
Supplementary Materials 
 
Sequence-based profiling of DNA methylation: comparisons of methods and catalogue of 
allelic epigenetic modifications 
 
Supplementary Figure 1. Analysis of biological replicates (three passages) of H1 ES cells 
(ESC) assayed on the Infinium platform. Analysis was performed on the beta values, which 
represent the degree of methylation for individual CpG sites. Supplementary Figure 1a shows 
a scatter plot of the three replicates. Note that all have similar distributions that cluster around 0 
and 1, as expected since the vast majority of CpG sites are thought to be methylated or 
unmethylated. 
 
Supplementary Figure 1b shows pair-wise scatter plots with the 45-degree line included. Note 
that when comparing H1 ES #1 to #2 and #1 to #3, there are more data above the line than 
below the line. When comparing #2 to #3, the data are balanced above and below the line, but 
there is more scatter. Supplementary Figure 1c is Supplementary Figure 1b with red points 
for CpGs in CpG islands (CGI) and blue points for CpGs in non-CGI regions. About ¾ of the 
probes are from CpGs found within CGIs. Nevertheless, it appears that the outliers are 
disproportionately from CGI. Supplementary Figure 1d is similar to Supplementary Figure 
1b, except that instead of the raw data, the percentiles are compared in a quantile-quantile (qq)-
plot. Note the same pattern as in Supplementary Figure 1b. 
 
Reproducibility is compared in two ways. The first is using Kendall’s tau rank correlation. The 
Kendall’s tau correlation is 0.89 for comparing #1 to #2, 0.89 for comparing #1 to #3, and 0.88 
for comparing #2 to #3. These correlations are pessimistic because of the clustering in the data. 
If one chose a CpG with a beta value of 0.923 in one passage and another CpG with a beta of 
0.924 in the same passage, they are about equally likely to be correctly ordered in the second 
passage. 
 
The second comparison of reproducibility is based on the concordance correlation coefficient 
(CCC). It differs from standard Pearson’s correlation, which measures the linear association 
between two variables, in that the linear association is relative to the 45-degree line. The CCCs 
are 0.996, 0.992, and 0.992 for comparing #1 to #2, #1 to #3, and #2 to #3, respectively. 
Overall, reproducibility is strong and approximately equal in all pair-wise comparisons. 
To assess technical versus biological variability, replicate #1 and replicate #2 were run a second 
time on the Infinium platform (data not shown). A random effects model was fit with random 
effects for marker and passage; the variance of the latter gives an estimate of the variability due 
to biological replication. The residual variance gives an estimate of the variability due to 
technical replication. The variability due to technical replication was 98.9% of the sum of the 
variability due to technical replication and biological replication, indicating that almost all of this 
variability was technical. 
 
We combined all five Infinium experiments on H1 cells to examine the relationship on the probe 
level between the mean beta value and standard deviation (SD) beta value. We fit a Lowess 
smooth line of SD beta on mean beta with a smoother span of 10% of the points. The result of 
the fit was that the maximum SD of approximately 0.045 was for a mean beta value of about 
0.7. To the right of the maximum the SD dropped off quickly with an SD of approximately 0.3 for 
a mean of 0.8, while to the left it was more flat, with an SD of approximately 0.41 for a mean of 
0.6. Thus, intermediate methylation values on the Infinium platform tend to be more variable 
across technical and biological replicates. 

Nature Biotechnology: doi: 10.1038/nbt.1682



 

Supplementary Figure 1a 

Nature Biotechnology: doi: 10.1038/nbt.1682



Supplementary Figure 1b 
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Supplementary Figure 1c 
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Supplementary Figure 2. Comparison of RRBS on three biological replicates of H1 ESC 
to examine reproducibility. RRBS scatter plots and Pearson’s correlation coefficients based 
on genome-wide methylation proportions are shown for comparisons between H1 ES #1 and #2 
(a), H1 ES #1 and #3 (b) and H1 ES #2 and #3 (c). These analyses suggest that the variation in 
biological replicates detected by RRBS is minimal. 
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Supplementary Figure 3. Comparison of MeDIP-seq and MRE-seq on two biological 
replicates of H1 ESC to examine reproducibility. Read coverage was calculated for windows 
of 1 kb in length for the entire genome, and Pearson’s correlation coefficients were calculated 
between replicate H1 ES #1 and replicate H1 ES #2 for both MeDIP-seq (a) and MRE-seq (b). 
Representative scatter plots for chromosome 21 are shown. We conclude that using the 1 kb 
window approach, the variation in biological replicates detected by MeDIP-seq and by MRE-seq 
is minimal. 
 
Reliability of MeDIP-seq for inferring weak methylation by comparing MeDIP-seq 
(replicates #1 and #2 combined) to MethylC-seq. Comparing MeDIP-seq without a minimum 
read coverage requirement, which includes inferring an unmethylated state in regions with 
complete lack of MeDIP-seq reads, to MethylC-seq with a minimum coverage of 5 reads 
allowed for comparison of 2,787,622 1000bp windows. MeDIP-seq and MethylC-seq calls were 
82.15% concordant for all windows and both called weakly methylated for 1.02% of all windows. 
For 17.85% of all windows MethylC-seq and MeDIP-seq made different calls, and of these 
MeDIP-seq called weakly methylated and MethylC-seq called highly methylated for nearly all of 
the discordant windows. Of the discordant windows where MethylC-seq called highly methylated 
and MeDIP-seq called weakly methylated, 95.47% were in regions of very low CpG density 
(<2% CpGs over 1000bp). Of all the windows, 90.35% had a CpG density <2%. For concordant 
windows, the average MeDIP-seq read depth was 46.12 for highly methylated and 2.32 for 
weakly methylated windows. For discordant windows where MethylC-seq called highly 
methylated and MeDIP-seq called weakly methylated, the average MeDIP-seq read depth was 
2.29 representing incorrect weakly methylated calls by MeDIP-seq due to low read coverage. 
We note that the majority of the low CpG density windows (81.15%) are concordant between 
MeDIP-seq and MethylC-seq, suggesting methylation is detectable in most low CpG density 
regions using MeDIP-seq. In three regions called highly methylated by MethylC-seq but weakly 
methylated by MeDIP-seq, bisulfite pyrosequencing agreed with the MethylC-seq calls 
(Supplementary Fig. 4f-h). Of four regions called highly methylated by MeDIP-seq and weakly 
methylated by MethylC-seq two agreed with MethylC-seq by pyrosequencing (Supplementary 
Fig. 4i-j). The other two regions (Supplementary Fig. 4k-l) showed variation in methylation 
between the biological replicates. It is worth noting that MethylC-seq (i.e., bisulfite) detects 5-
hydroxymethylation but does not discriminate it from 5-methylcytosone, whereas MeDIP-seq 
does not detect 5-hydroxymethylation.  
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Supplementary Figure 4. Variation in DNA methylation at individual loci among the three 
H1 ES cell replicates. DNA methylation was measured by bisulfite pyrosequencing. Each plot 
shows an individual genomic region, and each group of bars corresponds to the methylation 
level at a specific CpG site, identified by its genomic coordinate. Regions in (a-e) were selected 
because they yielded discordant results in the RRBS (replicate #1) vs. MethylC-seq (replicate 
#3) comparison. Regions in (f-l) were selected because they yielded discordant results in the 
MeDIP-seq (replicate #2) vs. Methyl-C seq (replicate #3) comparison. Half of the regions (b, c, 
d, e, k, and l) showed detectable variation in DNA methylation among the ES cell biological 
replicates; in most cases this was due to replicate #3 differing from the other two, in agreement 
with the genome-wide comparisons.  
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Supplementary Table 1. Primer designs for bisulfite pyrosequencing. See Excel 
spreadsheet Supplementary_Table_1.xls. 
 
 
 Bowtie* BSMAP Pash** RMAP*** ZOOM**** 
Uniquely 
mapped reads 

149,837,932 
(67.49%) 

167,750,839
(75.56%) 

166,106,137
(74.82%) 

166,816,145
(75.14%) 

168,204,021
(75.76%) 

Common 
mappings 

148,208,269 
(66.76%) 

166,650,263
(75.06%) 

164129156 
(73.93%) 

163,987,256
(73.86%) 

166,391,756
(74.95%) 

Specific 
mappings 

1,629,663 
(0.73%) 

1,100,576 
(0.50%) 

1,976,981 
(0.89%) 

2,828,889 
(1.27%) 

1,812,265 
(0.82%) 

 
Supplementary Table 2. Bisulfite mapping comparisons. Due to the unique characteristic of 
bisulfite sequencing, in which Ts in the reads can be aligned with Cs in the reference genome, 
bisulfite read mapping poses a challenge in data analysis. There are two mapping approaches: 
1) convert all Cs into Ts in reads and the reference genome, map the converted sequence using 
normal mapping software, and filter out false positives. This approach is known as the 3-
nucleotide mapping strategy and was successfully used in Lister et al.1 with Bowtie2 as the 
mapping software. 2) Use aligners that support direct bisulfite mapping without any upfront C to 
T conversion, such as BSMAP3, Pash4,5, RMAP6 and ZOOM7.  
 
We compared the mapping results of the five aligners using a subset of data from Lister et al.1 
(Supplementary Table 2). For the purpose of evaluating overall concordance between different 
algorithms only unique mappings were considered. We should note that the analysis of unique 
mappings presented here provides information about concordance and variability of various 
mapping algorithms but does not provide definitive information about their relative accuracy. A 
unique mapping does not guarantee that the mapping is accurate and an algorithm that has 
highest accuracy may in principle have least concordance with other algorithms.  
 
Bowtie used sum quality score at mismatched bases as the mapping cutoff, instead of the 
absolute mismatches number used in the other aligners, and reported fewer unique mappings 
than BSMAP, Pash, RMAP and ZOOM (67.49% vs. 75.18% average). Among the latter four 
aligners, which all adopted the direct bisulfite mapping strategy, the mappings are highly 
concordant, with 160,361,998 identical mappings (72.23%) for all four aligners. The common 
mappings in Supplementary Table 2 are defined as the mappings detected by at least three 
aligners. The specific mappings refer to the mappings that could not be rediscovered by other 
aligners.  
 
Some important qualities of aligners were excluded from this comparison, including speed and 
ability to map reads containing mismatches with the reference sequence due to mutations or 
polymorphisms, such as the ability of ZOOM to map reads with up to 15 mismatches and Pash’s 
ability to map reads containing any number of mismatches and even indels. 
 

The testing dataset includes 21 lanes of MethylC-seq data from H1 cells, totaling 242,933,130 
raw reads with 87bp read length1. Reads were trimmed to the base before the first occurrence 
of QV ≤ 2 and to the preceding base of the adapter sequence (or part of adapter sequence from 
5’ end). Reads longer than 20bp after trimming were mapped to the reference genome hg18, 
allowing up to 5 mismatches. Reads containing N’s were also removed to provide a consistent 
criterion to count mismatches. The total number of trimmed reads is 222,016,411. If a read is 
uniquely mapped to the same location by at least three aligners, this mapping is considered as 
a common mapping. Mappings that do not overlap with common mappings are considered as 
aligner specific mappings. 

* Bowtie does not use an absolute maximum number, but tolerates a maximum sum quality 
score of 140 at mismatch positions bases. 
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** Indel mappings in raw Pash results were excluded in the comparisons. Pash reported 
169,887,588(76.52%) unique mappings including indel mappings. 38,412,852 trimmed reads 
(17.30%) were mapped partially by Pash, in which the mapping doesn’t start at the 5’ beginning 
and/or end at 3’ end of the trimmed read. These partial mappings were extended to the full 
length of trimmed reads and compared with the reference genome to count the actual numbers 
of mismatches. Partial mappings with more than 5 mismatches were excluded in the 
comparisons. This comparison used Pash v3.0. 
 
*** The version of RMAPBS used in this study is v2.03 with -f flag for faster performance. 
 
**** The version of ZOOM used in this study is v1.41with default parameters for faster but less 
sensitive performance. 
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Supplementary Figure 5. CpG coverage per Gbp in map as a function of read coverage 
threshold for CpGs. Coverage of CpGs was calculated as (CpGs covered at read coverage 
threshold)/(Gbp in map) and expressed as a percentage of total CpGs genome-wide (a) or in 
CpG islands (b). Gbp in map for each method are shown in Figure 1a. This graphical 
representation normalizes CpG coverage to a Gbp of sequencing across methods that were 
sequenced at different depths. From this graph, relative cost per CpG covered can be estimated 
for each method. The cost-per-CpG covered is highest for MethylC-seq at all read depths, likely 
due to the fact that the shotgun approach of MethylC-seq includes reads with or without CpGs 
indiscriminately. MeDIP-seq has the lowest cost per CpG covered genome-wide, while RRBS 
has the lowest cost per CpG covered in CpG islands. These graphs provide a practical guide for 
assessing cost and coverage and may be used in selecting methods that best fit a particular 
experimental goal. 
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Supplementary Figure 6. MeDIP/MBD/MRE-seq read density in relation to local CpG 
density. The CpG density within 1000 bp windows genome-wide was calculated and the 
distribution of the number of windows with the same local CpG density was plotted (a). The 
percentage of reads from MeDIP-seq, MBD-seq and MRE-seq was calculated for each window 
and the the percentage of total reads that fall into windows of the same local CpG density was 
plotted (b). MeDIP-seq and MBD-seq both enrich for low CpG density regions, with MeDIP-seq 
enriching for regions with lower CpG density compared to MBD-seq, and covering a greater 
number of loci than MBD-seq. MRE-seq enriches for regions with higher CpG density. 
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Supplementary Figure 7 
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Supplementary Figure 7. Saturation analysis of RRBS, MeDIP-seq, MBD-seq and MRE-
seq relates CpG coverage to sequencing depth. Graphs a-e show the number of CpGs 
covered at increasing proportions of total sequencing reads. For RRBS (35,537,461 total reads) 
(a), the number of CpGs covered by a minimum of 3 reads after down sampling the number of 
reads were plotted. RRBS approaches but does not reach saturation at the current sequencing 
depth. For MeDIP-seq #1 (25,994,131 total reads), MeDIP-seq #2 (23,094,829 total reads) and 
MBD-seq #2 (29,518,370 total reads) enriched regions unthresholded (b) and at a false 
discovery rate of 1% (c) were calculated by FindPeaks v4.0.118 and the number of CpGs 
contained within these regions were enumerated (sampling depth “1”). Random sub-samplings 
at the fractions indicated were generated and the CpG coverage re-calculated. For 
unthresholded regions saturation was not observed for the MeDIP-seq replicates #1 and #2 
(19.3M and 19.5M CpGs covered, respectively) as background signal continued to accumulate 
with deeper sequencing. Similarly, saturation was not observed for unthresholded regions in the 
MBD-seq library (16.2M CpGs covered). To account for potential background present in the 
immunoprecipitations we applied a false discovery rate threshold of 1% to the regions enriched 
in the MeDIP-seq and MBD-seq replicates and re-plotted CpGs covered relative to increasing 
sequencing depth (Supplementary Fig. 7c). For MeDIP-seq replicate #1 and #2 saturation was 
observed at 15.6 million reads (11.4M CpGs covered) and 13.9 million reads (10.5M CpGs 
covered) respectively. For the MBD-seq library, saturation was observed at 17.7 million reads 
(8.8M CpGs covered). The degree to which such background correction is useful for MeDIP-seq 
and MBD-seq is not yet known. Graphs d-e show the number of unique AciI, Hin6I or HpaII 
restriction sites present in the MRE-seq replicate #1 (d) and #2 (e) libraries at increasing 
sequencing depths. Restriction sites were identified from the 5’ end of each sequence read and 
enumerated at each sampling fraction with a sampling depth of “1” indicating the entire library. 
Here we expect the rate of new restriction site discovery to plateau as we approach the total 
number of unique restriction fragments within a library. As expected, for both MRE-seq 
replicates the rate of discovery of restriction sites increased rapidly at first and then more 
minimally as the sequencing depth increased. .Saturation was not observed for MRE-seq, 
indicating that additional sequencing would be required to completely sample libraries. 
However, at full sequence depth, the average restriction site was represented 13 times within 
each library, indicating that the majority of any additional reads would be re-sampling existing 
restriction sites. These plots provide a practical guide to determine how deeply to sequence in 
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order to achieve the particular experimental goals. Approaching saturation, there are 
diminishing returns on additional sequencing.  
 
 
 
 
 
 
Supplementary Figure 8 
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Supplementary Figure 8 
 

 
 
Supplementary Figure 8. Comparison of bisulfite based methods for assessment of CpG 
methylation. The bar charts depict the differences (MethylC-seq - RRBS) in methylated 
proportions (methylated reads / (methylated reads + unmethylated reads)) for CpGs with the 
indicated minimum coverage of reads by both methods. Percentages of concordant and 
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discordant proportions were determined at cutoffs of + and - 0.1 (green dashed lines) and + and 
- 0.25 (red dashed lines). For comparisons between MethylC-seq and RRBS both on H1 ES #3, 
the concordance at a methylation proportion difference of 0.25 for minimum read depths of 2 
(a), 5 (Fig. 2b in main text) or 10 (b) differ by only 3.61%. The modest increase in concordance 
with increasing minimum read depth requirements indicates that significantly different read 
depths do not have a major effect on concordance.  
 
Potential differences in concordance due to biological or passage related variation were also 
examined. MethylC-seq on ES #3 was compared to biological replicates of RRBS on ES #1 (c-
d) and #2 (e-f). The concordance for ES #3 – ES #1 at 5 reads was 79.46%, and at 10 reads 
was 83.4%. The concordance for ES #3 – ES #2 at 5 reads was 82.95%, and at 10 reads was 
83.36%. These concordance percentages were very similar to those from MethylC-seq and 
RRBS both on ES #3 (5 reads, 81.82%; 10 reads 83.89%). RRBS on ES #1 and #2 was also 
compared (g-h) and showed a higher concordance (5 reads, 91.54%; 10 reads 94.81%) than 
any of the comparisons between MethylC-seq and RRBS. These data further suggest that these 
biological replicates are very similar.  
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Supplementary Figure 9. Comparison of bisulfite based methods for assessment of non-
CpG cytosine (CHH and CHG) methylation including a large number of cytosines with no 
methylation. Since CHH sites are asymmetric and 98% CHG sites are hemi-methylated1, reads 
mapping to each strand were considered separately. The comparison was performed on 
MethylC-seq and RRBS both on H1 ES #3. (a) Percent concordance of methylation calls using 
different call cutoffs and at varying minimum read depths. (b) Bar chart of the differences 
(MethylC-seq - RRBS) in methylated proportions (methylated reads / (methylated reads + 
unmethylated reads)) for non-CpG cytosines with a minimum coverage of 5 reads by both 
methods. Percentages of concordant and discordant proportions were determined at cutoffs of + 
and - 0.1 (green dashed lines) and + and - 0.25 (red dashed lines). The concordance is 
influenced by the completely unmethylated CHH and CHG sites which constitute the majority of 
the cytosines assessed. (c) CpG density in a 400bp window and (d) genomic context of 
concordant and discordant non-CpG cytosines at the 0.25 cutoff.  
 

Nature Biotechnology: doi: 10.1038/nbt.1682



 
 
Supplementary Figure 10. Comparison of bisulfite based methods for assessment of 
non-CpG cytosine (CHH and CHG) methylation requiring a minimum of 1 read showing 
methylation in RRBS and MethylC-seq both on H1 ES #3. The preponderance of 
unmethylated cytosines (zero score) in the analysis shown above in Supplementary Figure 9 
has the potential to skew towards higher concordance. However, in this figure, we show that 
concordance remained relatively high even when only those non-CpG cytosines with at least 
one read showing methylation were compared (Supplementary Fig. 10). Since CHH sites are 
asymmetric and CHG sites show 98% hemi-methylation1, reads mapping to each strand were 
considered separately. (a) Bar chart of the differences (MethylC-seq - RRBS) in methylated 
proportions (methylated reads / (methylated reads + unmethylated reads)) for non-CpG 
cytosines with a minimum coverage of 5 reads by both methods and at least 1 read showing 
methylation. Percentages of concordant and discordant proportions were determined at cutoffs 
of + and - 0.1 (green dashed lines) and + and - 0.1 0.25 (red dashed lines). (b) CpG density in a 
400bp window and (c) genomic context of concordant and discordant non-CpGs at the 0.25 
cutoff. These analyses indicate that non-CpG cytosine methylation estimates from RRBS and 
MethylC-seq exhibit even greater concordance than methylation at CpGs. It is noteworthy that 
the methylation level of individual CHH or CHG sites is, on average, lower than for CpG sites, 
which limits the degree of variability that is theoretically possible between two methods. 
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Supplementary Figure 11a 
 

 
 
 
Supplementary Figure 11b 
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Supplementary Figure 11c 
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Supplementary Figure 11d 
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Supplementary Figure 11e 
 
 

 
 
 
Supplementary Figure 11f 
 
 

 
Nature Biotechnology: doi: 10.1038/nbt.1682



Supplementary Figure 11g 
 
 

 
 
 
Supplementary Figure 11. Bisulfite sequencing of H1 ES #1 and ES #2 for seven 
selected loci demonstrates a high methylcytosine density in regions called 
methylated by MeDIP-seq and MBD-seq. Six loci (a-f) were selected for this analysis 
because they were called methylated by MeDIP-seq and MBD-seq, while one control 
locus (NFATC1, g) was chosen due to the lack of MeDIP-seq or MBD-seq signal. At 
least 10 individual colonies were sequenced for each PCR product. A filled circle 
represents a methylated CpG and an open circle indicates an unmethylated CpG. Very 
similar results were observed in the two biological replicates, indicating very little 
biological variation at these loci and suggesting good concordance in methylation calls 
between MeDIP-seq and MBD-seq. The individual CpG reads from bisulfite sequencing 
as well as primers used for the analyses are in Supplementary_Table_3.xls. 
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Supplementary Figure 12. Comparison between MeDIP-seq and MBD-seq in 
relation to non-CpG cytosine methylation. Three groups of gene bodies were 
identified that have similar CpG methylation levels, but different levels of non-CpG 
cytosine methylation based on MethylC-seq data (low: 0.02 mCG/bp; intermediate: 0.03 
mCG/bp; high: 0.04 mCG/bp). Genes in each group have varying levels of CHG 
methylation level, ranging from 0 mCHG/bp to 0.015 mCHG/bp. Read coverage was 
calculated for each gene body from both MeDIP-seq and MBD-seq data, and plotted 
against corresponding mCHG levels for the same gene body. Both MeDIP-seq and 
MBD-seq read densities increase with increasing mCG level (comparing three columns 
each with different levels of mCG). MeDIP-seq also shows an increase with increasing 
mCHG level when the mCG level is kept the same, while the trend is not obvious for 
MBD-seq. This suggests that MeDIP-seq detects non-CpG cytosine methylation while 
MBD-seq may not. However, given the typically higher methylation level at CpGs versus 
non-CpG cytosines, and their similar distributions in ESC, neither of these methods 
actually distinguishes CpG and non-CpG methylation. Furthermore, the very high 
concordance between these two methods suggests that their potential differences in 
detection of non-CpG cytosine methylation have very little effect on concordance, when 
using a windows based approach.  
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Supplementary Figure 13. MeDIP-seq, MBD-seq and MethylC-seq signal in regions 
with no CpGs. Regions with no CpGs and no annotated repetitive elements in the 
human genome assembly hg18 were identified. Read density was calculated for both 
MeDIP-seq and MBD-seq. Average MethylC-seq scores for CHH and CHG methylation 
were calculated for each region with negative scores indicating unmethylated states. (a) 
(b) and (c) are histograms of read density/scores in all selected regions. The y-axes are 
in log scale. The majority of regions have only background levels of MeDIP-seq and 
MBD-seq reads and are predicted to only have unmethylated CHH and CHG by 
MethylC-seq. (d) (e) and (f) are scatter plots among MeDIP-seq, MBD-seq and MethylC-
seq.  
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Supplementary Table 4. Four-way concordance of methylation calls in 200bp 
windows. Highly/weakly methylated calls based on a cutoff of 0.2 were made for all 
200bp windows where all four methods had at least one CpG covered by a minimum of 
5 or 10 reads. In the “Methods” column, methods with the same methylation call are 
grouped in parentheses. The 4-way concordance using 200bp windows is similar to the 
1000bp window approach shown in Fig. 4a (5 reads minimum, 97.64%; 10 reads 
minimum, 98.30%). Thus, changing window size from 1000bp to 200bp did not have a 
major effect on concordance. 
 

 
Supplementary Figure 14. 4-way concordance as a function of highly/weakly 
methylated proportion cutoff for MethylC-seq and RRBS. Methylation calls of highly 
methylated or weakly methylated were made for 1000bp windows where at least one 
CpG covered by 5 reads was present in all methods. This allowed for the comparison of 
199,438 windows. Concordance of calls across all four methods at varying highly/weakly 
methylated proportion cutoffs for MethylC-seq and RRBS were determined. 
Concordance remained above 90% up to a highly/weakly methylated cutoff of 0.55. This 
demonstrated that the high concordance seen among the methods was consistent 
across a wide range of highly/weakly methylated cutoffs. Thus, cutoffs over a wide range 
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have very little effect on concordance. We used the highly/weakly methylated cutoff of 
0.2 in assessing concordance in Fig. 4a. 
 
 

 
 
Supplementary Table 5. Three-way concordance of methylation calls in windows. 
Methylation calls were made for all 1000bp (a) or 200bp (b) windows where all three 
methods had at least one CpG covered by a minimum of 5 or 10 reads. This 3-way 
analysis specifically excludes RRBS, allowing 2-3 times more windows to be compared 
across platforms. In the “Methods” column, methods with the same methylation call are 
grouped in parentheses. The concordance is very high for both window sizes, and for 
the 5 or 10 read cutoffs, suggesting that these two parameters do not have a significant 
effect on concordance, at least not on their own.  

Nature Biotechnology: doi: 10.1038/nbt.1682



 

Supplementary Figure 15. Comparison of bisulfite sequencing methods to 
Infinium arrays for assessment of CpG methylation. The bar charts depict the 
differences (bisulfite sequencing method – Infinium array) in methylated proportions 
(methylated reads / (methylated reads + unmethylated reads)) for CpGs covered at a 
minimum read depth of 5 by the bisulfite sequencing methods compared to beta values 
from the Infinium array. Percentages of concordant and discordant measurements were 
determined at cutoffs of + and - 0.1 (green dashed lines) and + and - 0.25 (red dashed 
lines). For comparisons between MethylC-seq (a) or RRBS (b) and the Infinium array, 
with all experiments performed on H1 ES #3, the concordances at a measurement 
difference of 0.25 were 96.41% or 97.31% respectively. The correlations for MethylC-
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seq (Pearson’s r=0.97) and RRBS (Pearson’s r=0.94) compared to the Infinium array 
were also calculated. The high concordances and correlations with the array suggest 
methylation levels assessed by these three bisulfite methods are comparable, though a 
minor amount of variation is noted in methylation levels at individual CpGs assayed by 
Infinium versus the other 2 methods. 

 
 
 
Supplementary Table 6. Genome-wide catalogue of CpG island regions exhibiting 
overlapping MeDIP-seq (methylated) signals and MRE-seq (unmethylated) signals. 
MeDIP-seq and MRE-seq data analysed here are from ES replicate #1. 
 
See Excel spreadsheet Supplementary_Table_6.xls. 
 
 
 
 
 
Supplementary Table 7. Validation of known and putative DMRs by bisulfite, PCR, 
cloning and sequencing. Bisulfite sequencing analysis was performed on 17 DNA 
fragments in each of 3 biological replicates from H1 ESC. Among these, we studied and 
validated 2 DMRs of known imprinted genes (GRB10 and INPP5F). We also validated 2 
fragments that were fully methylated and two that were fully unmethylated as controls. 
 
In order to validate novel DMRs, we investigated 13 different fragments from 8 genomic 
loci that had overlapping signals in MeDIP-seq and MRE-seq. We sequenced 1 PCR 
product each for BCL8, FRG1 and ZNF331. For the remaining 5 putative DMRs, we 
designed multiple PCR products to cover the putative DMR. These 5 putative DMRs 
include CGI near FRG2, IAH1, MEFV-1, POTEB and ZFP3. For each putative DMR, 2 
adjacent bisulfite regions were studied. Since DMRs may be small or large, we deemed 
a region validated as a true DMR when at least one of the studied fragments of the locus 
showed a pattern consistent with allelic methylation. Among 8 putative new DMRs 
tested, 7 were validated as exhibiting a pattern consistent with allelic methylation.. 
Furthermore, analysis of sequencing reads from MeDIP-seq and MRE-seq identified a 
total of 63 loci in which one genetic allele (of a SNP) was present in the MeDIP-seq and 
the other allele was present predominantly or exclusively in the MRE-seq, suggesting 
monoallelic DNA methylation at these loci. The PCR primers and PCR conditions are in 
Excel spreadsheet Supplementary_Table_7.xls. 
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Supplementary Figure 16. Genome browser view of NAP1L5. One of the 19 known 
DMRs in the imprinted NAP1L5 gene is not within a CGI. The DNA methylation pattern 
showing signal in both MeDIP-seq and MRE-seq is consistent with an intermediate 
methylation level expected in such imprinted genes. 
 
 
 

Assays compared Number of 
SNPs found 

Number of loci with 
allelic methylation 

Number of 
associated genes 

MRE-seq and MeDIP-seq 310 63 146 
MethylC-seq and mRNA-seq 24 26 22 
MethylC-seq and H3K4me3 73 24 99 
MethylC-seq and H3K9me3 263 43 65 

 
Supplementary Table 8. Using genetic variation to detect monoallelic epigenomic 
states and monoallelic transcription states. While a majority of CGIs are either fully 
methylated or unmethylated, more than 1000 CGI loci were identified that exhibited 
significant, overlapping MeDIP-seq and MRE-seq signals, suggestive of intermediate 
methylation states. Intermediate methylation levels occur at imprinted genes and at non-
imprinted allelic methylation sites, and also potentially at sites of heterogeneous 
methylation not related to allelic methylation patterns. Among the 1000 loci, 16 of 19 
DMRs of known imprinted genes could be identified. We thus looked further at these loci 
for evidence of novel monoallelic DNA methylation, histone methylation and RNA 
expression. 
 
To detect monoallelic epigenomic and transcription states within the 1000 loci, sequence 
reads from pairs of assays were assessed for heterozygous single nucleotide 
polymorphisms (SNPs). Supplementary Table 8 summarizes the results of this 
exploration. 
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1) Paired MRE-seq and MeDIP-seq. The goal was to discover heterozygous SNPs that 
exhibited different alleles between the MRE-seq and the MeDIP-seq sequencing reads. 
We mapped 101 million MRE-seq reads and 40 million MeDIP-seq reads using Pash 
3.04,5, and built the genotype for each dataset using SAMtools9. We selected the SNPs 
in MRE-seq reads within the 1000 loci with intermediate methylation, and reported the 
sites for which MeDIP-seq has a different consensus allele. Next, we selected the SNPs 
in MeDIP-seq within the 1000 loci with intermediate methylation, and reported the sites 
for which MRE-seq exhibited a different consensus allele. Overall, we found 310 
different heterozygous SNPs showing allelic differences between MRE-seq and MeDIP-
seq datasets, associated with 146 genes and 63 sites of putative monoallelic 
methylation. 16 of the 63 putative allelic methylation sites are hypervariable, indicated by 
the large number of SNPs present in them (6-36 SNPs). 
 
2) MethylC-seq and mRNA-seq. We first selected genes within 50kb of each of the 1000 
loci with intermediate methylation. We attempted to discover sites within that gene set 
for which heterozygous SNPs are observed in the MethylC-seq dataset and single 
consensus alleles are observed in the mRNA-seq data. We used Pash 3.0 to map 1.98 
billion MethylC-seq reads, and SAMtools to build genotypes, and filtered for 
heterozygous SNPs. Next, we mapped 190 million mRNA-seq reads using Pash 3.0, 
selected the reads mapping within exons of the target genes, and used SAMtools to 
build genotypes. We compared the MethylC-seq heterozygous SNPs and the mRNA 
single consensus alleles, and reported the sites where the two sets overlap. We found 
mRNA expression data for 638 genes within 50kb from the loci with intermediate 
methylation. Out of those genes, 22 contained heterozygous SNPs in the MethylC-seq 
data and single consensus alleles in the RNA-seq data, suggesting monoallelic 
expression of these genes.. 
 
3) MethylC-seq and ChIP-seq. The goal was to discover heterozygous SNPs in the 
MethylC-seq dataset for sites that exhibited homozygous consensus alleles in the peaks 
for ChIP-seq assays corresponding to the histone modification marks H3K4me3 and 
H3K9me3. The peaks were called using the Sole Searcher software, and we selected a 
subset of 206 peaks in H3K4me3 and 138 peaks in H3K9me3 that are within 1kb of the 
1000 loci with intermediate methylation. Next, 35 million H3K4me3 reads and 115 million 
H3K9me3 reads were mapped using Pash 3.0. The genotypes in the peak regions were 
called using SAMtools. We compared the MethylC-seq heterozygous SNPs and the 
H3K4me3/H3K9me3 single consensus alleles within the peak regions and reported the 
sites where the two sets overlap. The comparison between MethylC-seq and H3K4me3 
yielded 73 SNP sites, corresponding to 24 putative DMRs and 99 genes. The 
comparison between MethylC-seq and H3K9me3 yielded 263 SNP sites, corresponding 
to 43 putative DMRs and 65 genes. 
 
 
 
Supplementary Table 9. Details of the comparison of genomic variation between 
pairs of assays to determine allele-specific epigenetic states. 
 
See Excel spreadsheet Supplementary_Table_9.xls. 
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Supplementary Figure 17a 

 

 

 

Supplementary Figure 17b 
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Supplementary Figure 17c 

 

 

Supplemental Figure 17a-c. Genome Browser tracks for 4 putative DMRs within 3 
genomic regions that exhibit allelic DNA methylation, allelic H3K4me3/H3K9me3 
histone modification, and monoallelic RNA expression. a, Putative DMR at FANK1 
on chromosome 10, showing browser tracks for CGI, H3K4me3 ChIP-seq, H3K9me3 
ChIP-seq, MeDIP-seq, MRE-seq, and annotated genes. b, A putative DMR at the 
monoallelically expressed gene FRG1 on chromosome 10 and c, two putative DMRs on 
chromosome 16 near the monoallelically expressed non-coding RNA LOC649159. 
MIR1826 is also present in this region, but did not contain an informative SNP in the 
ESC, and therefore allelic expression status could not be determined. 
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Average Methylation Scores over 500bp windows in CpG Islands and 1000 
putative intermediate methylation loci
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Supplementary Figure 18. Average methylation levels from MethylC-seq in all CGI 
and the 1000 loci exhibiting intermediate methylation levels in MeDIP-seq/MRE-
seq. The average methylation scores are computed over 500bp windows tiling the CGI. 
Most CGI exhibit either low- or high- methylation. The 1000 loci are enriched for 
intermediate methylation levels. We choose to focus for further analysis on 500bp 
windows with methylation levels in the 0.3-0.8 range, which enabled the rediscovery of 
958 out of 1000 loci. Within the 958 loci, 133 SNPs were identified, corresponding to 62 
of the original 1000 loci. 
 
Additional evidence for monoallelic DNA methylation can be obtained using whole 
genome MethylC-seq. We computed the average methylation scores in 500 base pairs 
windows, first over the entire set of CGI in the genome, and then over the focused set of 
1000 loci. The results are displayed in Supplementary Fig. 18 and in the Excel 
spreadsheet Supplementary_Table_9.xls. We further narrowed our search to 500 base 
pair windows with average methylation in the range of 0.3-0.8; this enabled the 
rediscovery of 958 of the 1000 CpG Islands loci, in a total of 2938 windows. To 
incorporate genomic variation evidence for monoallelic methylation, we detected 
heterozygous SNPs in these windows, and for each SNP we computed the average 
methylation called by reads containing the reference allele, and average methylation 
called by reads containing the alternative allele. Overall, a total of 133 SNPs exhibited 
allele-specific methylation (ASM), corresponding to 62 of the 1000 loci and to 179 genes 
associated with the 62 loci. 
  
Thirty-seven of the 62 putative monoallelic methylated loci from the MethylC-seq 
analyses had indications of monoallelic DNA methylation from MeDIP-seq and MRE-seq 
(Fig. 6a), including all 4 loci that exhibit monoallelic DNA and histone methylation and 
expression. Twenty-five of the 62 informative loci exhibiting allele specific DNA 
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methylation were found exclusively in the MethylC-seq, 8 of which did not have sufficient 
coverage by MeDIP-seq or MRE-seq reads. The remaining 17 had reads in either MRE-
seq only (2 loci) or MeDIP-seq only (15 loci), though in all 17 only one of the two 
nucleotides was observed at the SNP position. Thus, the identification of monoallelic 
methylation by MethylC-seq strongly corroborates and extends the catalogue derived 
from MeDIP-seq and MRE-seq. Furthermore, MeDIP-seq or MRE-seq alone might allow 
identification of monoallelic methylation, for genomes in which the informative SNPs are 
known. 
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