
 

Supplementary Notes 

 FuGE UML Primer 
 
The Unified Modeling Language (UML) from the OMG (http://www.omg.org/) is a 
specification defining a graphical language for visualizing, specifying, constructing, and 
documenting the artifacts of object-based software, from simple applications to 
enterprise-level distributed computing systems. For the purposes of easy interpretability, 
FuGE uses a much-restricted subset of the UML standard for specifying the data model. 
Specifically, the model utilizes only one type of UML diagram, the Class Diagram, which  
represents a static view of the data structures. This restriction is enforced because the 
primary purpose of the model is to design an exchange format and facilitate the storage of 
the data (i.e. database design). Class diagrams can also be mapped relatively easily to 
other platform-specific implementations, such as basic toolkits in Java, Perl etc. Other 
features of UML, such as state, activity and interaction diagrams are used for developing 
complete software systems, which is not part of the scope of the FuGE project, and they 
are significantly more difficult to map to multiple platforms. The elements of a Class 
Diagram are discussed below.  
 
Class Diagram 
 
A real-world concept represented in the model is called a Class. Class diagrams, as the 
name implies, contain Classes and the relationships between Classes, called Associations. 
They can also contain notes that help a developer understand the diagram, and hence 
understand the relationships between the Classes present in the diagram. A Class can 
appear more than once in a diagram, and can appear in more than one diagram.  
 
Developers should be careful to note that Class Diagrams are not the definitive source for 
defining the data model (the definitive source is the entire UML model, represented in an 
underlying format). Class Diagrams are used to convey a specific concept and, as such, 
may not represent all of the structure and relationships of a Class, for instance to focus on 
a subset of relationships that represent a specific part of the domain. Typically, the more 
complex a data model is, the more Class Diagrams are needed to explain a set of 
relationships. For instance, the Protocol package of FuGE represents the single most 
important piece of functionality, as the notion of protocols is generally applicable across 
any technology type and analysis routine. The FuGE Protocol package contains five 
Class Diagrams, and could conceivably contain more to clarify certain key points of this 
important part of the model.  
 
The next sections will discuss the concepts found in Class Diagrams, Classes and 
Associations.  
 



 
Class 
 

 
 

 
Classes are diagrammatically represented by a rectangle that is subdivided into three 
compartments (Fig. 1). The top compartment contains the class name and other intrinsic 
properties of the entire class. One type of intrinsic property used in the FuGE model is a 
Class Stereotype (Fig. 2). In UML, Stereotypes define the intended role a Class plays. For 
FuGE in particular, Stereotypes are used to drive the AndroMDA template engine to 
decide what type of document to produce for any given model element. For instance, 
almost all classes in the FuGE model have the “XmlSchemaType” stereotype, which 
signals to AndroMDA to convert a UML Class to an XML element in the FuGE XML 
schema. A very small number of FuGE classes, instead, have the “Enumeration” 
stereotype as shown in Figure 2b, for representing a list of possible values to be used in 
conjunction with another Class. In most cases, the class stereotype information is not 
shown in the diagrams. 
 
 
 

 
Figure 2a UML Class Stereotype “XMLSchemaType” used on almost all elements in FuGE. 
 

 
Figure 2b UML Class Stereotype “Enumeration”. The attributes in AuditAction can be used as an 
enumeration (a list of all the allowable values) for the attribute “action” on the Class Audit. 
 
 

Figure 1 UML Class with compartments outlined 



The middle compartment contains a list of attributes. For FuGE, except for enumerations, 
all attributes are singular simple data types, such as integers, Booleans, strings, etc. 
Attributes in the FuGE data model are defined as optional (“0..1”) or mandatory (“1”) by 
the cardinality specified next to the attribute name. UML in general can define a much 
broader set of cardinalities on class attributes than discussed here, but the FuGE project 
has so far restricted itself to using these two types to facilitate the mapping to XML. 
Attributes in UML can have the same types and constraints discussed in the section on 
Association cardinalities. 
 
Finally, the bottom compartment of a UML class contains a listing of operations that are 
performed by the class. Since FuGE is a data model and does not contain operations, this 
compartment is not used. In certain FuGE diagrams, the bottom compartment is not 
shown for this reason. 
 
 
UML Relationships 
 
There are two general types of relationships between classes in FuGE: Associations and 
Generalizations.  
 
Associations 
 
Associations are the simplest type of relationship in UML, providing access between the 
Classes at either end of the Association (an Association End). Associations are 
diagrammatically represented as a line between two classes (Fig. 3) and have several 
components: Labels, Directionality, Cardinality, and Containment. 
 
 

 
Figure 3 An Association between two Classes.  
 
Labels 
 
An Association can potentially have up to three labels, one for the entire Association (e.g. 
“Software2Equipment”, and one label for each Association End (“software” and 
“equipment”). Of interest to FuGE developers are the Association End labels since these 
are used to traverse the Association from one class to another. Specifically, Classes gain 
the label at the opposite Association End to use for traversal of the Association. In the 
XML schema translation of FuGE, this corresponds to a sub-element that acts as a 
container for elements representing the class at the other Association End. For Java, this 
translates to the name of the collection object that is used to contain or reference the other 
class.  
 



Directionality 
 
Directionality defines whether one Association End is accessible from the other. 
Associations are either bi-directional, meaning each Association End is accessible from 
the other (hence both classes can traverse the relation), or unidirectional, meaning only 
one Association End is accessible and the relation can only be traversed in one direction. 
In Figure 4, the association is navigable from Protocol to Software but not vice 
versa. Uni-directional Associations are denoted by an arrow located at the Association 
End that is accessible. Lack of an arrow on either Association End denotes bi-
directionality, as in Figure 3. 
 

 
Figure 4 Unidirectional association between Protocol and Software 
 
Cardinality 
 
Each Association End contains a specification for its cardinality, or how many instances 
of a Class can (or must) be reachable at the Association End. Figure 4 demonstrates that a 
Protocol can be associated with multiple instances of Software (0..* on the 
Software end), and that each instance of Software can be used in conjunction with 
multiple Protocols (0..* on Protocol end). 

 
Table 1 A listing of possible Association End cardinality constraints and their implications. The 
numeric ranges are UML notation in the Class Diagrams; table headings represent the semantic 
meaning of the numeric ranges; the m-dashes represent an Association 
 
 
Containment  
 
It is often necessary to denote that a Class cannot exist independently from another class. 
For instance, the Description class would be useless without a reference from the 
class that it describes. Composition is denoted by a diamond shape at the Association End 
of the owning Class. The Class located at the contained (e.g. no diamond shape) 
Association End cannot exist independently of an owner (Fig. 5a). 
 

 up to one One zero or more more than one 

up to one 0..1 —— 0..1 0..1 —— 1 0..1 —— 0..* 0..1 —— 1..* 

One    1 —— 0..1    1 —— 1    1 —— 0..*    1 —— 1..* 

zero or more 0..* —— 0..1 0..* —— 1 0..* —— 0..* 0..* —— 1..* 

at least one 1..* —— 0..1 1..* —— 1 1..* —— 0..* 1..* —— 1..* 



 
 
Figure 5a A black diamond represents complete ownership of a Class instance: the instance of 
Description cannot exist independently of InvestigationComponent.  
 

 
Figure 5b An open diamond represents shared ownership of a Class instance i.e. Factors are 
shared across InvestigationComponents. 
 
There are two possible containment constraints on Classes: Composition and 
Aggregation. For the most part, the FuGE model uses the more restrictive Composition 
containment constraint, where the owning Class instance completely controls the 
existence of the contained Class instance(s). This is denoted by a closed, or black, 
diamond, as in Figure 5a.  
 
Aggregate composition entails that an instance of a Class can be shared across separate 
instances of the parent, or even across instances of multiple parent types. Figure 5b 
illustrates this point using the FuGE classes InvestigationComponent and 
Factor. Briefly, InvestigationComponent represents a particular experimental 
technology platform, such as microarrays or tandem mass spectrometry, and Factor 
represents the principal comparators of an experiment, such as drug dosages or gene 
knock-outs. One can imagine a study that combines multiple high-throughput 
technologies, such as transcriptomics and proteomics, for studying the same condition, 
for instance the effect of COX inhibitors on cardiovascular tissue examined using 
microarrays and LC-MS/MS. The Factor (dosage) does not have meaning outside the 
scope of these experiments and should not exist without at least one of the 
InvesitgationalComponents; in effect the Factors are jointly owned between 
InvestigationComponents.   
 
 
Generalizations 
 
A Generalization represents an inheritance relationship between Classes, such that one 
Class is the descendant (child) of another (the parent).  Inheritance implies that a 
descendent acquires all of the properties of all of its ancestors. FuGE utilizes a simple 
inheritance model where each Class is restricted to having only one direct parent, thus 
there is a direct line of descent, although a parent class may have multiple children.  (Fig. 



6). Multiple inheritance is difficult to map to different software platforms and rarely 
conveys any significant advantage to the data model. 
 
 

 
Figure 6 Generalization relationship between Classes. The child Classes (Person and 
Organization) point to the parent Class (Contact).  
 
 
Abstraction 
 
Classes can be set as abstract, denoted by the Class name in Italic font, meaning that the 
Class cannot be instantiated, and must be used in conjunction with a child class that is not 
abstract. Figure 6 demonstrates why this may be an advantageous design. Both Person 
and Organization share a number of common attributes, which have been assigned to 
the parent Contact Class. Contact is set to be abstract, because in the actual format 
all instances of Contact must be either a Person or an Organization; Contact 
itself cannot be instantiated. 


