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CMIP5 Models 

The 37 CMIP5 models used, with the number of runs available in parenthesis, are: 

ACCESS1-0(1), ACCESS1-3(1), BNU-ESM(1), CCSM4(6), CESM1-BGC(1), 

CESM1-CAM5(3), CMCC-CM(1), CMCC-CMS(1), CNRM-CM5(10), CSIRO-Mk3-6-

0(10), CanESM2(5), FGOALS-s2(3), FIO-ESM(3), GFDL-CM3(5), GFDL-ESM2G(1), 

GFDL-ESM2M(1), GISS-E2-H(5), GISS-E2-H-CC(1), GISS-E2-R(6), GISS-E2-R-

CC(1),HadCM3(10), HadGEM2-AO(1), HadGEM2-CC(1), HadGEM2-ES(1), IPSL-

CM5A-LR(6), IPSL-CM5A-MR(3), IPSL-CM5B-LR(1), MIROC-ESM(3), MIROC-ESM-

CHEM(1), MIROC5(5), MPI-ESM-LR(3), MPI-ESM-MR(3), MRI-CGCM3(3), 

NorESM1-M(3), NorESM1-ME(1), bcc-csm1-1(3) and bcc-csm1-1-m(3). All the 

CMIP5 model output was formed by merging historical simulations up to 2005 with 

RCP4.5 simulations from 2006 to 2012. RCP4.5 simulations included greenhouse 

gas concentrations very similar to those observed over this period and aerosol 

precursor emissions broadly consistent with best observational estimates. Observed 

solar irradiance variations were specified up until 2008 followed by a repeating solar 

cycle which approximately reproduces observed solar irradiance variations over this 

period1. 
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Statistical Analysis 

In our analysis two statistical representations for trends are estimated either from 

observations or from individual model simulations. The forms of these 

representations depend on the assumptions concerning the “exchangeability” of 

information between the models and the observations. 

Trend representation assuming exchangeability between models 

In this case a reasonable trend representation is: 

(1) i
m

iij
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Here ijM  and kO  are trends calculated from single runs, or single bootstrap samples 

of the observations. m
u and o

u  are the true, unknown, deterministic trends due to 

external forcing in the modelled and observed worlds, where m
u is the trend 

component that is common to all models (in the limit, as the collection of 

exchangeable models grows infinitely large). No prior assumption that om
uu = is 

made. ijEint  and o
Eint  are perturbations to ijM and kO respectively due to internal 

variability. These are different for each model run, but are essentially identical for 

each resample of the observations. iEmod  is the perturbation to ijM  that is 

introduced by model error in model i. We assume that these perturbations are 

exchangeable. kEsamp  is the perturbation to kO  introduce by the k-th bootstrap 
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resampling.  m
N  is the number of models, iN  is the size of the ensemble for model 

i, and o
N  is the number of observed reconstructions. 

Trend representation assuming exchangeability between models and observations 

In this case a reasonable trend representation is: 

(1)′ i
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iij
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ij NjNiEexchEintuM ,...,1,,...,1, ==++=  and 

(2)′ Ok = u
o

+ Eint
o

+ Eexch
N m

+1
+ Esampk, k = 1,...,N
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Here 
1+

mN
Eexch is the deviation from the true, underlying (forced) trend in the 

observations that is exchangeable with the deviations m
i NiEexch ,...,1, = of the 

models from the common component of the model trend. That is, the deviations are 

assumed to be exchangeable, but the two true trends m
u and o

u  need not be the 

same. The other components are defined as above.  

Null hypothesis 

For either trend representation, a reasonable estimator of mo
uu −  is ... MO − , where 

“.” replacing a subscript indicates averaging over that subscript.  In both cases, the 

null hypothesis om
uu =  :H0  could be tested in a number of ways. One approach 

would be to make distributional and independence assumptions for the individual, 

non-deterministic components of (1) and (2), or (1)′ and (2)′, and subsequently derive 

a distribution for ... MO − under H0. Instead, we opt for a resampling approach, 

thereby avoiding distributional assumptions. In this approach, the equations above 
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are used a guidance to ensure that the empirical distribution for ... MO −  includes the 

sources of uncertainty described in either equations (1) and (2), or (1)′ and (2)′. 

Empirical distribution assuming exchangeability between models 

In this case an empirical estimate of the distribution for ... MO − under H0 is 

constructed as follows:  a) Select a sample of o
N observed reconstructions with 

replacement and average to obtain a .O  realization. b) Select a sample of m
N  

models with replacement and for each selection, draw one run at random from that 

model’s available ensemble of simulations, and then average over those m
N runs to 

obtain a ..M  realization. c) Select, at random, a single model i from models with 

multi-run ensembles, and then select, at random, a single run j from that model’s 

ensemble. Calculate the difference .iij MM −  between the trend in that single run and 

the mean of the trends from that model’s ensemble. This difference is an estimate of 

the deviation in the j-th trend for model i that is induced by internal variability. Since 

the model i ensemble is generally small, the deviations are smaller than would be 

representative of an infinitely large replication of runs for model i, and so to 

compensate for that loss of variance, multiply the difference .iij MM −  by 

2/1
)]1/([ −ii NN . Finally, calculate a-b+c computed in the steps above and repeat the 

resampling procedure many times to build a distribution for a-b+c under the null 

hypothesis that 0=−
mo

uu and the assumption of model exchangeability. From this 

distribution we compute p-values where a p-value is the probability of occurrence of 

a trend at least as large as that found under the null hypothesis of equal underlying 

trends. Here we note that the smaller the p-value the stronger the evidence against 

the null hypothesis. 
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The rationale for this procedure is a follows: 1) Variations in .O  from step a) 

represent the effect of sampling uncertainty in the observational estimate of  
o

u .  

That is, the uncertainty that results from the kEsamp  term in equation (2). 2) 

Variations in  ..M from step b) represent the uncertainty in the multimodel estimate of 

 
m

u that arises from the choice of exchangeable models used to obtain  ..M [i.e., from 

the  Emodi term in equation (1)] and from internal variability [i.e., from the ijEint  term 

in equation (1)]. Step (c) is used to estimate the uncertainty in .O  that arises from 

internal variability. Since a single realization of internal variability is confounded with 

.O , c) is constructed by estimating single realizations of internal variability as they 

were realized in models. This can only be done using models with multi-member 

ensembles.  An implicit assumption is that sampling uncertainty in .O  is independent 

of uncertainty due to internal variability and also independent of uncertainty in  ..M . 

Trend distribution assuming exchangeability between models and observations 

In this case an empirical estimate of the distribution for 
...

MO − under H0 is 

constructed as follows: a) As above. b) As above. c) Select a sample of 1+
m

N  

entities with replacement from the pool of 1+
m

N entities consisting of m
N  models 

plus the observations (as the additional entity in the pool). For each member of the 

sample of entities, draw an ensemble member at random from that entity's available 

ensemble. From these entities )1(,...,1, +=
m

i NiP  calculate .P  and then select a 

single iP at random and calculate .PPi − . Finally, calculate a-b+c as computed in the 

steps above and repeat the resampling procedure many of times to build a 

distribution for a-b+c under the null hypothesis that 0=−
mo

uu and the assumption of 
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exchangeability between models and observations. The rationale for this approach is 

the same as above, except component c) now includes uncertainty from two 

sources. From this distribution we again compute p-values that assess how unusual 

the discrepancy is between the observed and mean of model trends.  

 

Note that the p-values are necessarily dependent upon the assumptions that are 

used to construct reference distributions for 
...

MO − under the null hypothesis. The 

assumption of exchangeable between models and observations, which is a stronger 

assumption than model exchangeability, sets a more stringent criterion for rejecting 

the null hypothesis at a given significance level (i.e., the discrepancy between 

observed and mean model trends needs to be larger) than the model 

exchangeability assumption.  
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AMO signal in global temperature
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Supplementary Figure 1 | Atlantic Multidecadal Oscillation (AMO) signal in 

simulated and observed global mean surface temperature. The AMO index was 

computed from monthly mean sea surface temperature averaged over the North 

Atlantic (i.e. 25°N-60°N and 75°W-7°W) with 1900-2012 trends removed and 

smoothed with a sliding 121-month average. ENSO, COWL and volcanic signals2-3 

were removed from the global mean surface temperature, which was then regressed 

against the AMO index to give the timeseries shown above. The 2.5-97.5% range of 

observed estimates is shown with red shading and the 2.5-97.5% range of simulated 

estimates is shown with grey shading. The years 1993 and 1998 are indicated with 

vertical dashed lines. 
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