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S1. Brief summary of the methodology 5 

We first estimated the response of global-mean surface temperature (T) to historical forcings 6 
using the ensemble mean of the 66 all-forcing "historical" runs from 33 CMIP5 models17 
(http://cmip-pcmdi.llnl.gov/cmip5/index.html). Variations and changes associated with this 8 
estimate of the forced T time series were then removed from the observed T series at each grid 9 
point through linear regression (see Section S2). The residual T anomaly fields, referred to as 10 
detrended T, were then subjected to an Empirical Orthogonal Function (EOF) analysis (Section 11 
S5) in order to examine the contribution of the leading modes of the internal climate variability 12 
(ICV) to decadal global warming rates. Since the majority of the externally-forced signal was 13 
removed through the detrending, we consider the detrended T fields to consist of primarily 14 
unforced ICV.  This detrending procedure (Section S3) using the CMIP5-simulated response is a 15 
key feature of our analysis. It reduces the chances for the externally-forced and unforced signals 16 
to mix up in the EOF expansion. An evaluation of this detrending method is presented in Section 17 
S3.18 

 We emphasize that other detrending methods (e.g., linear detrending or using other time 19 
series2-3) are unlikely to remove most of the forced signal and produce a residual that can be 20 
considered as mostly ICV. Also, the spatial patterns of the leading EOFs may look similar with 21 
or without detrending (or using other detrending methods), but there are subtle differences in the 22 
EOF patterns and PC series that affect their contributions to the global-mean T series, as 23 
discussed below (Section S5).24 

 Since our focus is on the decadal variations in global-mean T, not the overall warming rate 25 
over the entire analysis period from 1920 to 2013, we remove a warming bias in the average 26 
model-simulated global-mean T series through re-scaling. The impact of this removal on our 27 
results is examined in Section S4.  28 

S2. Linear regression analysis 29 

Let �(�� �) be the surface temperature annual anomaly (ΔT) at grid point i for year n from 30 
observations, where n=1, ..., N=94 for 1920-2013. Let an over bar denote the area-weighted 31 

average over the globe from 60oS-75oN, and �(�)  be the global-mean of �(�� �)  from 32 

observations, and ��(�) be the global-mean surface air temperature annual anomaly for year n33 
from the CMIP5 multi-model ensemble mean of historical simulations (for 1919-2005) plus 34 
RCP4.5 simulations (for 2006-2013). For simplicity, we assume that the mean for the whole 35 
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analysis period (1920-2013) is removed in all the ΔT series so that the intercept is zero and can 36 
be ignored in all the linear regression equations listed below.  37 

 Generally, each ΔT series may be considered as consisting of an externally-forced 38 
component (denoted by subscript F, due to GHGs, aerosols, solar cycles and other external 39 
forcing) and an unforced component (denoted by subscript I, due to internal climate variability). 40 
For the global-mean ΔT from observations, we have  41 

            ( ) = ( ) +	 ( ) .                                                                                                  (1) 42 

 Since the internal variations among individual realizations are usually uncorrelated and thus 43 

are averaged out over a large number of ensemble members, the global mean ( ) from the 44 
large CMIP5 ensemble contains mostly the externally-forced response to the historical external 45 
forcing changes with little internal variation. Despite various deficiencies in CMIP5 model 46 

physics and external-forcings, ( ) still provides a reasonable fit to the overall warming trend 47 

during 1920-2013 [ ( ) from GISTEMP vs. ( ):  r=0.96, slope =0.863] and arguably 48 
represents our best estimate of the temporal evolution of the response to historical external- 49 

forcings. Thus, we estimate  ( ) using  50 

 ( ) = 		 ( )	,                      (2)  51 

where  is the regression slope in ( ) = 	 ( ) + ε (residual). The unforced component 52 
can then be estimated as  53 

 ( ) = ( ) −	 		 ( ) .                  (3)  54 

This definition ensures that ( )  and ( )  are uncorrelated, as any part in ( )  that is 55 

correlated with ( ) is removed through (3). We note that ( ) may still contain some small 56 
externally-forced changes that the CMIP5 ensemble mean may have missed and that are not 57 

correlated with 	 ( ), although 	 	 ( ) should account for the majority of the externally-58 

forced changes in the historical ΔT record. Thus, we consider ( ) as primarily consisting of 59 
unforced, internally-generated variations. 60 

 The focus of this study is to examine the temporal evolution of ( ) and the spatial 61 

patterns associated with ( ), and any physical or statistical modes of variability that may 62 
contribute to this unforced component in the global-mean ΔT series. In particular, the role of 63 
these leading modes in explaining decadal variations of the global warming rate, including the 64 
warming hiatus during the most recent decade, is investigated.  65 

 Similar to  ( ) , the local ΔT series ( , )  may be considered as consisting of an 66 
externally-forced [ ( , )]	and an unforced internal [ ( , )]	component, and each of these 67 
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components may be further separated into a part that is associated with their global counterpart 68 
and a local component, i.e.,  69 

  ( , ) = ′ ( )	[ 		 ( )] + ( , )  =  ( )		 ( ) +  ( , ) ,                            (4) 70 

 ( , ) = ( )			 ( ) + ( , ) ,                                                    (5) 71 

 ( , ) = ( )		 ( ) + ( )			 ( ) +  ( , ) + ( , ) ,                                           (6) 72 

where ( , )  and ( , )  contain, respectively, any local variability and local response to 73 
external forcing changes that are not accounted for by the global signals. The coefficients 74 
( )	and  ( )	are estimated using following regressions: 75 

 T( , ) = ( )		 ( ) + 	       and                             (7) 76 

 ( , ) ≡ ( , ) − ( )		 ( ) 	= ( )			 ( ) 	+ 	 	.                  (8) 77 

We refer to ( , ) as the detrended ΔT field, which may include some externally-forced local 78 
response ( ( , )). However, by construction, the global means of the ( , ) and ( , ) are 79 

zero (i.e., they do not affect the global-mean ΔT), and the global mean of ( ) is  , while the 80 
global mean of ( ) is one.  81 

 The spatial patterns of the regression coefficients ( ) (Fig. S9a) reveal how the externally-82 

forced global warming signal [ ( )] projects onto the observed ΔT fields. Similarly, the 83 

patterns of ( ) (Fig. S9d) depict how the unforced global internal variations [	 ( )] project 84 
onto the observed ΔT fields. Differences in these patterns provide insights into the different 85 
spatial structures associated with the externally forced and unforced components in the global-86 
mean ΔT series. Figure S9 shows that the regression patterns associated with the externally 87 
forced and unforced global components are different (pattern correlation coefficient r=0.11), 88 
with the former resembling the pattern associated with the observed global-mean ΔT (Fig. S9b) 89 
and the latter  (Fig. S9d) resembling the pattern associated with the IPO (Fig. 2c). The warming 90 
trend pattern from observations (Fig. S9b) includes both externally forced changes and unforced 91 
natural variations.   92 

S3.  Evaluation of the detrending procedure 93 

To evalurate how well our detrending method performs in removing the externally-forced 94 
changes in individual simulations, we analyzed 40 historical simulations from one coupled 95 
model [namely, the Community Climate System Model version 4 (CCSM4)] with identical GHG 96 
and other external forcing changes7. We estimated the externally-forced component at each grid 97 
point using Eq. (4) for each model simulation, averaged over these 40 estimates, and then 98 
compared this realization-mean pattern with that computed directly as an average over the 99 
anomaly patterns from each of the 40 simulations (Fig. S10). Our method captures well the 100 
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externally-forced signals (including volcanic) seen in the true ensemble mean. Similar results 101 
were also found for individual runs, although some spread is seen at high latitudes where the 102 
averaging area is small (Fig. S10c). Thus, our method of using CMIP5 ensemble mean and 103 

global mean [ ( )] and local regression to estimate and remove the externally-forced signal in 104 
global ΔT fields appears to work well. 105 

 Our analysis (Fig. 4 and Fig. S3) of the 30-member ensemble of all-forcing historical runs 106 
by the CESM4 (http://www.cesm.ucar.edu/experiments/cesm1.1/LE/) also suggests that our 107 
method seems to work well, as the ensemble-mean based detrending removes the forced signal in 108 
its run number 11, whose two leading EOFs account for the recent warming slowdown and other 109 
decadal variations in global-mean T. These model results are consistent with our analysis of the 110 
observed T, but in a cleaner setup with the forced response and unforced variations coming from 111 
the same model.   112 

S4. Model mean biases and their impacts 113 

We found that  =0.863 (0.762) in Eq. (2) for using the GISTEMP (HadCRUT4) observational 114 
data and the 66 simulations from 33 CMIP5 models. This suggests that this CMIP5 multi-model 115 
ensemble overestimates the overall warming from 1920-2013 by about 14% (24%) compared 116 
with that in the GISTEMP (HadCRUT4) dataset. This warming bias in the CMIP5 models has 117 
been noticed previously8-9. However, there are substantial differences in the long-term trends in 118 

the observational data sets, and  ( ) varies among models with different climate sensitivities. 119 
These observational and model uncertainties make the assessment of the overall model warming 120 
bias difficult. While this systematic bias is of concern and affects the recent decadal warming 121 
rate in models, its impact on decadal T anomalies depend on the baseline period used to compute 122 
the T anomalies for both the observations and the models. For example, if one chooses the recent 123 
period from 2000 to 2013 as the baseline period, instead of the commonly used period from1961 124 
to 1990, then the disagreement between the observed and simulated T anomalies since 2000 is 125 
much smaller than that shown in Fig. 1a. Since our focus is on decadal warming rates, we avoid 126 
these issues by removing this warming bias in models by rescaling the global-mean T from 127 

models using  	 (=0.863 for GISTEMP). 128 

 Figure S2 shows that without this rescaling, the most recent decade still shows a warming 129 
bias of about 0.1oC even after accounting for the impact of ICV. As mentioned above, the 130 
magnitude of this bias in decadal T anomalies depends on the choice of the reference period and 131 
thus can be misleading. The more robust signal is the change rate of the T anomalies, which 132 
shows minimal warming since about 2000 for both observations and models with the two leading 133 
EOFs taken into account (black and blue lines in Fig. S2a). Thus, while the overall warming bias 134 
in the CMIP5 models induces a systematic difference between the observed and model-simulated 135 
global-mean T since about 2000, the warming hiatus (i.e., the change rate) during this period is 136 
largely accounted for by the two leading EOFs of ICV, with or without the rescaling. 137 
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 We notice that the biases in model-simulated T response vary with individual forcings10. 138 
Here we used a single scaling factor to remove the overall bias in model global-mean T. It is 139 
straightforward to show that our scaling factor is a weighted average of the scaling factors for 140 
individual forcings under the following assumptions commonly used in optimal fingerprinting11: 141 
1) the models can simulate the response to individual forcings, and 2) the response to individual 142 
forcings are additive. Let yi(n) be the response of the global-mean T for year n to forcing i in 143 
observations, and xi(n) be the model-simulated response to forcing i, and fi is the scaling factor 144 
between the two so that  yi(n)=fi xi(n). Since the responses are assumed to be additive, the total 145 
response is  146 

      ( ) = ∑ ( ) = ∑ 	 ( ) = 	 ( ) , 147 

where y(n) and x(n) are the total response to all forcing in observations and models, respectively, 148 
and f is the overall scaling factor used in our analysis. It is clear that = ∑ 	 ( )/ ( ) 	=149 
∑ 	 ( )/	∑ ( ).  Thus, our rescaling method is equivalent to estimating the response to 150 
individual forcings and then averaging them to derive the overall response to the total forcing. 151 
Our method does not necessarily imply that the scaling factors are the same for the responses to 152 
different forcings. 153 

A similar argument applies to our detrending approach to remove the total response (i.e., 	 ( )) 154 
from the observations, which is equivalent to estimating the response to each forcing (i.e., fi xi(n)) 155 
and then removing it from the observations. This is because the regressions employed here are 156 
linear and hence the response is additive.  157 
 158 

S5. Empirical Orthogonal Function analysis   159 

To further investigate the leading modes underlying the externally-unforced patterns shown in 160 
Fig. S9d and thus their impacts on the global-mean ΔT series, we performed an Empirical 161 

Orthogonal Function (EOF) analysis12 of the detrended ΔT field [ ′( , )]. Since ( )	 ( ) 162 
accounts for the overwhelmingly large portion of the forced response at grid point i, removing 163 
this externally-forced component reduces the chance of contamination between the externally 164 
forced and unforced signals in the EOF decomposition. This is important given the relatively 165 
short record length of 94 years in our analysis compared against the time scales of the decadal to 166 
multi-decadal modes we are investigating.   167 

 As an alternative, we also performed an EOF analysis of the un-detrended ΔT field (i.e., 168 
( , )) from observations, and found that the first EOF represents the global warming mode that 169 

essentially recovers the global-mean ΔT series ( ) (red line in Fig. S11a). As mentioned above, 170 

the unforced component [ 	 ( ) ] in the global-mean ΔT series is uncorrelated with the 171 

externally-forced component [	 ( ) = 		 ( )], thus the only possible reason for these two 172 
components to be mixed into one EOF mode has to be due to the similarity in their associated 173 
spatial patterns. To show this, we computed the following difference field:   174 
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 ∆ ( , ) = ( )	 ( ) − ( )		 ( ) ,                                      (9) 175 

where  ( ) is the slope in regression:  ( , ) = ( )	 ( ) + 	 . Thus, ∆ ( , ) represents the 176 
difference between the ΔT associated with both the global externally forced and unforced 177 

components [ ( ) +	 ( )] and that associated with the externally-forced component  [	 ( )] 178 
alone. In other words, ∆ ( , ) may be considered as the ΔT field associated with the internally-179 
generated component in the global-mean ΔT series (but without local unforced variations, unlike 180 

′( , )). To reveal the spatial patterns of ∆ ( , ), we first computed the global-mean [ ∆ ( )] 181 
of ∆ ( , ) and then its regression slope with local ∆ ( , ), i.e.,  182 

 ∆ ( , ) = ( )	∆ ( ) + 	  .                 (10)  183 

The spatial patterns of ( )	(Fig. S9c) reveals that indeed they are similar to those associated 184 
with the global forced change (Fig. S9a; pattern correlation coefficient r=0.99). This leads to the 185 

merger of ( ) +	 ( )  into the first principal component (PC1, Fig. S11a) whose spatial 186 
pattern (Fig. S11b) resembles the pattern associated with the global-mean ΔT (Fig. S9b), despite 187 

the fact that ( )	and	 ( ) are uncorrelated.      188 

 One might argue that the whole global-mean ΔT series (red line in Fig. S11a) should be 189 
considered as the externally-forced response since its projected spatial pattern (Fig. S9b) is 190 
similar to that associated with the externally-forced component (Fig. S9a). This would mean that 191 
there are no internal, unforced variations in the observed global-mean ΔT series. However, it is 192 
well known that the global-mean ΔT series from individual model runs contain unforced, random 193 
variations that lead to considerable differences among individual runs, and the ensemble mean is 194 
often the best estimate of the forced response4,13. Thus, the observed global-mean ΔT series is 195 
expected to contain some unforced variations, since the observations are sampled from one 196 
realization.  197 

 To show the differences in the EOFs for the undtrended and detrended ΔT fields, we write 198 
down the EOF expansions for both ( , ) and ′( , ), and denote the global warming or trend 199 
mode (Fig. S11a-b) as eofo for the ( , ) case: 200 

 ( , ) = ( )	 ( ) 	+	 ( )	 ( ) +	 ( )	 ( ) 	+		⋯	                        (11) 201 

 ′( , ) = ( )	 ( ) +	 ( )	 ( ) 	+		⋯                        (12) 202 

Since ( , ) = ( , ) − ( )		 ( ), we have 203 

 ( )	 ( ) +	 ( )	 ( ) 	+		⋯ = [	 ( )	 ( ) − ( )	 ( )] +204 
														 ( )	 ( ) 		+	 ( )	 ( ) 			+ 		⋯                   (13)205 
  206 
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We found that the PCk and EOFk (Fig. 2) of ′( , ) are similar to the pck and eofk (Fig. S11) of  207 
( , ), respectively, for the leading modes. However, there are some subtle differences  between 208 

them that lead to non-zero global-mean values of the EOFk coefficients, while the global-mean 209 
of the eofk coefficients are close to zero. These differences result from the projection of the term 210 

[∆ ( , ) ≡ 	 ( )	 ( ) −	 ( )	 ( )] onto the spatial patterns of the leading modes 211 
(especially eof1 and eof4). When averaged globally, this term represents the observation-minus-212 
model difference in their global-mean ΔT (black line in Fig. 1b), i.e.,  213 

	∆ ( ) = ( )	 	( ) −	 	 ( ) 	≈ ( )	 	( ) +	 ( )	 ( ) 	+		⋯	   (14) 214 

Thus, the impact of all internally-generated climate variations (∆ ( ) ) project onto the 215 
leading EOFk of the detrended ΔT fields. This alters the original eofk modes slightly such that 216 
they have non-zero global means. The higher-order EOFs from the detrended data show very 217 
small global means for their EOF coefficients (like in the un-detrended case), leading to small 218 

contributions to ∆ ( ).    219 

 In summary, we found that without the detrending of Eq. (8) (or detrending with the global-220 
mean ΔT from observations), the leading EOF modes (besides the trend mode, Fig. S11) will not 221 
include the impacts of these modes on the global-mean ΔT, as their influences are either mixed 222 
up with the trend mode (due to the similarity of their spatial patterns), or contained in the global-223 
mean ΔT series that is removed from the data. The detrending using Eq. (8) removes most of the 224 
externally forced changes in the observed ΔT fields, thus reducing the chance of mixing the 225 
externally forced changes and unforced variations in the EOF expansion. The impact of the 226 
internal variations on the global-mean ΔT should come primarily from the leading modes of 227 
variability and thus it is projected mainly onto the leading EOF modes. 228 

 229 
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 273 

 274 

 275 

FIG. S1. Comparisons of the spatial patterns of the recent surface temperature changes. (a) 276 
2000-2013 minus 1990-1999 difference of surface air temperature (Tas, in oC) from the 277 
ensemble mean of the 66 historical all forcing simulations by 33 CMIP5 models; (b) 1999-1990 278 
minus 1970-1979 Tas difference from the ensemble mean of 30 historical anthropogenic aerosol 279 
forcing only simulations by 8 CMIP5 models; (c) Tas anomalies during July 1991-June 1993 280 
(relative to the mean averaged over June 1988 - May 1991 and January 1994 - December 1996) 281 
after the Pinatubo volcanic eruption in June 1991 in the ensemble mean of 11 natural forcing 282 
only runs by 3 CMIP5 models (CCSM4, GFDL-CM3 and HaGEM2); and (d)  the observed 283 
surface temperature difference between 2000-2013 and 1990-1999 based on the HadCRUT4 284 
dataset6. This figure shows that the recent warming hiatus resulted from a cancellation of 285 
warming over most land areas and the Atlantic and Indian Oceans by cooling concentrated in the 286 
eastern Pacific Ocean, and that the temperature change patterns induced by recent volcanic or 287 
anthropogenic aerosol forcing or GHG increases are inconsistent with and thus cannot explain 288 
the observed temperature change patterns since the 1990s.    289 
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 290 

 291 

FIG. S2. Same as Fig.1 but without scaling the model-mean T (red line in a) by a factor of 0.863.292 
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 293 

 294 

 295 

FIG. S3. Comparison of the two leading EOFs of the detrended T from CESM1 historical run 296 
number 11 (left column) and the similar EOFs of the T from a 550-year  period of a control run 297 
(right column) by the same model4.  The pattern correlation between the left and right panels of 298 
the same row is shown as r on top of panel (b) and (d).  The % numbers are the % variance 299 
explained by the EOFs.   300 

  301 
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 302 

 303 

 304 

FIG. S4. Spatial patterns of the warm (left) and cold (right) periods in the detrended 305 
GISSTEMP data set5. The CMIP5 multi-model ensemble global-mean surface air temperature 306 
anomalies were used to detrend the GISTEMP temperature anomalies at each box during 1920-307 
2013 through linear regression (see SI). The anomalies (oC) are relative to the 1961-1990 mean. 308 
The pattern correlation coefficient (r) with the IPO EOF (Fig. 2b) is shown on top of the panel.   309 

 310 

 311 

  312 
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 313 

 314 

FIG. S5. Same as Fig. 1 but for using the HadCRUT4 data set6 as the observations. The 315 
regression-derived scaling factor is 0.762, which is used to multiply the model-simulated 316 
anomaly series (red line).   317 
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 318 

 319 

 320 

Fig. S6.  Same as Fig. 3 but for using the HadCRUT4 as the observational data set.  321 

  322 
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 323 

 324 

 325 

FIG. S7. Same as Fig. 5 but for using HadCRUT4 as the observational data set.  326 

  327 
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 328 

 329 

 330 

FIG. S8. Same as Fig. S4 but for using the HadCRUT4 data set.  331 

 332 

 333 

  334 
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 335 

 336 

 337 

FIG. S9. Patterns of the regression coefficients. (a) between globally-averaged CMIP5 multi-338 
model ensemble mean temperature anomalies (T') (as the x variable) and local T' series from 339 
GISTEMP data set (bF(i) in Eq. 6 in SI). (b) between the global-mean and local T' series from 340 
GISTEMP. (c) between the global-mean and local T' series of the difference field between the T' 341 
represented by panel (b) and (a) (bD(i) in Eq. 10 in SI).  (d) between unforced global-mean T' 342 
and local detrended T' from GISTEMP (bN(i) in Eq. 6 in SI). The pattern correlation coefficient 343 
is 0.98 between (a) and (b), 0.99 between (a) and (c), and 0.11 between (a) and (d). The area-344 
weighted global mean (M) is shown on top of each panel.     345 

  346 
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 347 

 348 

FIG. S10. Zonally-averaged surface air temperature anomalies (T', relative to the 1961-1990 349 
mean) from1960-2010 from an ensemble of 40 historical simulations by a coupled model2. (a) 40 350 
member ensemble mean of the model-simulated T'. (b) 40-member ensemble mean of the 351 
estimated T' using the global-mean T' series from the 40-member ensemble mean and its 352 
regression equation with local T' series for each member (cf. Eq. 4 in SI). (c) Standard deviation 353 
the regression-estimated T' among the individual runs. The contour interval is 0.15oC and the 354 
contours are  at ..., -0.375, -0.225, -0.075, 0.075, 0.225, 0.375oC, ... .   355 
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 356 

FIG. S11. The PCs (thick line is a smoothed curve as in Fig. 2a) and EOFs for the leading five 357 
EOF modes of the un-detrended GISTEMP data. Red line in (a) is the near-global (60oS-75oN) 358 
mean surface temperature anomalies in unit of 10 standard deviation (=2.53oC), i.e., for a reading 359 
of 0.1 on (a), the anomaly is 0.253oC.  360 
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