Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils

Christina Schädel^{1*}, Martin K.F. Bader², Edward A.G. Schuur¹, Christina Biasi³, Rosvel Bracho^{4,5}, Petr Čapek⁶, Sarah De Baets⁷, Kateřina Diáková⁶, Jessica Ernakovich⁸, Cristian Estop-Aragones^{7,9}, David E. Graham¹⁰, Iain P. Hartley⁷, Colleen M. Iversen¹¹, Evan Kane¹², Christian Knoblauch¹³, Massimo Lupascu¹⁴, Pertti J. Martikainen³, Susan Natali¹⁵, Richard J. Norby¹¹, Jonathan A. O'Donnell¹⁶, Taniya Roy Chowdhury¹⁰, Hana Šantrůčková⁶, Gaius Shaver¹⁷, Victoria L. Sloan¹¹, Claire C. Treat¹⁸, Merritt R. Turetsky¹⁹, Mark P. Waldrop²⁰, Kimberly P. Wickland²¹

¹Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA ²New Zealand Forest Research Institute, Rotorua, New Zealand ³Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland ⁴Department of Biology, University of Florida, Gainesville, FL, USA ⁵School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA ⁶University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic ⁷Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK ⁸CSIRO Agriculture, Adelaide, Australia ⁹Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada ¹⁰Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA ¹¹Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA ¹² School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA ¹³Institute of Soil Science, Universität Hamburg, Hamburg, Germany ¹⁴Department of Geography, National University of Singapore, Singapore ¹⁵Woods Hole Research Center, Falmouth, MA, USA ¹⁶Arctic Network, National Park Service, Anchorage, AK, USA ¹⁷The Ecosystem Center, Marine Biological Laboratory, Woods Hole, MA, USA ¹⁸Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA ¹⁹Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada ²⁰US Geological Survey, Menlo Park, CA, USA ²¹US Geological Survey, Boulder, CO, USA

Correspondence: christina.schaedel@nau.edu

Additional Results

Besides calculating the effect of a 10 °C increase in incubation temperature on total C release (sum of CO_2 -C and CH₄-C), we also calculated the effect of increasing temperature on total C release when accounting for the higher GWP of CH₄, which resulted in an almost identical increase in C release of 2.06 (Table S5).

Additionally, we looked at the effect of a 10 °C increase in incubation temperature on CH₄-C release alone (anaerobic studies only). Over all studies the CH₄-C release was 4.26 times higher with a 10 °C increase in temperature and no effects of ecosystem, soil type or permafrost condition were found (Fig. S1, Table S6, Table S12). Given that CH₄ accounts for a small portion of the total C release under anaerobic incubation conditions the overall ratio of C release with a 10 °C increase in incubation temperature did not differ for aerobic or anaerobic incubation conditions.

Sensitivity analysis

We performed a sensitivity analysis that uses three different datasets to show that our conclusions about the low contribution of CH₄-C to total anaerobic C emissions from the given incubation studies are robust. We performed the aerobic to anaerobic meta-analyses using the following three different datasets:

- a) The original dataset that includes all samples and studies as reported in the main text
- b) Only those studies were included for which more than 60% of the samples had reached maximum CH₄ rate during the incubation (see Table 17)
- c) Only those samples from individual incubation studies were included that had reached maximum CH₄ rate during the incubation (includes samples from all studies except for Diáková et al. (in revision). The difference to b) is that individual samples were explicitly excluded rather than studies, which are collections of individual samples.

Maximum CH₄ rate refers to the peak CH₄ rate and was determined based on daily rates over time. Table 18 shows the results from all three meta-analyses. The overall mean estimate (ratio of soil C release under aerobic versus anaerobic incubation conditions) is for a) 3.39 (95% CI from 2.22 to 5.18), for b) 3.65 (95% CI from 1.91 to 6.98) and for c) 3.81 (95% CI from 2.53 to 5.73) when using total C (sum of $CO_2-C + CH_4-C$). When also accounting for the higher Global Warming Potential of CH₄ (as CO_2-C equivalent) the overall mean estimate for a) is 2.3 (95% CI from 1.55 to 3.4), for b) 2.7 (95% CI from 1.62 to 4.49), and for c) 2.26 (95% CI from 1.44 to 3.54).

In addition, we have also calculated the contribution of CH₄-C to total anaerobic C release using the three different datasets. On average the contribution of CH₄-C to total C is for a) 5.73% (95% Cl from 2.74 to 8.73), for b) 5.59 (95% Cl from -1.97 to 13.16), and for c) 7.5% (95% Cl from 3.83 to 16.84; Supplementary Figure S2). Ecosystem and Temperature are only significant moderators for the original analysis, which includes all samples and studies. This sensitivity analysis shows that for all three datasets C release under anaerobic conditions is dominated by anaerobic CO₂.

Figure S1 Ratio of CH₄-C release with a 10° C increase in temperature. Studies are split into different ecosystems, soil types and permafrost conditions (numbers in brackets represent number of observations for each subgroup). The arrow indicates that the confidence interval (CI) is wider than the space.

		ا Ratio	/	ease
	All studies		\diamond	4.3 (2.8, 6.4)
Peri	Active layer (8)		<u>i</u> -O-	5.6 (3.1, 10.1)
nafrost	Permafrost (3)		0	3.0 (1.8, 5.0)
Soi	Mineral (4)		- O	5.2 (1.9, 14.3)
I type	Organic (7)		i O	4.2 (2.6, 6.8)
<u>ё</u>	Boreal forest (1)		\rightarrow	8.4 (0.9, 76.2)
sósos	Tundra (5)		-0	6.2 (3.0, 12.8)
tem	Peatland (5)		0	3.3 (2.3, 4.7)
			 	Estimate (95% CI)

-O- CH4-C

4

Figure S2 | Contribution of CH₄-C to total anaerobic C release for the three datasets used in the sensitivity analysis. Black squares represent boreal forest, dark circles peatland and light grey triangles tundra ecosystems. Symbols represent observations from different observations and error bars show standard deviation within an observation. Figure S2a is the same as Fig. 3 in the main text. In a) lines represent the average predicted relationship between CH₄-C contributions to total anaerobic C release and incubation temperature for the three given ecosystems. For b) and c) neither ecosystem nor temperature were significant moderators. For a) mean over all observations = 5.73% (95% CI 2.74, to 8.73); for b) mean of all observations = 5.59 (95% CI -1.97 to 13.16); for c) mean over all observations = 7.5% (95% CI 3.83 to 16.84).

Table S1 Study details with treatment, incubation temperature used in the meta-analysis, ecosystem,permafrost, soil type, and incubation length.

Citation	Treatment ^a	Used incubation temperatures (°C)	Ecosystem ^b	Permafrost ^c	Soil type ^d	Incubation length (days)
Bracho et al. (2016) ¹	т	15, 25	tundra	al, p	min, org	365
Čapek et al. (2015) ²	T + Ae/An	4, 20	tundra	al	min	133
Dai et al. (2002) ³	т	4, 25	tundra	al, p	min, org	120
De Baets et al. (in revision) ⁴	т	7, 17	tundra	al, p	min, org	469
Diáková et al. (in revision)⁵	T + Ae/An	4, 20	peat, tundra	al	min, org	162
Dutta et al. (2006) ⁶	т	5, 15	boreal, tundra	al, p	min	390
Ernakovich et al. (2014) ⁷	т	1, 15	tundra	р	min, org	91
Estop-Aragones et al. (in prep)	T + Ae/An	5, 15	boreal, peat	al, p	min, org	110, 230 ⁱ
Hobbie et al. (2002 ^e) ⁸	т	4, 15	tundra	al	org	216
lversen et al. (2015a ^f) ⁹	T + Ae/An	2,12	tundra	al	min, org	28
lversen et al. (2015b ^f)	т	4,12	tundra	al	min, org	28
Kane et al. (2013) ¹⁰	Ae/An	22	peat	al	org	38
Knoblauch et al. (2013) ¹¹	Ae/An	4	tundra	р	min	1242
Lee et al. (2012) ¹²	Ae/An	15	boreal, tundra	al, p	min, org	493
Lavoie et al. (2011) ¹³	т	5, 15	boreal, tundra	al, no	min, org	1086
Nadelhoffer et al. (1991 ^e) ¹⁴	т	3, 15	tundra	al	min, org	91
Neff & Hooper (2002 ^e) ¹⁵	Т	10, 30	tundra	al	org	352
O'Donnell et al. (2009) ¹⁶	Т	2, 20	boreal	al	org	48
Oelbermann et al. (2008 ^e) ¹⁷	Т	14, 21	tundra	al	min, org	84
Roy Chowdhury et al. (2015) ¹⁸	т	4,8 (10 ^g)	tundra	al, p	min, org	60
Shaver et al. (2006) ¹⁹	Т	7, 15	tundra	al	org	465
Treat et al. (2014) ²⁰	T + Ae/An	-0.5 ^h , 4, 20	peat	al, p	min, org	27
Waldrop et al. (2010) ²¹	Ae/An	5	boreal	al, p	min, org	40
Waldrop et al. (in prep)	T + Ae/An	5, 21	boreal, peat	al, p	min, org	355
Wickland & Neff (2008 ^e) ²²	т	10, 20	boreal	al, no	org	57

^aTreatment: T = temperature, Ae/An=aerobic and anaerobic

^bEcosystem: boreal=boreal forest, peat=peatland, tundra=tundra

^cPermafrost: al=active layer, no= no permafrost, p=permafrost layer

^dSoil type: min=mineral (% C<20), org=organic (% C>20)

^eData extracted from publication, for all other studies we used raw data

^fBoth Iversen et al. 2015 datasets fall under the same data citation but are independent data sets

^gTwelve samples were incubated at 4 °C and 8 °C and eight samples were incubated at 4 °C and 10 °C

^hAnaerobic incubations were performed at -0.5°C and 20°C, for aerobic incubations we used 4°C and 20°C

ⁱAnaerobic incubations lasted 110 days (peatland), aerobic incubations lasted either 110 (peatland) or 230 days (boreal forest)

Table S2 | Effect size estimates (y_i, log ratio of the means) and corresponding variance (v_i) used for meta-analysis of the effect of a 10 °C increase in incubation temperature on total C release (CO₂-C+CH₄-C) and on total CO₂-C equivalent release by accounting for the Global Warming Potential of CO₂ (GWP=1) and CH₄ (GWP=34)²³. Ecosystem, permafrost, soil type and oxygen are moderators used for multilevel meta-analysis. Nr is the number of observations per citation.

Citation	Ecosystem ^a	Permafrost ^b	Soil type ^c	Oxygen ^d	Tot	al C	CO ₂ -C eo	quivalent	Nr
					Уi	Vi	Уi	Vi	
Bracho et al. (2016) ¹	tundra	al	org	Ae	0.457	0.096	0.457	0.096	3
Bracho et al. (2016)	tundra	р	org	Ae	0.741	0.170	0.741	0.170	3
Bracho et al. (2016)	tundra	р	min	Ae	0.710	0.036	0.710	0.036	3
Čapek et al. (2015) ²	tundra	al	min	Ae	0.986	0.807	0.986	0.807	2
Čapek et al. (2015)	tundra	al	min	An	0.807	0.240	0.993	0.210	2
Dai et al. (2002) ³	tundra	al	min	Ae	0.562	0.115	0.562	0.115	1
De Baets et al. (in revision) ⁴	tundra	al	org	Ae	0.820	0.003	0.820	0.003	3
De Baets et al. (in revision)	tundra	р	org	Ae	1.252	0.092	1.252	0.092	3
De Baets et al. (in revision)	tundra	р	min	Ae	1.464	0.212	1.464	0.212	3
Diáková et al. (in revision)⁵	peat	al	org	Ae	1.072	0.956	1.072	0.956	1
Dutta et al. (2006) ⁶	tundra	р	min	Ae	0.173	0.056	0.173	0.056	3
Dutta et al. (2006)	boreal	al	min	Ae	0.583	0.165	0.583	0.165	3
Dutta et al. (2006)	boreal	р	min	Ae	0.272	0.040	0.272	0.04	3
Ernakovich et al. (2014) ⁷	tundra	р	min	Ae	0.880	0.035	0.880	0.035	2
Ernakovich et al. (2014)	tundra	р	min	An	0.653	0.423	0.726	0.505	2
Estop-Aragones et al. (in prep)	peat	al	org	Ae	1.136	0.180	1.136	0.180	8
Estop-Aragones et al. (in prep)	peat	al	org	An	0.724	0.197	0.778	0.785	8
Estop-Aragones et al. (in prep)	peat	р	org	Ae	1.121	0.064	1.121	0.064	8
Estop-Aragones et al. (in prep)	peat	р	org	An	0.774	0.070	0.783	0.069	8
Estop-Aragones et al. (in prep)	boreal	al	org	Ae	0.917	0.088	0.917	0.088	8
Estop-Aragones et al. (in prep)	boreal	al	min	Ae	1.040	0.102	1.040	0.102	8
Estop-Aragones et al. (in prep)	boreal	р	org	Ae	1.013	0.378	1.013	0.378	8
Estop-Aragones et al. (in prep)	boreal	р	min	Ae	0.991	0.126	0.991	0.126	8
Hobbie et al. (2002) ⁸	tundra	al	org	Ae	1.549	0.306	1.549	0.306	1
lversen et al. (2015a) ⁹	tundra	al	org	Ae	1.121	0.271	1.121	0.271	4
Iversen et al. (2015a)	tundra	al	org	An	0.581	0.305	1.204	0.315	4
Iversen et al. (2015a)	tundra	al	min	Ae	0.940	0.033	0.940	0.033	4
Iversen et al. (2015a)	tundra	al	min	An	0.599	0.010	0.688	0.013	4
Iversen et al. (2015b)	tundra	al	org	Ae	0.917	0.123	0.917	0.123	2
Iversen et al. (2015b)	tundra	al	min	Ae	0.925	0.038	0.925	0.038	2
Lavoie et al. (2011) ¹³	tundra	al	org	Ae	0.334	0.115	0.334	0.115	4
Lavoie et al. (2011)	tundra	al	min	Ae	0.627	0.026	0.627	0.026	4
Lavoie et al. (2011)	boreal	no	org	Ae	0.714	0.126	0.714	0.126	4
Lavoie et al. (2011)	boreal	no	min	Ae	0.646	0.062	0.646	0.062	4

Nadelhoffer et al. (1991) ¹⁴	tundra	al	org	Ae	0.447	0.128	0.447	0.128	2
Nadelhoffer et al. (1991)	tundra	al	min	Ae	0.426	0.203	0.426	0.203	2
Neff & Hooper (2002) ¹⁵	tundra	al	org	Ae	0.383	0.067	0.383	0.067	1
O'Donnell et al. (2009) ¹⁶	boreal	al	org	Ae	1.060	0.043	1.060	0.043	1
Oelbermann et al. (2008) ¹⁷	tundra	al	org	Ae	0.980	0.082	0.980	0.082	2
Oelbermann et al. (2008)	tundra	al	min	Ae	1.296	0.780	1.296	0.780	2
Roy Chowdhury et al. (2015) ¹⁸	tundra	al	org	An	0.936	0.494	1.549	0.617	1
Shaver et al. (2006) ¹⁹	tundra	al	org	Ae	0.594	0.119	0.594	0.119	1
Treat et al. (2014) ²⁰	peat	al	org	Ae	0.969	0.036	0.969	0.036	5
Treat et al. (2014)	peat	al	org	An	0.820	0.024	0.886	0.017	5
Treat et al. (2014)	peat	р	org	Ae	0.690	0.020	0.690	0.020	5
Treat et al. (2014)	peat	р	org	An	0.520	0.054	0.529	0.050	5
Treat et al. (2014)	peat	р	min	Ae	0.821	0.082	0.821	0.082	5
Waldrop et al. (in prep)	peat	al	org	Ae	0.812	0.055	0.812	0.055	6
Waldrop et al. (in prep)	peat	al	org	An	0.617	0.126	0.848	0.050	6
Waldrop et al. (in prep)	boreal	al	min	Ae	0.579	0.161	0.579	0.161	6
Waldrop et al. (in prep)	boreal	al	min	An	0.475	0.290	0.483	0.294	6
Waldrop et al. (in prep)	boreal	р	min	Ae	0.293	0.052	0.293	0.052	6
Waldrop et al. (in prep)	boreal	р	min	An	0.456	0.187	0.456	0.187	6
Wickland & Neff (2008) ²²	boreal	al	org	Ae	0.500	0.000	0.500	0.000	1

^aEcosystem: boreal = boreal forest, peat=peatland, tundra=tundra

^bPermafrost: al=active layer, no= no permafrost, p=permafrost layer

^cSoil type: min=mineral (% C<20), org=organic (% C>20)

^dOxygen: Ae=aerobic incubation, An=anaerobic incubation

Table S3 | Effect size estimates (y_i, log ratio of the means) and corresponding variance (v_i) used for meta-analysis of the effect of a 10 °C increase in incubation temperature on CH_4 -C release. Ecosystem, permafrost, and soil type are moderators used for meta-analysis with mixed effects models. Nr is the number of observations per citation.

Citation	Ecosystem ^a	Permafrost ^b	Soil type ^c	yi	vi	Nr
Čapek et al. (2015) ²	tundra	al	min	3.142	1.117	1
Ernakovich et al. (2014) ⁷	tundra	р	min	0.735	0.5155	1
Estop-Aragones et al. (in prep.)	peat	al	org	0.811	1.3675	2
Estop-Aragones et al. (in prep.)	peat	р	org	1.159	0.0841	2
lversen et al. (2015a) ⁹	tundra	al	org	2.296	0.3361	2
lversen et al. (2015a)	tundra	al	min	1.492	0.6506	2
Roy-Chowdhury et al. (2015) ¹⁸	tundra	al	org	1.832	0.757	1
Treat et al. (2014) ²⁰	peat	al	org	2.168	0.3172	2
Treat et al. (2014)	peat	р	org	1.131	0.7972	2
Waldrop (in prep.)	peat	al	org	1.006	0.0793	2
Waldrop (in prep.)	boreal	al	min	2.128	1.2665	2

^aEcosystem: boreal = boreal, peat=peat, tundra=tundra

^bPermafrost: al=active layer, p=permafrost layer

 $^{\circ}Soil$ type: min=mineral (% C<20), org=organic (% C>20)

Table S4 | Effect size estimates (y_i , log ratio of the means) and corresponding variance (v_i) used for meta-analysis of aerobic to anaerobic total C release (CO_2 -C+CH₄-C) and total CO_2 -C equivalent release. Ecosystem, permafrost, soil type and temperature are moderators used for meta-analysis with mixed effects models. Nr is the number of observations per citation.

Citation	Ecosystem ^a	Permafrost ^b	Soil type ^c	Temp ^d	Total C		CO ₂ -C equivalent		Nr
					yi	vi	yi	vi	
Čapek et al. (2015) ²	tundra	al	min	4	0.411	0.574	0.397	0.575	3
Čapek et al. (2015)	tundra	al	min	12	0.884	0.456	0.607	0.558	3
Čapek et al. (2015)	tundra	al	min	20	0.636	0.543	0.165	0.511	3
Diáková et al. (in revision) ⁴	peat	al	org	4	0.259	1.093	0.259	1.093	3
Diáková et al. (in revision)	peat	al	org	12	0.915	1.041	0.915	1.041	3
Diáková et al. (in revision)	peat	al	org	20	1.016	0.551	1.015	0.551	3
Estop-Aragones et al. (in prep.)	peat	al	org	5	1.477	0.168	0.552	0.447	4
Estop-Aragones et al. (in prep.)	peat	al	org	15	1.884	0.206	0.896	0.490	4
Estop-Aragones et al. (in prep.)	peat	р	org	5	1.468	0.080	1.447	0.079	4
Estop-Aragones et al. (in prep.)	peat	р	org	15	1.815	0.054	1.785	0.054	4
lversen et al. (2015a) ⁹	tundra	al	org	2	0.391	0.289	0.302	0.289	4
lversen et al. (2015a)	tundra	al	org	12	1.302	0.130	0.860	0.143	4
lversen et al. (2015a)	tundra	al	min	2	0.184	0.038	0.156	0.035	4
lversen et al. (2015a)	tundra	al	min	12	0.526	0.029	0.430	0.030	4
Kane et al. (2013 ^e) ¹⁰	peat	al	org	22	-0.700	0.008	-2.480	0.012	1
Knoblauch et al. (2013) ¹¹	tundra	р	min	4	1.387	0.016	-0.071	0.041	1
Lee et al. (2012) ¹²	boreal	р	min	15	1.622	0.072	1.596	0.069	4
Lee et al. (2012)	tundra	al	org	15	2.401	0.045	1.575	0.068	4
Lee et al. (2012)	tundra	р	org	15	1.539	0.579	-0.298	0.727	4
Lee et al. (2012)	tundra	р	min	15	1.966	0.076	1.291	0.078	4
Treat et al. (2014) ²⁰	peat	al	org	-0.5	-0.102	0.157	-0.109	0.156	4
Treat et al. (2014)	peat	al	org	20	0.615	0.025	0.495	0.025	4
Treat et al. (2014)	peat	р	org	-0.5	-0.326	0.099	-0.339	0.100	4
Treat et al. (2014)	peat	р	org	20	0.546	0.018	0.519	0.018	4
Waldrop et al. (2010) ²¹	boreal	al	org	5	1.487	0.164	0.566	0.394	4
Waldrop et al. (2010)	boreal	al	min	5	1.189	0.211	1.004	0.139	4
Waldrop et al. (2010)	boreal	р	org	5	1.940	0.056	1.605	0.048	4
Waldrop et al. (2010)	boreal	р	min	5	1.870	0.205	1.264	0.196	4
Waldrop et al. (in prep.)	boreal	al	min	5	1.142	0.244	1.140	0.244	6
Waldrop et al. (in prep.)	boreal	al	min	21	1.251	0.113	1.226	0.118	6
Waldrop et al. (in prep.)	boreal	p	min	5	1.775	0.082	1.774	0.082	6
Waldrop et al. (in prep.)	boreal	p	min	21	0.983	0.396	0.935	0.381	6
Waldrop et al. (in prep.)	peat	al	org	5	1.981	0.087	1.191	0.042	6
Waldrop et al. (in prep.)	peat	al	org	21	2.214	0.123	0.973	0.146	6

^aEcosystem: boreal = boreal forest, peat=peatland, tundra=tundra

^bPermafrost: al=active layer, p=permafrost layer

^cSoil type: min=mineral (% C<20), org=organic (% C>20) ^dTemp= incubation temperature ^eKane et al. 2013 not included in final analysis, considered influential study **Table S5** Summary of the results of a meta-analysis of the effect of a 10°C increase in incubation temperature on total C release (CO_2 -C + CH₄-C) and total C release as CO_2 -C equivalent. See Material and methods for detailed description of the response metric and the meta-analysis performed. N is the number of observations per ecosystem, soil type or permafrost.

		Total C			Total CO ₂ -C equivalent		
	Ν	Estimate	95%	6 CI	Estimate	Estimate 95% Cl	
			lower	upper		lower	upper
Ecosystem							
Boreal Forest	14	1.88	1.5	2.37	1.88	1.5	2.37
Tundra	28	2.05	1.84	2.28	2.1	1.89	2.33
Peatland	12	2.23	1.95	2.55	2.29	2.02	2.6
Soil Type							
Mineral	24	1.98	1.71	2.28	2.02	1.74	2.34
Organic	30	2.09	1.85	2.37	2.14	1.89	2.43
- 8							
Demos of the est							
Permajrost	_						
No Permatrost	2	1.95	1.31	2.91	1.95	1.31	2.91
Permafrost	17	2.03	1.57	2.62	2.03	1.58	2.62
Active layer	35	2.07	1.87	2.3	2.13	1.91	2.37
Overall mean	54	2.02	1.82	2.24	2.06	1.86	2.29

^a Sampling sites from the discontinuous permafrost zone where permafrost was not present²⁰

Table S6 | Summary of the results of a meta-analysis of the effect of a 10°C increase in incubation temperature on CH₄-C from anaerobic incubations. N is the number of observations per ecosystem, soil type or permafrost. See Material and methods for detailed description of the response metric and meta-analysis performed

		CH4-C						
	Ν	Estimate	95%	% CI				
			lower	upper				
Ecosystem								
Peatland	5	3.29	2.3	4.72				
Tundra	5	6.16	2.97	12.81				
Boreal Forest	1	8.4	0.93	76.25				
Soil Type								
Organic	7	5.25	1.93	14.29				
Mineral	4	4.18	2.58	6.78				
Permafrost*								
Permafrost	3	3.01	1.82	4.99				
Active layer	8	5.62	3.14	10.07				
Overall mean	11	4.26	2.84	6.38				

* Samples from anaerobic incubations only represented active layer and permafrost

Table S7 | Summary of the results of a meta-analysis of the ratio of aerobic to anaerobic incubation conditions on total C release (CO_2 -C + CH₄-C) and on total C release as CO_2 -C equivalent by accounting for the GWP of CO_2 (GWP=1) and CH₄ (GWP=34²³). See Material and methods for detailed description of the response metric and meta-analysis. N is the number of observations per ecosystem, soil type or permafrost. Numbers in light grey are estimates and 95% CI for analyses when Kane et al. (2013¹⁰) is included.

		Total C			Total CO ₂ -C equivalent		
	N	Estimate	95% CI		Estimate	959	% CI
			lower	upper		lower	upper
Ecosystem							
Tundra	11	3.32	1.57	7.03	1.68	0.9	3.12
Peatland	13	3.46	1.54	7.77	2.48	1.4	4.41
Boreal Forest	9	5.0	3.99	6.27	4.17	3.34	5.21
Soil Type							
Mineral	14	3.34	2.11	5.28	2.18	1.27	3.72
Organic	19	4.23	2.44	7.34	2.63	1.79	3.87
Permafrost							
Active layer	21	3.29	1.99	5.45	2.2	1.56	3.09
Permafrost	12	4.15	2.53	6.8	2.76	1.53	4.95
Overall mean	33	3.39	2.22	5.18	2.3	1.55	3.4
Overall mean with Kane et al. 2013 ⁸	34	2.77	1.63	4.7	1.61	0.77	3.39

Coefficients	Estimate	SE	DF	t value	P value
Intercept	-5.20	1.64	20	-3.18	<0.01
Peatland	0.91	1.43	20	0.63	0.53
Boreal Forest	-4.53	1.18	20	-3.84	<0.01
Temperature	0.12	0.03	20	3.61	<0.01

 Table S8 | Multiple regression results for logit transformed ratio of CH₄-C to total anaerobic C release.

Table S9 Information on the amount of heterogeneity in each meta-analysis. All final models were fitted with restricted maximum likelihood.

Meta-Analysis

<i>Temperature, total</i> Q-test tau ²	C (CO ₂ -C + CH₄-C) Q(df = 53) = 98.306, p-val < 0 .001 0.025					
Temperature, CO ₂ -0	Cequivalent					
Q-test	Q(df = 53) = 106.108, p-val < 0.001					
tau ²	0.026					
Temperature, CH₄-C						
Q-test	Q(df = 10) = 11.395, p-val = 0.328					
tau²	0.096					
Ae/Anaerobic, tota	I C (CO ₂ -C + CH ₄ -C)					
Q-test	Q(df = 32) = 206.373, p-val < 0.001					
tau²	0.409					
Ae/Anaerobic, CO2-	C equivalent					
Q-test	Q(df = 32) = 142.343, p-val < .001					
tau ²	0.334					

Table S10 | Models, their corresponding Akaike Information Criterion corrected for finite sample sizes (AICc), and Akaike weights for meta-analysis of the effect of a 10 °C increase in temperature on total C release (CO_2 -C + CH₄-C). Bolded model is the final model. yi=effect size estimate, soiltype = soil type, water.treat = oxygen availability, permafrost = permafrost, ecosystem = ecosystem, doi = day of incubation

Model	AICc	Akaike weights
yi ~ 1	27.72	0.19
yi ~ 1 + water.treat	28.36	0.14
yi ~ 1 + doi	29.07	0.1
yi ~ 1 + water.treat + doi	29.24	0.09
yi ~ 1 + soiltype	29.72	0.07
yi ~ 1 + ecosystem + water.treat	30.26	0.05
yi ~ 1 + ecosystem	30.39	0.05
yi ~ 1 + soiltype + water.treat	30.5	0.05
yi ~ 1 + soiltype + doi	31.3	0.03
yi ~ 1 + soiltype + water.treat + doi	31.62	0.03
yi ~ 1 + ecosystem + water.treat + doi	31.74	0.03
yi ~ 1 + permafrost	32.01	0.02
yi ~ 1 + ecosystem + doi	32.32	0.02
yi ~ 1 + permafrost + water.treat	32.66	0.02
yi ~ 1 + ecosystem + soiltype	32.79	0.02
yi ~ 1 + ecosystem + soiltype + water.treat	32.89	0.01
yi ~ 1 + permafrost + doi	33.29	0.01
yi ~ 1 + permafrost + water.treat + doi	33.35	0.01
yi ~ 1 + ecosystem + permafrost + water.treat	34.37	0.01
yi ~ 1 + permafrost + soiltype	34.39	0.01
yi ~ 1 + ecosystem + soiltype + water.treat + doi	34.51	0.01
yi ~ 1 + ecosystem + permafrost	34.66	0.01
yi ~ 1 + ecosystem + soiltype + doi	34.87	0.01
yi ~ 1 + ecosystem + permafrost + water.treat + doi	35.15	0
yi ~ 1 + permafrost + soiltype + water.treat	35.21	0
yi ~ 1 + permafrost + soiltype + doi	35.88	0
yi ~ 1 + permafrost + soiltype + water.treat + doi	36.11	0
yi ~ 1 + ecosystem + permafrost + doi	36.27	0
yi ~ 1 + ecosystem + permafrost + soiltype + water.treat	37.19	0
yi ~ 1 + ecosystem + permafrost + soiltype	37.42	0
yi ~ 1 + ecosystem + permafrost + soiltype + water.treat + doi	38.07	0
yi ~ 1 + ecosystem + permafrost + soiltype + doi	39.16	0

Table S11 |Models, their corresponding Akaike Information Criterion corrected for finite sample sizes (AICc), and Akaike weights for weighted meta-analysis of the effect of a 10 °C increase in temperature on total C release calculated as CO₂-C equivalent. Bolded model is the final model. yi = effect size, soiltype = soil type, water.treat = oxygen availability, permafrost =permafrost, ecosystem = ecosystem, doi = day of incubation

Model	AICc	Akaike weights
yi ~ 1	30.18	0.2
yi ~ 1 + doi	31.09	0.13
yi ~ 1 + ecosystem	31.53	0.1
yi ~ 1 + soiltype	31.92	0.08
yi ~ 1 + water.treat	32.51	0.06
yi ~ 1 + ecosystem + doi	33.1	0.05
yi ~ 1 + soiltype + doi	33.12	0.05
yi ~ 1 + water.treat + doi	33.46	0.04
yi ~ 1 + permafrost	33.73	0.03
yi ~ 1 + ecosystem + water.treat	33.82	0.03
yi ~ 1 + ecosystem + soiltype	33.91	0.03
yi ~ 1 + soiltype + water.treat	34.35	0.03
yi ~ 1 + permafrost + doi	34.49	0.02
yi ~ 1 + ecosystem + permafrost	34.97	0.02
yi ~ 1 + ecosystem + water.treat + doi	35.32	0.02
yi ~ 1 + soiltype + water.treat + doi	35.59	0.01
yi ~ 1 + ecosystem + soiltype + doi	35.63	0.01
yi ~ 1 + ecosystem + permafrost + doi	35.91	0.01
yi ~ 1 + permafrost + soiltype	36.06	0.01
yi ~ 1 + permafrost + water.treat	36.23	0.01
yi ~ 1 + ecosystem + soiltype + water.treat	36.36	0.01
yi ~ 1 + permafrost + water.treat + doi	36.95	0.01
yi ~ 1 + permafrost + soiltype + doi	37.06	0.01
yi ~ 1 + ecosystem + permafrost + water.treat	37.25	0.01
yi ~ 1 + ecosystem + permafrost + soiltype	37.74	0
yi ~ 1 + ecosystem + permafrost + water.treat + doi	37.91	0
yi ~ 1 + ecosystem + soiltype + water.treat + doi	38.01	0
yi ~ 1 + permafrost + soiltype + water.treat	38.67	0
yi ~ 1 + ecosystem + permafrost + soiltype + doi	38.79	0
yi ~ 1 + permafrost + soiltype + water.treat + doi	39.64	0
yi ~ 1 + ecosystem + permafrost + soiltype + water.treat	40.11	0
yi ~ 1 + ecosystem + permafrost + soiltype + water.treat + doi	40.87	0

Model	AICc Akaike weight		
yi ~ 1	32.78	0.63	
yi ~ 1 + doi	35.64	0.15	
yi ~ 1 + permafrost	36.23	0.11	
yi ~ 1 + soiltype	37.74	0.05	
yi ~ 1 + permafrost + doi	38.6	0.03	
yi ~ 1 + ecosystem	42.28	0.01	
yi ~ 1 + soiltype + doi	42.84	0	
yi ~ 1 + permafrost + soiltype	43.35	0	
yi ~ 1 + permafrost + soiltype + doi	49.57	0	
yi ~ 1 + ecosystem + doi	52.02	0	
yi ~ 1 + ecosystem + soiltype	52.34	0	
yi ~ 1 + ecosystem + permafrost	52.53	0	
yi ~ 1 + ecosystem + permafrost + doi	67.04	0	
yi ~ 1 + ecosystem + soiltype + doi	69.57	0	
yi ~ 1 + ecosystem + permafrost + soiltype	70.23	0	
yi ~ 1 + ecosystem + permafrost + soiltype + doi	103.6	0	

Table S12 | Models, their corresponding Akaike Information Criterion corrected for finite sample sizes (AICc), and Akaike weights for meta-analysis of the effect of a 10 °C increase in temperature on CH_4 -C release. Bolded model is the final model. yi = effect size, soiltype = soil type,p ermafrost = permafrost, ecosystem = ecosystem, doi = day of incubation

Table S13 | All possible model subsets, their corresponding Akaike Information Criterion corrected for finite sample sizes (AICc), and Akaike weights for meta-analysis of the effect of aerobic to anaerobic total C release (CO_2 -C+CH₄-C). Bolded model is the final model. yi = effect size, soiltype = soil type, temp = temperature, permafrost = permafrost, ecosystem = ecosystem, doi = day of incubation

Model	AICc	Akaike weights
yi ~ 1 + soiltype + temp	53.97	0.35
yi ~ 1 + soiltype + temp + doi	54.02	0.34
yi ~ 1 + permafrost + soiltype + temp	56.67	0.09
yi ~ 1 + permafrost + soiltype + temp + doi	57.05	0.07
yi ~ 1 + soiltype	58.87	0.03
yi ~ 1 + soiltype + doi	59.08	0.03
yi ~ 1 + ecosystem + soiltype + temp	59.37	0.02
yi ~ 1 + ecosystem + soiltype + temp + doi	60.48	0.01
yi ~ 1 + permafrost + soiltype	61.47	0.01
yi ~ 1 + temp	61.62	0.01
yi ~ 1 + permafrost + soiltype + doi	61.98	0.01
yi ~ 1 + ecosystem + permafrost + soiltype + temp	62.37	0.01
yi ~ 1 + temp + doi	62.9	0
yi ~ 1 + ecosystem + temp	63.11	0
yi ~ 1	63.89	0
yi ~ 1 + ecosystem + soiltype	64	0
yi ~ 1 + ecosystem + permafrost + soiltype + temp + doi	64.02	0
yi ~ 1 + permafrost + temp	64.39	0
yi ~ 1 + ecosystem + soiltype + doi	65.12	0
yi ~ 1 + doi	65.29	0
yi ~ 1 + ecosystem + temp + doi	65.4	0
yi ~ 1 + permafrost + temp + doi	65.83	0
yi ~ 1 + ecosystem + permafrost + temp	66.3	0
yi ~ 1 + permafrost	66.48	0
yi ~ 1 + ecosystem + permafrost + soiltype	66.94	0
yi ~ 1 + ecosystem	67.09	0
yi ~ 1 + permafrost + doi	68.01	0
yi ~ 1 + ecosystem + permafrost + soiltype + doi	68.5	0
yi ~ 1 + ecosystem + permafrost + temp + doi	68.9	0
yi ~ 1 + ecosystem + doi	69.14	0
yi ~ 1 + ecosystem + permafrost	70.06	0
yi ~ 1 + ecosystem + permafrost + doi	72.39	0

Table S14 All possible model subsets, their corresponding Akaike Information Criterion corrected for finite sample sizes (AICc), and Akaike weights for meta-analysis of the effect of aerobic to anaerobic C release calculated as CO₂-C equivalent. Bolded model is the final model. yi = effect size, soiltype = soil type, temp = temperature, permafrost = permafrost, ecosystem = ecosystem, doi = day of incubation

Model	AICc	Akaike weights
yi ~ 1 + temp	60.55	0.14
yi ~ 1 + permafrost + temp	60.8	0.12
yi ~ 1 + ecosystem + soiltype + temp	61.65	0.08
yi ~ 1 + ecosystem + temp	62.4	0.06
yi ~ 1	62.43	0.06
yi ~ 1 + permafrost + soiltype + temp	62.49	0.05
yi ~ 1 + temp + doi	62.59	0.05
yi ~ 1 + permafrost + temp + doi	62.63	0.05
yi ~ 1 + soiltype + temp	62.82	0.05
yi ~ 1 + permafrost	63.2	0.04
yi ~ 1 + ecosystem + soiltype	63.63	0.03
yi ~ 1 + ecosystem	63.66	0.03
yi ~ 1 + ecosystem + permafrost + soiltype + temp	63.71	0.03
yi ~ 1 + doi	64.19	0.02
yi ~ 1 + ecosystem + permafrost + temp	64.52	0.02
yi ~ 1 + permafrost + doi	64.58	0.02
yi ~ 1 + soiltype	64.73	0.02
yi ~ 1 + permafrost + soiltype + temp + doi	64.83	0.02
yi ~ 1 + ecosystem + soiltype + temp + doi	65.05	0.01
yi ~ 1 + permafrost + soiltype	65.11	0.01
yi ~ 1 + soiltype + temp + doi	65.22	0.01
yi ~ 1 + ecosystem + temp + doi	65.26	0.01
yi ~ 1 + ecosystem + permafrost + soiltype	65.79	0.01
yi ~ 1 + ecosystem + permafrost	66	0.01
yi ~ 1 + ecosystem + doi	66.32	0.01
yi ~ 1 + ecosystem + soiltype + doi	66.62	0.01
yi ~ 1 + soiltype + doi	66.81	0.01
yi ~ 1 + permafrost + soiltype + doi	66.93	0.01
yi ~ 1 + ecosystem + permafrost + soiltype + temp + doi	67.2	0.01
yi ~ 1 + ecosystem + permafrost + temp + doi	67.39	0
yi ~ 1 + ecosystem + permafrost + doi	68.58	0
yi ~ 1 + ecosystem + permafrost + soiltype + doi	68.76	0

Table S15 | All possible model subsets, their corresponding Akaike Information Criterion corrected for finite sample sizes (AICc), and Akaike weights for regression analysis of logit transformed ratio of CH_4 -C to total anaerobic C release. Bolded model is the final model. yi = effect size, soiltype = soil type, temp = temperature, permafrost = permafrost, ecosystem = ecosystem, doi = day of incubation

Model	AICc	Akaike weights
logit.ratio ~ 1 + ecosystem + temp	146.45	0.41
logit.ratio ~ 1 + ecosystem + permafrost + temp	148.00	0.19
logit.ratio ~ 1 + ecosystem + temp + doi	148.87	0.12
logit.ratio ~ 1 + ecosystem + soiltype + temp	149.01	0.11
logit.ratio ~ 1 + ecosystem + permafrost + temp + doi	150.47	0.05
logit.ratio ~ 1 + ecosystem + permafrost + soiltype + temp	151.08	0.04
logit.ratio ~ 1 + ecosystem + soiltype + temp + doi	151.53	0.03
logit.ratio ~ 1 + ecosystem	153.71	0.01
logit.ratio ~ 1 + ecosystem + permafrost + soiltype + temp + doi	153.72	0.01
logit.ratio ~ 1 + ecosystem + doi	156.00	0.00
logit.ratio ~ 1 + ecosystem + permafrost	156.00	0.00
logit.ratio ~ 1 + ecosystem + soiltype	156.31	0.00
logit.ratio ~ 1 + ecosystem + permafrost + doi	158.28	0.00
logit.ratio ~ 1 + ecosystem + soiltype + doi	158.62	0.00
logit.ratio ~ 1 + soiltype + temp	158.84	0.00
logit.ratio ~ 1 + ecosystem + permafrost + soiltype	159.02	0.00
logit.ratio ~ 1 + soiltype + temp + doi	159.18	0.00
logit.ratio ~ 1 + soiltype	160.27	0.00
logit.ratio ~ 1 + soiltype + doi	160.31	0.00
logit.ratio ~ 1 + permafrost + soiltype + temp	160.38	0.00
logit.ratio ~ 1 + permafrost + soiltype + temp + doi	160.54	0.00
logit.ratio ~ 1	161.39	0.00
logit.ratio ~ 1 + ecosystem + permafrost + soiltype + doi	161.40	0.00
logit.ratio ~ 1 + permafrost + soiltype + doi	162.05	0.00
logit.ratio ~ 1 + doi	162.17	0.00
logit.ratio ~ 1 + permafrost + soiltype	162.26	0.00
logit.ratio ~ 1 + temp	162.27	0.00
logit.ratio ~ 1 + permafrost	163.30	0.00
logit.ratio ~ 1 + temp + doi	163.32	0.00
logit.ratio ~ 1 + permafrost + temp	163.58	0.00
logit.ratio ~ 1 + permafrost + doi	163.63	0.00
logit.ratio ~ 1 + permafrost + temp + doi	164.18	0.00

Meta-Analysis	Moderators	Variance importance value
Temperature, tot	al C (CO2-C + CH4-C)	
	Ecosystem	0.22
	Permafrost	0.09
	Soil type	0.24
	Water treatment	0.45
	Day of incubation	0.34
Temperature, CO	2-C equivalent	
	Ecosystem	0.29
	Permafrost	0.13
	Soil type	0.24
	Water treatment	0.23
	Day of incubation	0.36
Temperature, CH	4-C (CH4-C)	
	Ecosystem	0.01
	Permafrost	0.15
	Soil type	0.06
	Day of incubation	0.19
Ae/Anaerobic, to	tal C (CO2-C + CH4-C)	
	Ecosystem	0.04
	Permafrost	0.19
	Soil type	0.97
	Temperature	0.9
	Day of incubation	0.46
Ae/Anaerobic, to	tal CO₂-C equivalent	
	Ecosystem	0.32
	Permafrost	0.4
	Soil type	0.36
	Temperature	0.71
	Day of incubation	0.24
Regression analy	sis, CH4-C to total C	
	Ecosystem	1.0
	Permafrost	0.3
	Soil type	0.21
	Temperature	0.97
	Day of incubation	0.23

Table S16 | Variable importance values for each Meta-Analysis

Citation	Total Nr of sample pairs ^a	Nr of anaerobic samples reaching max. CH4 rate	Percentage (%) of samples that reached max. CH4 rate		
Čapek et al. (2015) ²	9	6	67		
Diáková et al. (in revision)⁵	9	0	0		
Estop-Aragones et al. (in prep)	48	31	65		
lversen et al. (2015a) ⁹	41	11	27		
Kane et al. (2013) ¹⁰	48	27	56		
Knoblauch et al. (2013) ¹¹	25	13	52		
Lee et al. (2012) ¹²	28	26	93		
Treat et al. (2014) ²⁰	29	19	66		
Waldrop et al. (2010) ²¹	16	16	100		
Waldrop et al. (in prep)	60	31	52		

Table S17: Number (Nr) of samples used in meta-analysis for ratio of aerobic to anaerobic C release.

^a One sample pair is a set of soil that has been incubated under aerobic and anaerobic conditions

Table S18: Summary of the results of the sensitivity analysis. meta-analyses of the ratio of aerobic to anaerobic incubation conditions on total C release (CO_2 -C + CH_4 -C) and on total C release as CO_2 -C equivalent by accounting for the GWP of CO_2 (GWP=1) and CH_4 (GWP=34²³). N are numbers of observations (not equal to number of samples as multiple samples could be grouped into one observation). Letters a-c in the headers refer to the three analyses performed as part of the sensitivity analysis.

	a) All studies and samples				b) Studies with > 60% of samples reaching max. CH ₄ rate				c) Only samples included that reached maximum CH ₄ rate			
	N Estimate		9	5% CI	N	Estimate	95% CI		N	Estimate	95% CI	
			lower	upper			lower	upper			lower	upper
Ecosystem						•	Total C					
Tundra	11	3.32	1.57	7.03	6	4.34	0.98	19.24	8	3.82	2.07	7.03
Peatland	13	3.46	1.54	7.77	8	2.69	0.73	9.95	9	4.1	1.52	11.06
Boreal Forest	9	5.0	3.99	6.27	5	5.52	4.15	7.33	8	5.1	3.89	6.69
Soil Type												
Mineral	14	3.34	2.11	5.28	7	4.09	2.21	7.6	11	3.36	2.35	4.8
Organic	19	4.23	2.44	7.34	12	4.47	1.95	10.23	14	5.04	2.91	8.71
Permafrost												
Active layer	21	3.29	1.99	5.45	10	3.76	1.86	7.6	15	3.9	2.33	6.53
Permafrost	12	4.15	2.53	6.8	9	4.03	1.88	8.62	10	3.9	2.38	6.41
Overall mean	33	3.39	2.22	5.18	19	3.65	1.91	6.98	25	3.81	2.53	5.73
						CO2-0	equivaler	nt				
Ecosystem												
Tundra	11	1.68	0.9	3.12	6	2.58	1.0	6.64	8	1.68	0.79	3.6
Peatland	13	2.48	1.4	4.41	8	2.28	0.72	7.23	9	2.53	1.28	4.99
Boreal Forest	9	4.17	3.34	5.21	5	4.17	3.16	5.5	8	3.71	2.74	5.02
Soil Type												
Mineral	14	2.18	1.27	3.72	7	2.95	1.69	5.14	11	1.93	1.08	3.43
Organic	19	2.63	1.79	3.87	12	2.67	1.46	4.87	14	2.63	1.75	3.96
Permafrost												
Active layer	21	2.2	1.56	3.09	10	2.25	1.39	3.63	15	2.36	1.68	3.3
Permafrost	12	2.76	1.53	4.95	9	3.15	1.66	5.99	10	2.32	1.2	4.48
Overall mean	33	2.3	1.55	3.4	19	2.7	1.62	4.49	25	2.26	1.44	3.54

References:

- 1. Bracho, R. *et al.* Temperature sensitivity of organic matter decomposition of permafrost-region soils during laboratory incubations. *Soil Biol Biochem* **97**, 1-14, (2016).
- 2. Čapek, P. *et al.* The effect of warming on the vulnerability of subducted organic carbon in arctic soils. *Soil Biol Biochem* **90**, 19-29, (2015).
- 3. Dai, X. Y., White, D. & Ping, C. L. Comparing bioavailability in five Arctic soils by pyrolysis-gas chromatography/mass spectrometry. *Journal of Analytical and Applied Pyrolysis* **62**, 249-258, (2002).
- 4. De Baets, S. *et al.* Investigating the controls on soil organic matter decomposition in tussock tundra soil and permafrost after fire. *Soil Biol. Biochem*, (in revision).
- 5. Diáková, K. *et al.* Carbon loss from old permafrost-affected peat deposits under changing environmental conditions. *FEMS Microbiology Ecology*, (in revision).
- 6. Dutta, K., Schuur, E. A. G., Neff, J. C. & Zimov, S. A. Potential carbon release from permafrost soils of Northeastern Siberia. *Glob. Change. Biol* **12**, 2336-2351, (2006).
- Ernakovich, J., Lynch, L., Schimel, J. & Wallenstein, M. D. Soil chemistry and characteristics measured for incubation of microbial communities in permafrost UCAR/NCAR-CISL-ACADIS (2014) <u>http://dx.doi.org/10.5065/D66M34S3</u>
- 8. Hobbie, S. E., Miley, T. A. & Weiss, M. S. Carbon and nitrogen cycling in soils from acidic and nonacidic tundra with different glacial histories in Northern Alaska. *Ecosystems* **5**, 761-774, (2002).
- Iversen, C. M. *et al.* Active Layer Soil Carbon and Nutrient Mineralization, Barrow, Alaska, 2012. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. *Carbon Dioxide Information Analysis Center Next Generation Ecosystem Experiments Arctic Data Collection* (2015) <u>http://dx.doi.org/10.5440/1185213</u>.
- 10. Kane, E. S. *et al.* Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen. *Soil Biol. Biochem* **58**, 50-60, (2013).
- 11. Knoblauch, C., Beer, C., Sosnin, A., Wagner, D. & Pfeiffer, E.-M. Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. *Glob. Change. Biol* **19**, 1160-1172, (2013).
- 12. Lee, H., Schuur, E. A. G., Inglett, K. S., Lavoie, M. & Chanton, J. P. The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate. *Glob. Change. Biol* **18**, 515-527, (2012).
- 13. Lavoie, M., Mack, M. C. & Schuur, E. A. G. Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal soils. *Journal of Geophysical Research-Biogeosciences* **116**, (2011).
- 14. Nadelhoffer, K. J., Giblin, A. E., Shaver, G. R. & Laundre, J. A. Effects of temperature and substrate quality on element mineralization in 6 arctic soils. *Ecology* **72**, 242-253, (1991).
- 15. Neff, J. C. & Hooper, D. U. Vegetation and climate controls on potential CO₂, DOC and DON production in northern latitude soils. *Glob. Change. Biol* **8**, 872-884, (2002).
- 16. O'Donnell, J. A. *et al.* Interactive Effects of Fire, Soil Climate, and Moss on CO(2) Fluxes in Black Spruce Ecosystems of Interior Alaska. *Ecosystems* **12**, 57-72, (2009).

- 17. Oelbermann, M., English, M. & Schiff, S. L. Evaluating carbon dynamics and microbial activity in arctic soils under warmer temperatures. *Canadian Journal of Soil Science* **88**, 31-44, (2008).
- 18. Roy Chowdhury, T. *et al.* Stoichiometry and temperature sensitivity of methanogenesis and CO2 production from saturated polygonal tundra in Barrow, Alaska. *Glob. Change. Biol* **21**, 722-737, (2015).
- 19. Shaver, G. R. *et al.* Carbon turnover in Alaskan tundra soils: effects of organic matter quality, temperature, moisture and fertilizer. *J Ecol* **94**, 740-753, (2006).
- 20. Treat, C. C. *et al.* Temperature and peat type control CO₂ and CH₄ production in Alaskan permafrost peats. *Glob. Change. Biol* **20**, 2674-2686, (2014).
- 21. Waldrop, M. P. *et al.* Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils. *Glob. Change. Biol* **16**, 2543-2554, (2010).
- 22. Wickland, K. P. & Neff, J. C. Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls. *Biogeochemistry* **87**, 29-47, (2008).
- 23. Myhre, G. *et al.* Anthropogenic and Natural Radiative Forcing. In: *Climate Change 2013: The Physical Science Basis. Contributions of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.* 659-740 (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013).