN-High endometrial cancers.
Pathway enrichment analysis independently confirms XBP1, p53 and MYC signaling as
significantly enriched among features showing significant basal/ovarian to CN-High
associations.
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Figure S11.6. Comparison of the High CN Subtype with basal breast and ovarian cancers. (A)
Scatterplot of average basal breast and ovarian activity vs. High CN-Others differential scores.
Regression line of ovarian activity on the High CN-Others differential was fit (red line) and the
orthogonal projection of a given point (blue arrow) onto the linear fit was determined to
calculate the ‘CN-High’ score (s). Highlighted in red is the MAPK14 Hub significantly activated in
the High CN subtype; and highlighted in blue are specific points representing important
regulatory hubs (p53, XBP1-2, FOXA1) with lower activity in High CN UCEC. (B) PARADIGM
analysis reveals common networks in basal breast, ovarian and High CN endometrial cancers.
Basal breast/ovarian to High CN subtype associations were assessed using a ‘CN-High’ score and
only significant features were retained. The largest interconnected sub-networks linking
significant features are shown as a Cytoscape plot: positive values (red) indicate higher activity
in CN-High endometrial cancers and negative values (blue) indicate lower activity. Node shapes
correspond to complexes (diamonds), proteins (circles) microRNAs (squares), and cellular
processes (inverted v-shapes). Network hubs (greater than 5 connections) are highlighted in
boxes and labeled.

WWW.NATURE.COM/NATURE | 73



doi:10.1038/nature12113 AT E N SUPPLEMENTARY INFORMATION

Machine learning classifiers (based on expression data) classify hormonal cluster endometrial
cancers as luminal-like.

To assess whether the hormonal expression cluster endometrial samples are similar to luminal
breast cancers, we applied the top basal vs. luminal classifier (as described above), and
computed a P value (Fisher’s Exact test) for the disproportion of samples predicted as luminal in
the hormonal expression cluster (Figure S11.7A). We also asked whether the hormonal
endometrial cluster is more similar the luminal A or luminal B subtype using the same
methodology by developing a luminal A vs. B classifier (Figure S11.7B).

The basal-luminal classifier predicts the majority of the hormonal endometrial samples as
luminal-like, suggesting the hormonal endometrial samples may share molecular signatures
with luminal breast cancers. However, when we applied the luminal A vs. B classifier, we did
not find any significant association between the hormonal endometrial samples with either of
the two luminal subtypes (P = 0.336), suggesting that the hormonal endometrial samples is
more similar to a mixed population of luminal breast cancers, rather than a specific luminal
breast subtype.
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Figure $S11.7. Machine learning classifiers demonstrate similarities between luminal breast
and hormonal endometrial cancers. (A) Plot of basal-luminal prediction scores by tumor origin
and subtype in UCEC, 20% breast and ovarian cancer data. Color code for each tumor subtype
is shown on the right. The P value of association between hormonal endometrial and
luminal/basal breast cancers is shown below. (B) Plot of luminal A vs. B prediction scores by
tumor origin and subtype in UCEC, 20% luminal breast cancer data. Color code for each tumor
subtype is shown on the right. The P value of association between hormonal endometrial and

luminal A/B breast cancers is shown below.
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Pathway-based biomarkers of hormonal versus other endometrial subtypes.

IPLs differentially activated between the hormonal and the other subtypes (Proliferative and
Immunoreactive) were identified using the t-test and Wilcoxon Rank Sum test with Benjamini-
Hochberg (BH) FDR correction. Only features deemed significant (FDR corrected P < 0.05) by
both tests were selected. Pathways enriched among differentially activated IPLs were assessed
using the EASE score with BH FDR correction; and sub-networks were constructed to identify
regulatory hubs based on interconnectivity and visualized using Cytoscape (Figure $11.8).

~2.9K IPLs were found to be significantly differentially activated between the hormonal vs.
other endometrial subtypes. Pathway enrichment and subnetwork analysis independently
implicated XBP1, FOXA1, and MYB signaling as major hubs showing differential activation in the
hormonal relative to other UCEC cases.
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Figure S11.8. Differentially activated pathway features between Hormonal and others UCEC
subtypes. Largest interconnected regulatory subnetwork of differentially activated IPLs is
displayed, with network hubs showing interconnectivity > 15 edges labeled. A zoomed in view
of the FOXA1, MYB and XBP1/2 hubs are also shown. Color intensity reflects activity
differences between subtype (red: higher in hormonal, blue: higher in others). Purple arrows
denote activation. Green tees represent inhibition. Node shapes reflects pathway concept
type (inverted v: abstract concept, diamond: complex, circle: protein). Node size is scaled to
the significance of differential activation.
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Hormonal endometrial shows activation of FOXA1/ER signaling pathways similar to luminal
breast cancers, but exhibits higher HIFLA/ART, MYC/Max and FOXM1 signaling.

Extending the methodology used to identify commonly activated pathways between High-CN
and basal breast/ovarian cancers, we computed the PARADIGM inference differential between
the hormonal and other endometrial cancers and the differential between luminal and basal
breast cancers for all IPLs. We performed a linear fit of the luminal-basal differential on the
hormonal-others differential, and defined a ‘hormonal endometrial-like’ score of the
orthogonal projection of the luminal-basal differential onto the linear fit. Features with scores
at least two standard deviations away from the mean is deemed significant; and regulatory sub-
networks within the SuperPathway structure linking these features were identified and
displayed using Cytoscape (Figure S11.9A). In addition, we performed the reciprocal analysis,
and defined a ‘luminal breast-like’ score as the orthogonal projection of the hormonal-others
differential onto the luminal-basal breast cancer differential. Significant features were similarly
identified and displayed (Figure S11.9B); and the resulting networks were compared for
common and distinct pathway hubs of differential activation.

Although our machine learning classifiers suggests that hormonal endometrial cancers are
luminal breast cancer-like, the PARADIGM inference differential between the luminal-basal
breast and hormonal-others endometrial cancers are very weakly (albeit significantly)
correlated (r = 0.04). 297 features were deemed to show significant ‘hormonal-like’ scores; and
pathway enrichment and subnetwork analysis independently identifies FOXA1/ER, XBP1 and
p53 as major regulatory hubs among these ‘hormonal endometrial-like’ features. In
comparison, in the reciprocal analysis, FOXA1/ER, HIF1A, MYC/Max and FOXM1 were
implicated as major regulatory hubs among 350 features showing significant ‘luminal breast-
like’ scores. Altogether, these findings suggests that while hormonal UCEC and luminal breast
cancers shares common activation of the FOXA1/ER signaling pathways, the lower activity of
the HIF1A, MYC/Max and FOXM1 hubs, which differentiated luminal from basal breast cancers
may not be a distinguishing feature of the hormonal endometrial subtype. Also of note,
although XBP1-2 is a feature showing significant ‘hormonal endometrial-like’ and ‘luminal
breast-like’ scores, it appears to be a larger regulatory signaling hub within the hormonal
endometrial-like features. Given the differential responses of breast and endometrial cancers
to estrogen stimulation, and that XBP1 is an estrogen-regulated target, further investigation of
signaling differences downstream of XBP1 between these tumor types may be warranted.
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Figure S11.9. Comparison of the hormonal endometrial cancers with luminal breast cancers.
PARADIGM analysis reveals common, as well as distinct, regulatory networks differentiating
hormonal-other endometrial and luminal-basal breast cancers. (A) Luminal breast/ hormonal
endometrial subtype associations were assessed using a ‘hormonal-endometrial-like’ score
defined by projecting the luminal-basal differential onto the hormonal-others differential. The
largest interconnected sub-networks linking significant features are show as a Cytoscape plot:
positive values (red) indicate higher activity in hormonal endometrial cancers and negative
values (blue) indicate lower activity. (B) Hormonal endometrial/luminal breast associations
were assessed using a ‘luminal-breast-like’ score defined by projecting the hormonal-others
differential onto the luminal-basal differential. The largest interconnected sub-networks linking
significant features are show as a Cytoscape plot: positive values (red) indicate higher activity in
luminal breast cancers and negative values (blue) indicate lower activity. Node shapes
correspond to complexes (diamonds), proteins (circles) microRNAs (squares), and cellular
processes (inverted v-shapes). Network hubs (greater than 5 connections) are highlighted in
boxes and labeled.
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Supplementary Methods $12: Cross tumor comparison

Shared regions of amplification across uterine serous, basal-like breast and high-grade serous
ovarian (HGSOC) cancers include 1921.3 (MCL1), 3926.2 (MECOM), 4p16.3 (FGF3), 8p21.21
(MYC), 12913.2 (ERBB3) and 19g13.2 (CCNE1). There are a few significant differences in
amplifications between ovarian serous and tumors in the endometrial serous-like cluster
(Figure 5a). However, unlike ovarian tumors, ERBB2 is amplified in many of the endometrial
serous-like tumors (26% of uterine serous compared with ~2% in ovarian and breast).
Furthermore, the majority of these cases have concurrent PIK3CA mutations; an indication of
resistance to ERBB2 targeted therapy in multiple studies.® Also notable is that unlike ovarian
tumors, uterine and breast tumors lack amplification of KRAS yet none have frequent KRAS
mutations. Whole arm chromosome deletions of 4, 5 and 9 and arm level deletions in 8p that
commonly occur in uterine serous tumors are also present in many ovarian and breast tumors.

The MC3 DNA methylation subtype largely overlaps with the tumors with frequent copy
number changes, indicating that those tumors are copy-number instead of DNA-methylation
driven (Figure S12.3). However, the MC3 tumors are not entirely identical to their ovarian
counterparts. For example, extensive BRCA1 and BRCAZ2 inactivation through promoter
hypermethylation was reported for both HGSOC and basal-like breast but only one out of 81

MC3 samples has BRCA1 methylation. Also of note, the endometrial hormonal transcriptomic
subtype was highly correlated with the luminal A breast cancer subtype that is characterized by
a good outcome.
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Figure S12.1 Cross tumor dendrogram from unsupervised hierarchical clustering showing
relatedness of serous ovarian cancer, serous-like endometrial cancer from copy number cluster
4, and basal-like breast cancer. Clustering is based on the average gene level copy number
change of each tumor type or subtype.
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Figure S12.2 Supervised analysis of transcriptomic datasets for endometrial cancer, TCGA
breast cancer and TCGA ovarian cancer.
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Figure S12.3 Methylation profiles across endometrial cancer, TCGA basal-like breast cancer and
TCGA ovarian cancer.
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