Supplementary Figures
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Supplementary Figure 1. Principal Component Analysis (PCA) of common variants in AJ, non-AJ Jewish, European,
and Middle-Eastern populations. The samples designated AJ and Flemish are the ones reported in this study; non-
Al Jewish populations are from the Jewish HapMap project (JHM) 1; other European and Middle-Eastern
populations are from the Human Genome Diversity Project (HGDP) 2). Genomes from different AJ sequencing
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batches are shown in different symbols and different shades of blue.
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Supplementary Figure 2. Transition/transversion (Ti/Tv) ratio. The top row shows the Ti/Tv ratio (averaged over
the 58 AJ individuals sequenced in our first batch) vs. properties of the variants. In the bottom row, we plot, for
each property, the total number of variants that were used to compute each Ti/Tv data point in the corresponding
panel in the top row. CG: Complete Genomics.
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Supplementary Figure 3. Rate of non-reference variant discovery. Symbols joined by solid lines represent the
empirical average number of new non-reference variants discovered vs. the number of already sequenced
individuals. Dashed lines are the projections to larger sample sizes, obtained using the estimator developed by
Gravel et al. (2011) 3.
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Supplementary Figure 4. The distribution of the IBD segment scores. We plot the distribution of the segment
scores (D; Supplementary Eq. (11)) per cM for segments shared within AJ (blue), within Flemish (red), and between
AJ and Flemish (green). Within-AJ segment scores are significantly higher than within-Flemish or AJ-Flemish scores.
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Supplementary Figure 5. Our imputation study design.



2500

—e— AJ (n=50)
2 20007 -e--CEU (n=87)
=
[@]
$ 1500+
()]
=
£ 1000
@]
£
© L
o 500
0 . = . i ik
0O 10 20 30 40 50

Minor allele frequency (%)

Supplementary Figure 6. Accuracy of the imputation results vs. the minor allele frequency. For each reference
panel and for each minor allele frequency (see details in Supplementary Note 5), the average number of discordant
genotypes (over the seven AJ study sequences) is shown.
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Supplementary Figure 7. The single-population demographic models along with the inferred parameters. For both
AJ and Flemish, we assumed a history of an ancient bottleneck followed by slow exponential growth. The
demographic parameters were inferred, using dadi *, based on the allele frequency spectrum of each population
and then parametric bootstrap (Supplementary Note 6, Supplementary Table 5). The reported parameters
correspond to the bias-corrected bootstrap means. Population sizes (horizontal arrows) are in diploid individuals,
and times (vertical arrows) are in years, assuming 25 years per generation.
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Supplementary Figure 8. The observed and fitted single-population allele frequency spectrum. For each population
(AJ, blue shades; Flemish, red shades), the minor allele frequency spectrum is plotted (symbols) along with the
maximum likelihood spectrum (lines) for a number of demographic models. The models are defined in
Supplementary Note 6 and the parameter values are reported in Supplementary Table 5. For visibility, the number
of sites in all Flemish spectra was divided by 3. bn/growth: a bottleneck followed by exponential growth.
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Supplementary Figure 9. The (non-normalized) single-population frequency spectra of AJ and Flemish. The total
number of variants is shown vs. the minor allele count, after each population has been reduced to 50 haploid
genomes. Inset: The total number of population-specific variants vs. the minor allele count in the population
where each variant exists.
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Supplementary Figure 10. The fraction of variants that are population specific in AJ and Flemish. The fraction is
plotted vs. the minor allele count (in the population where each variant exists), after each population has been
reduced to 50 haploid genomes.
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Supplementary Figure 11. The sum of squared errors (SSE) around the recent history parameters inferred using IBD
segment lengths. The demographic model we inferred in Supplementary Note 4 has four parameters. In each
panel, we fixed three of the parameters to their optimal values and varied the fourth. We then computed the SSE
between p..(£) (plotted in Figure 2 of the main text) and py,o401 (€) according to Supplementary Eq. (13). (A) The
ancestral population size, Ng. (B) The bottleneck size, Nj,. (C) The growth rate, r. (D) The bottleneck time, T},.
Note that the same y-axis scaling was used for all panels.
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Supplementary Figure 12. The real joint AJ-Flemish allele frequency spectrum and the best fit (maximum likelihood)
model spectrum. In each panel, the total number of variants is shown vs. the AJ and Flemish minor allele counts
(according to the color bar), after each population has been down-sampled to 50 haploid genomes. The dashed
line corresponds to equal frequencies in Al and Flemish. Left: the real joint spectrum, reproducing Figure 3B of the
main text. Right: the best fitting model spectrum, corresponding to the demographic model of the top part of
Figure 4 of the main text (Supplementary Note 6, section 6.2.3.2) with the maximum likelihood parameters
reported in Supplementary Table 7.
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Supplementary Figure 13. PolyPhen2 score vs. non-reference allele frequency in AJ (left) and Flemish (right). Dots
represent individual variants, circles represent average PolyPhen2 score within each allele frequency bin, and lines
represent linear regression models fitted to the average scores (not significantly different between AJ and Flemish;
Supplementary Note 7).
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Supplementary Figure 14. Violin plots of non-reference allele frequency spectra in AJ and Flemish, by variant
functional class.
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Supplementary Figure 15. Violin plots of the non-reference allele counts per individual in AJ and Flemish, by
functional class. The number of variants in each category was normalized by the number of intergenic variants, to

account for difference in the total number of variants between the populations due to their different demographic
histories.



Supplementary Tables

Trait (Atzmon'’s lab; Einstein) Mean t Trait (Clark’s lab; Columbia) Mean ¢
Standard Standard
Deviation Deviation
All (n) 74 All (n) 54
Female (n) 45 Female (n) 33
Male (n) 29 Male (n) 21
68.8+7.7 Age (years 68.7+10.4
s e (range 49-85) ey ) (range 39-88)
Cholesterol (mg/dL) 200£42.1 Intellectual impairment (n) 1
Triglycerides (mg/dL) 132471.4 Thought disorder (n) 1
HDL (mg/dL) 65.4+17.2 Depression (n) 2
Family history of PD in first degree | 2
LDL (mg/dL) 108+34.4 relatives (conservative) (n)
Family history of AD in first degree | 3
ellEae ol 81.9+14.6 relati\‘lles (contervative) (n) :
Waist circumference (inch) 35.1+6.9 Total MMMS Score 56.2+1.4
Body Mass Index (kg/m?) 26.4+5.1 Total UPDRS part Il score 0.25+0.85
Systolic Blood pressure (mm Hg) 139+20.6 Total UPDRS part Ill score 1.81+3.20
Diastolic Blood pressure (mm Hg) | 79.6+11.2

Supplementary Table 1. Demographic and medical characteristics of the Al samples. Means and standard
deviations are shown. For a description of the cohorts (Einstein and Columbia), see Supplementary Note 1. Except
the gender and the mMMS score, all traits in the Columbia cohort were computed over 53 samples. PD:
Parkinson’s disease. AD: Alzheimer’s disease. The mMMMS score was calculated from a modification of the modified
Mini-Mental State Examination, with a maximum score of 57 (computed for 15 samples). The Unified Parkinson’s
Disease Rating Scale (UPDRS) parts Il and Ill contain 44 questions, each measured on a 5-point scale (0-4).




Fully called Fully called SNPs total SNPs novel SNPs het/hom
genome exome count fraction ratio
fraction fraction

Average 96.66% 98.10% 3.412-10° 3.84% 1.647
Coefficient of 3-10°3 2-10°3 7-10°3 2.1-10° 2.0-102
variation (CV)

SNPs Ti/Tv Insertions Deletions Multi- Synonymous

ratio nucleotide SNPs
substitutions
Average 2.142 220-10° 235-10° 83-10° 10,536
cv 2-10°3 3.3-10° 3.3-10? 2.0-10? 9-10°3
Non- Non-sense CNV segments Structural Mobile
synonymous SNPs variants element
SNPs insertions
Average 9706 72 302 1480 4090
cv 1.0-10 8-1072 0.503 4.8-10* 0.161

Supplementary Table 2. Selected quality control and variant count statistics for 128 AJ genome sequences.
Statistics were reported for each individual by Complete Genomics. Means and coefficients of variation (standard
deviation/mean) are shown.




Al Flemish P-value

Non-reference variants (x 103) 2602+ 7.8 2563 +11.2 3.9-10

Heterozygous variants (x 103) 1637 +10.2 1599 +12.7 1.3-10°
Homozygous variants (x 103) 966 £ 5.7 964 £ 5.2 0.30

Het/hom ratio 1.695 + 0.019 1.658 £+ 0.019 8.2:10%°

Fraction novel in dbSNP132 (%) 3.14+0.01 2.52 +£0.02 3.9-10%

Fraction novel in dbSNP135 (%) 1.42 £ 0.004 0.96 £ 0.02 3.9-10%

Supplementary Table 3. A comparison of variant statistics between AJ and Flemish. The quantities reported are the
mean and standard deviation over 57 AJ and 26 Flemish individuals, respectively, after cleaning and merging. The
het/hom ratio and the dbSNP novelty were computed with respect to the non-reference variants in each
individual. The P-values were computed using the rank-sum test.



Ref panel

Discordant genotypes

False positives

False negatives

AJ (n=50) 12,181 4615 7566
CEU (n=87) 16,901 4769 12,132
Ref panel Fraction of non-ref Fraction of non-ref variants r? IMPUTEZ2’s self-
variants wrongly imputed with minor allele freq <1% estimated
wrongly imputed discordance
AJ (n=50) 4.08% 13.01% 98.24% 2.79%
CEU (n=87) 6.53% 34.67% 97.37% 3.62%

Supplementary Table 4. Summary of the imputation results. The numbers of discordant genotypes, false positives,
and false negatives, as well as the fractions of wrongly imputed non-reference genotypes are the averages over
the seven AJ study sequences and were computed using the most likely imputed genotypes. 2 is the aggregate
(squared-) correlation between the true genotypes and the imputed dosages over all study individuals and sites.
False negatives occur when at least one non-reference allele was missed; false positives occur when IMPUTE2
wrongly suggests at least one non-reference allele. Sites that were monomorphic non-reference in the Al panel
were excluded, and the minor allele frequency was computed in the AJ reference panel. IMPUTE2’s estimate of the
discordance is the average over the 1000 array genotypes.




Wright-Fisher
(section 6.2.2.1)

No

Al 13,609
Flemish 12,664
Growth-only Ny T, Ny
(section 6.2.2.2)
Al 12,298 11,847 57,988
Flemish 12,006 5636 38,239,322
Bottleneck/Growth Ny Ny T, Ny
(section 6.2.2.3)
Al 13,987 3373 86,083 30,604
13,968+42 3502+30 86,270+955 30,731+219
[13,885, 14,050] [3443 , 3561] [84,399, 88,142] [30,301, 31,162]
Flemish 13,658 2370 60,219 43,020
13,643140 2451431 60049+1146 45,074+926
[13,564 , 13,722] [2389, 2512] [57,803, 62,295] [43,258, 46,890]
Bottleneck/Growth Ny Npa Tya Niq
+ known recent B/G
(section 6.2.2.4)
Al 13,660 2375 58,556 79,347
13,651+31 2336+19 57,816+594 83,547+1266

(13,591, 13,711]

[2299, 2374]

[56,651, 58,981]

[81,065, 86,028]

Supplementary Table 5. The inferred parameters for our single-population demographic models. See
Supplementary Note 6, section 6.2 for definitions. For the Wright-Fisher and the growth-only models, only the
maximum likelihood parameter values are reported. For the two bottleneck/growth models, the parametric
bootstrap results (Supplementary Note 6) are also reported: the bias-corrected means and the standard deviations
(second line of each cell) and the 95% confidence intervals (third line). All population sizes are reported in number
of diploid individuals; times are reported in years (assuming 25 years per generation).




Parameter Mean Standard deviation 95% confidence
interval
Ancestral size N 4755 562 [3654,5856]
Bottleneck size N, 334 43 [249,419]
Growth rate r 34% 10% [16%,53%]
(Final population size) (Nf = 1.450 - 10°)
Bottleneck time T, 28 2 [25,32]

Supplementary Table 6. The demographic parameters inferred using IBD sharing. The demographic model (a
bottleneck followed by exponential growth) is schematically plotted in Supplementary Note 4, section 4.3.1. The
parameters were inferred by fitting the observed decay of IBD sharing at increasing genetic distances

(section 4.3.1), followed by jackknife resampling (section 4.3.4). The means, standard deviations, and confidence
intervals were computed over 100 resampling iterations. The final (current) population size was computed using
the means of the other parameters. The population sizes are given in number of diploid individuals, the time in
generations, and the growth rate in percent per generation.




Parameter Maximum likelihood Bias-corrected 95% confidence interval
meanzSD
No 13,945 13,940+34 [13,872, 14,007]
Np00a4 3874 3843+115 (3618, 4069]
Tpo0a 89,785 89,342+2459 [84,523,94,161]
Ngay 23,784 24,184+ 1198 [21,837, 26,531]
Npeu 3692 3695+ 110 [3479, 3911]
Tpru 21,016 21,264+ 430 [20,421, 22,108]
Nf,EU 170,465 173,771+ 13,715 [146,889 , 200,653]
T, 681 673+ 24 [626, 721]
fa 49% 48%+1% [46% , 50%]

Supplementary Table 7. The inferred parameters for the joint AJ-Flemish demographic model. The model is defined
in Supplementary Note 6, section 6.2.3.2. The maximum likelihood parameters were computed using dadi
(section 6.3.1); confidence intervals were obtained using parametric bootstrap (section 6.3.2): we report the bias-
corrected means, the standard deviations (SD), and the 95% confidence intervals. Population sizes are given in
number of diploid individuals and times in years, assuming 25 years per generation.




Al variant | Non-syn. Baseline: Baseline: Coding damaging
count non-coding+syn. synonymous Baseline: benign
Observed | Expected | P-value | Expected | P-value | Observed | Expected | P-value
Unique 27,219 26,595 6-10° 26,964 0.06 12,190 12,099 0.20
All 251,788 250,527 6-10° 251,109 0.09 61,393 60,454 7-10°
Unique 17,179 16,259 3-10 | 16,484 3108 9357 9124 7-10°
freq.<10%
All 31,179 28,428 4-10°° 28,494 3-10% 16,065 15,566 1-103°
freq.<10%

Supplementary Table 8. A comparison of the functional mutation burden between AJ and Flemish. We considered
a reduced set of genotypes for 26 individuals in each of the AJ and Flemish populations. The observed number of
either non-synonymous (non-syn.) or damaging (annotated using PolyPhen2) > non-reference variants is compared
to the expected number based on the Flemish genomes, with the non-functional variation as a baseline (either
non-coding+synonymous (syn.) or synonymous only for non-syn. variation, and benign coding variants for the
damaging variation). Counts are also reported when considering only variants having (non-reference) allele
frequency (in the combined AJ-Flemish dataset) of <10%. The P-value is approximate, assuming standard normal

distribution of the scaled difference (observed — expected)/,/expected.




Disease #genes #AJ non-syn. variants | #FL non-syn. variants AJ/FL ratio

category
Aging 106 1177 1105 1.07
Infectious 70 1100 1065 1.03
Neonatal 956 13387 13123 1.02
Gastrointestinal 254 5577 5479 1.02
Dental 86 1564 1543 1.01
Immunological 474 7325 7241 1.01
Hemic 202 2791 2759 1.01
Cardiovascular 502 7714 7626 1.01
Endocrinological 750 10466 10374 1.01
Oncological 471 7965 7898 1.01
Women's 39 409 408 1.00
Drug 82 1661 1667 1.00
Neurological 980 12139 12198 1.00
Nutrition 29 256 258 0.99
Respiratory 187 3517 3570 0.99
Kidney 285 3740 3877 0.96
Psychiatric 21 271 291 0.93

Supplementary Table 9. The non-synonymous mutational burden for different disease categories. Gene annotation
was provided by Omicia Inc. The number of non-synonymous (non-syn.), non-reference variants was computed for
each category and for each population (AJ and Flemish) in the reduced set of genotypes for 26 individuals in each
population. Categories were ordered according to their ratio of AJ/FL non-syn. burden.



1. Supplementary Note 1: Sample selection and sequencing
Our 128 DNA samples were collected from the following sources.

Atzmon’s lab, Albert Einstein School of Medicine (n=74). The sequenced individuals were controls in a
longevity study. Subjects were recruited by word of mouth and through advertisement in Jewish aging
centers and homes. All subjects were disease-free and were verified by PCA to have four grandparents
of Ashkenazi origin (see also section 2.9). Additionally, both parents of all subjects died before the age of
85 and were without longevity history in the family. Cryptic relatedness has been excluded based on
identity-by-descent analysis using Affy 6.0 data (see also section 2.10). Summary statistics for medically-
relevant phenotypes are given in Supplementary Table 1. Written informed consent was obtained in
accordance with the policy of the Committee on Clinical Investigation of the Albert Einstein College of
Medicine. A single nurse practitioner visited all participants to conduct a physical examination and
obtain a medical history report, including review of the questionnaire °. The majority of the samples
from this source (n=58) were sequenced in summer 2012. Those 58 genomes (less one; see

section 2.7.1) were used for most of the population genetic comparisons against European genomes
reported in the paper. The remaining 16 samples were sequenced separately in winter 2012-2013.

Clark’s lab, Columbia University Medical Center (n=54). The sequenced individuals were controls in two
studies: (i) The Genetic Epidemiology of Parkinson’s Disease study at Columbia University and (ii) The
New York Ashkenazi Jewish study at Columbia University. Information on Jewish origin in each of the
grandparents was obtained during an interview. Ashkenazi ancestry was not specifically inquired;
however, *90% of Jews in the United States are Ashkenazi and this was verified by PCA (section 2.9).
Ascertainment and a description of the study participants is provided in detail in Marder et al. (2003) ’
and Liu et al. (2011) & All control probands were evaluated with a medical history, modified Mini-Mental
State Examination (mMMSE), Unified Parkinson's Disease Rating Scale (UPDRS), and when possible, a
videotaped assessment that included items from the UPDRS rating scale. Summary statistics for
medically-relevant phenotypes are given in Supplementary Table 1. The study was approved by the
Institutional Review Board at Columbia University Medical Center. Each study participant signed a
written informed consent approved by the University Human Ethics Committee. Genomes from this
source were sequenced in winter 2012-2013.

In all samples, DNA was isolated from blood. Sequencing was carried out by Complete Genomics (CG) *
1, The average raw sequencing depth was 56x (Supplementary Data 2). The first 58 genomes were
called using CG pipeline 2.0.2.26. All other genomes were called using pipeline 2.0.4.14. Both pipelines
mapped variants to reference genome version hg19 2.



2. Supplementary Note 2: Quality control and processing pipeline

2.1. A diagram demonstrating our processing and quality-control pipeline

Al first batch

Flemish

I 53 Complete Genomics masterVar [hg19) I I 28 Complete Genomics masterVar [hg18) I
CGAtools mkvg® ¢ CGEAtools
| VEFfile Hl TifTv statistics | I testuariantsfile Hl VCFfile |
Local cleaning Custom script; Plink/Seq Local cleaning Custom script
Remaove low-guality, half-called, and non-53Nvs Liftover hgl8==hgl%

Remove inbred individual

Remove varants not fully called inatleastoneindividual

Remaove low-guality, half-called, and non-SNVs
Remove varants not fully called inatleastone individual

Cohort-bazed cleaning

Cohort-based cleaning

Remaove polyallelic variants
Remove variantswith high no-call rate or that are
not in Hardy-Weinberg equilibiium

AJ complete project

I 128 Complete Genomics masterVar [hg13) I

CGAtools ¢
testvarigntsfile Summary ST, arrzy
concordance, and

duplicates analyses

Custom script

Local cleaning

Remove low-guality, half-called, and non-5Nvs
Remove varants not fully called inatleastoneindividual

Cohort-based clean in§¢

Remove poly-allelic variants
Remaove varantswith high no-call rateor that are
not in Hardy-Weinberg equilibrium

Monomaorphic . P
nan-rafand Plinkfile Flinkfile Plinkfile
runs-of- Initialfiltering SHAPEIT
homozygosity
analyses Remove coordinates with reference mapping problem I Phaze and impute sporadically missing values I
Remove ith Al-Flemizh inc alleles
seqphase Variant in one
Variant in both Variantin one cleaned fileand not -
cleaned files? cleaned fileand in atallin other? Validate Al ancestry
h the VCF of the N Validate nocryptic relatedness
Phase using Keep other? y Keep and sat
molecular I Discard I otheras
phasing hom-ref
information
A 4 /
I Merge Al-Flemish genotypes I
I Remove varantsi iblewith 1000 I
¢ SHAPEIT, using 1000 Genomes panel
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Supplementary Note Figure 1. A diagram of the various steps in our processing and quality control pipeline. All
items are described in detail throughout section 2.

2.2. Quality control and variant count statistics
Several quality control and variant count statistics were reported (per genome) by Complete Genomics.
Selected statistics (averages and coefficients of variation) are shown in Supplementary Table 2. Note the
very low level of variation in single-nucleotide and short variants, as opposed to longer variants,
particularly CNVs (suggesting lower quality of those variants; see also sections 2.3 and 2.4). The
complete list of statistics for all individuals is given in Supplementary Data 2. Note that these statistics
refer to the original data before filtering (section 2.7).

2.3. Copy Number Variants (CNVs)
As with other next-generation sequencing platforms, the Complete Genomics (CG) pipeline calls copy
number variants (CNVs) based on localized variations in read depth/coverage. Coverage is assessed in
sliding windows at 2kb intervals, and normalized according to the GC content of the window
(http://media.completegenomics.com/documents/CNV+Methods.pdf). Quality metrics and summary
statistics were assessed in the first batch of genomes delivered (n=58), and compared to publicly
available European (CEU) genomes from CG (n=22), as described below.




In general, 200-400 CNVs were called in each genome. However, a subset (n=9) demonstrated a notable
excess in called CNV segments. As depicted in Supplementary Note Figure 2A, these samples were also
marked by outlier values in a quality metric provided by CG, which represents the overall variability
across windows, normalized as a function of GC content. High values on this metric may indicate
artifacts emerging during library construction, with the excess CNVs representing false positive calls. As
demonstrated in Supplementary Note Figure 2B, the excess calls represent novel CNVs (not present in
Complete Genomics public genomes or the Database of Genomic Variants (DGV)), which are not likely to
be present in such volume in control individuals such as the participants in our study. Consequently,
nine subjects with 100k normalized coverage variability 20.038, who demonstrated the nine highest CNV
call rates, were excluded from the comparison to European genomes that we describe next. Notably,
none of our subsequent genomes (n=70), drawn from other extraction batches, demonstrated coverage
variability or CNV segment counts above these levels.
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Supplementary Note Figure 2. Properties of Copy Number Variants (CNVs) detected in our sequencing cohort. The
CNV count (A) and fraction novel (B), as well as the coverage variability, are as reported by Complete Genomics for
our first sequencing batch (n=58). See also Supplementary Data 2.

We then compared the n=49 remaining genomes from our first batch to the n=22 European (CEU)
genomes made publicly available by Complete Genomics. The overall number of called CNV segments
(deletions and duplications only) did not significantly differ between AJ (mean=245.7+24.9) and CEU
(mean=243.3+8.1) groups, nor was there any significant difference in average segment size
(22527430594 vs. 22848+32484). However, when compared to the Database of Genomic Variants
(DGV), the rate of novel CNV calls in our Al samples (3.86%) was approximately double that of CEU
(1.8%).

2.4. Mobile Elements Insertions (MEIs)

2.4.1. MEI detection
Mobile Elements (ME) are repetitive genomic sequences comprising a large proportion of the human
genome 213, The major ME families that are active in human and primate genomes are the long
interspersed element-1 (LINE-1 or L1), Alu, and SVA (SINE-R/VNTR/Alu). MEI events have been reported
in the literature as a cause of single-gene disease (reviewed in 1*1%). Common MEIs may also contribute
to genetic variation and gene expression in the human genome °.



The Complete Genomics pipeline generated a genome wide map of MEls in our 128 Ashkenazi Jewish
control samples. Insertion sites were identified by searching for mate-paired reads that mapped
uniquely to the reference with one arm and to repetitive sequences with the other arm. The location,
type, orientation, and score of the inserted elements were reported, as well as the number of reads
supporting either the insertion or the reference. MEls that were previously observed in the 1000
Genomes Project 2 were indicated as such; we refer to those MEIls as known and to the restas novel.
Since the reported positions of the insertions were imprecise, we did not attempt to identify recurring
MElIs across individuals, except for the known variants (since those were mapped by CG to specific 1000
Genomes MEls).

2.4.2. MEI results
We detected 40904662 MEls per individual (meanzstandard deviation), or 523,572 overall. However, we
noticed a strong batch effect between the first batch (58 genomes), where the number of MEls per
individual was 3475+339, and the other genomes, where it was 4600362 (P = 2 - 10721, rank-sum).
The batch effect was mostly due to the novel MEls (the number of known MEls was very similar
between the batches).

2.4.3. Experimental validation of novel MEIs
We attempted to validate a number of novel MEls (n=11) that mapped to the introns of known
Ashkenazi Jewish (AJ) disease genes (LOXHD1, ABCC8, and MAK; section 7.4). PCR primers
(Supplementary Note Table 1) were designed to localize at least 50 bp upstream and 100 bp
downstream of the insertion regions. PCR amplifications were performed in 25 pl reactions using
Eppendorf Mastercycler. Each reaction contained 100 ng of template DNA in Roche FastStart Tag DNA
polymerase system (Cat No 12032 953 001) with GC-RICH solution (200 nM of each oligonucleotide
primer, 1x GC-RICH solution, 2mM MgCl2, 1x PCR buffer, 0.2 mM dNTPs, and 1U Tag DNA polymerase).
PCR conditions were 95°C for 15 min, followed by 40 cycles of 95°C for 30 s, 60°C for 30 s, and 72°C for 3
min, with a final cycle of 72°C for 10 min. PCR products were analyzed on a 1.7% agarose gel stained
with Crystalgen Dye and a 100 bp ladder (Cat No 65-0321). Images were taken and saved using a BioRad
ChemiDoc XRS imaging system (Hercules, CA). Out of 11 tested MEls, only three were validated
(Supplementary Note Figure 3.; Supplementary Note Table 1; false discovery rate of 8/11=73%),
indicating low confidence in our detected novel MEls. We therefore focus next on the known MEls.

Lane | Sample ID Gene ME PCR region Size of Size of Validated
type PCR PCR
product product
without with
insertion | insertion
1 14990 LOXHD1 | AluYb9 | chr18:44125811- 207 247 N
44126018
Primers: TCTCGATCTCCTGACCTCGT TAAGCCAGAGGCAGAGGACT
2 14993 LOXHD1 | AluYd2 | chr18:44126100- 486 630 N
44126586
Primers: GGGAGGAGTTTTAGGGATGC AACTGAATTGGGATGATTGGA
3 15048 LOXHD1 L1HS chr18:44126007- 613 868 N




44126808

Primers: GGGAGGAGTTTTAGGGATGC AAAGGGGGCATAGTCTCACA

4 16091 LOXHD1 | AluYal | chr18:44126074- 510 751 Y
44126584

Primers: GAGCCCCATTCTGACTCCTC ACTGAATTGGGATGATTGGA

5 16098 LOXHD1 | AluYd2 | chr18:44126165- 419 658 N
44126584

Primers: TCTTTCCCTTGACAAAAATGC ACTGAATTGGGATGATTGGA

6 16302 LOXHD1 | AluYa8 | chr18:44126100- 486 565 N
44126586

Primers: GGGAGGAGTTTTAGGGATGC AACTGAATTGGGATGATTGGA

7 16304 LOXHD1 | AluYcl | chr18:44126165- 419 552 N
44126584

Primers: TCTTTCCCTTGACAAAAATGC ACTGAATTGGGATGATTGGA

8 16304 PCDH15 AluY | chr10:55969867- 487 791 Y
55970354

Primers: TTTTTGACGCAGTCATAAGTAGC AGAAGACATTTGCCCTCGAA

9 15044 ABCC8 | L1PREC | chr11:17436288- 235 274 N
2 17436757

Primers: CCCTGCAGTCTGTTGTTCCT TCTTCAAAAACCACATCACTCAA

10 15043 MAK L1PA3 chr6:10806196- 355 450 Y
10806830

Primers: TCCTGAGAGAGTGGGTTGCT AGCTTGCAGTGAGCGAAGAT

11 15044 MAK L1IPA7 | chr6:10805875- 289 329 N
10806345

Primers: TGACGAATATTTTTACAAGCTTTATTG TGCGAATGTGACCTTATTITG

12 Control

Supplementary Note Table 1. Experimental details on MEI validation.




Supplementary Note Figure 3. Experimental validation of novel MEls. See text and Supplementary Note Table 1 for
experimental details. Each lane corresponds to a single insertion event. The validated MEls are indicated with blue
arrows.

2.4.4. MEI allele frequencies and ME types
Comparing the frequencies of known MEls (i.e., those appearing in the 1000 Genomes Project) to the
frequencies of the same MEIs in CG’s public genomes (http://www.completegenomics.com/public-
data/69-Genomes/) revealed high correlation (Supplementary Note Figure 4;r = 0.90), despite the
diversity of populations sampled by CG. This may be consistent with MEI events representing relatively
ancient coalescence events (due to their rarity) and hence being less sensitive to recent demographic

history . The fraction of insertions coming from each ME family (Alu, L1, and SVA) is shown in
Supplementary Note Table 2. The distribution of known MEIs among the ME families is similar to that of
the 1000 Genomes MEIs. For novel MEls, there is an excess of L1 and SVA insertions.
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Supplementary Note Figure 4. ME| frequencies in AJ and Complete Genomics (CG) data. The CG data is for 54
unrelated genomes in a diversity panel of worldwide populations. The solid line is a linear fit.
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% of known Al % of novel Al % of 1000
MElIs MElIs Genomes MEI
Alu 89.5% 54.4% 87.9%
L1 9.0% 38.9% 9.3%
SVA 1.6% 5.1% 2.8%

Supplementary Note Table 2. The fraction of Mobile Element Insertions (MEls) per genome, broken by element
type and novelty. Novelty was determined with respect to the 1000 Genomes Project. The fraction of 1000
Genomes MEIs from each family is also shown. Note that the sum of each column is not necessarily 100% due to
additional MEls of other rare families (evident for the novel MEls).

2.5. Concordance with SNP arrays
Genome-wide SNP arrays were available for all samples. Samples from Atzmon’s lab were genotyped on
Affy 6.0 and called using Birdsuite Y. Fifty two out of the first 58 and 10 of the 16 in the other batch
were jointly processed and cleaned by Kenny et al. (2012) . For the remaining 12 samples, allele codes
were determined using Affymetrix’s annotation (sites lacking annotation were discarded) and no further
cleaning was carried out. Samples from Clark’s lab were genotyped on Illumina Human 610k- or 660k-
quad bead arrays and processed by Liu et al. (2011) &,

In all samples (except the 12 Atzmon samples that were directly processed using the Affymetrix
annotation), array coordinates were lifted over from hgl18 to hg19 using UCSC Genome Browser tools *°,
and variants that could not be mapped were discarded. The strand of each allele was determined
according to the reference allele, except when it was a no-call or an A/T or C/G polymorphism, in which
case it was discarded. Concordance with the sequencing data (in the form of masterVar files) was then
computed, for each individual separately, using CGA tools (snpdiff).

The results are summarized in Supplementary Data 1. The average concordance was 99.85% in the first
52/58 genomes and 99.67% in the entire study (128 genomes). As expected, the concordance was
highest for sites genotyped as homozygous-reference (99.94% and 99.82%, respectively), then
homozygous non-reference (99.83% and 99.61%), and finally heterozygous (99.72% and 99.46%). The



average fraction of array genotypes not called in the sequencing data was 0.65% in the 52 samples and
0.67% in the entire study (128 individuals). Due to the large degree of heterogeneity in genotyping
platforms, processing, and quality, the reported concordance should not be taken as a direct measure of
sequencing quality. To demonstrate that, we show in Supplementary Note Figure 5 that the discordance
is positively correlated with the array missingness rate (a proxy of the array quality) but not with
sequencing metrics such as the fraction of the genome called or the depth of coverage. This result
suggests that most discordances are due to genotyping errors; at the limit of no array missingness, linear
extrapolation (Supplementary Note Figure 5) gives discordance of 0.047%.
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Supplementary Note Figure 5. Discordance between our whole-genome sequencing data (WGS) and SNP array
genotypes. The discordance is plotted vs. quality characteristics of either the array (top-left panel) or the
sequencing data (all other panels; as reported by Complete Genomics (CG)). Data is shown for the 52 of the 58
samples in the first batch that were jointly processed (see text). The Pearson correlation coefficient and the
corresponding P-value are indicated at the top of each panel. In the top-left panel we also plot the linear fit of the
discordance vs. the array missingness rate, computed using all data points except the three most discordant.

2.6. Ti/Tv analysis
The Ti/Tv (transition/transversion) ratio is known to be about 2.1 in humans and is a useful measure of
sequencing quality (e.g., 2> 24222, 2%) The “raw” genome-wide Ti/Tv ratio, as reported by Complete
Genomics, was between 2.13 and 2.15 for all 128 samples. To determine how the Ti/Tv ratio varied
between variant classes, we considered the non-reference single-nucleotide variants (SNVs) in the VCF
file of the first 58 genomes, after sex chromosomes and multi-allelic and half-called variants were
excluded (see details in section 2.7.1 on VCF generation). The Ti/Tv ratio, averaged over all individuals,
was 2.18 for known variants (dbSNP 132; section 2.15) and 2.16 for novel variants. In Supplementary
Figure 2 we plot the Ti/Tv ratio (averaged over all individuals) vs. the minor allele count, the number of
individuals not-called at the site, the genotype quality, and the read depth (the latter two as reported by



CG). The Ti/Tv was >2, with little fluctuations, with respect to the frequency and quality/depth (within
the range where most variants were concentrated). With respect to the missingness rate, however, the
Ti/Tv decreased sharply, implying that high no-call rate is a strong indication of lower quality.

2.7. Merging and filtering pipeline

2.7.1. The first batch (58 genomes)
Genotype calls were provided by CG in the form of one masterVar file per individual. To merge the
individual genomes, we used the CGA tools mkvcf command with default parameters and generated a
VCF file listing sites where at least one individual was non-reference. We observed that mkvcf
occasionally generated multi-nucleotide variants that differed from the reference by just a single
nucleotide (due to the way in which multi-nucleotide half-calls were processed). We applied a custom
script that transformed those variants back into simple single-nucleotide variants.

To obtain high quality genotypes, we first set low quality calls as missing and loaded the VCF file into
Plink/Seq (http://atgu.mgh.harvard.edu/plinkseq/). Using Plink/Seq, we discarded variants in the sex
chromosome, variants that were not bi-allelic, and multi-nucleotide variants (indels and substitutions).

We then removed variants not called in more than three genomes (6% no-call rate) and variants not in
Hardy-Weinberg Equilibrium (HWE; P<10®). Finally, we set half-calls as no-calls and removed any
variants that became monomorphic reference (monomorphic non-reference variants were retained).
The remaining genotypes were recorded in Plink format 2. This stringent quality control procedure,
which derives from standard GWAS practices 2° and is similar to pipelines used in comparable

sequencing studies 2728

, was designed to generate genotypes that are most suitable for population
genetic analyses. Specifically, indels (or multi-nucleotide substitutions) were excluded due to their high

false positive rate (see sections 2.11 and 7.4.2).

Inspection of variant statistics reported by CG indicated that one female individual (GS000010967-ASM)
had about 10k more homozygous and 20k less heterozygous variants compared to the rest of the
cohort. We later found (see more in section 2.11) that GS000010967-ASM had an exceptional number of
runs-of-homozygosity. We concluded that she likely the daughter of cousins, and removed her variants
from the cleaned dataset. Genotypes including this individual were used for the purpose of the runs-of-
homozygosity analysis described in section 2.11, but not for other population genetic analyses (which
were carried out on the filtered set of 57 genomes).

The total number of variants in the VCF file (i.e., the original genotypes) was 19,612,060, of which
11,128,604 were high-quality, bi-allelic SNPs. Further 1,501,127 variants were removed because of high
no-call rate, deviation from Hardy-Weinberg equilibrium, being only half-called as non-reference, or
presence only in the individual with the consanguineous parents. Of those removed variants, 583,074
were novel (dbSNP132) and 450,373 were singleton with respect to the non-reference allele. The total
number of variants (SNVs only) remaining after cleaning was 9,627,477, out of them 26.3% were novel
with respect to dbSNP132 (15.2% with dbSNP135), and 24.7% were singletons (in 98.98% of which it was
the reference allele).



Per individual, the number of non-reference alleles was =~3.188:-10° (standard deviation (SD) =33-103)
when applying “local” cleaning only, that is, filtering each individual separately (removing non-
autosomal, low-quality, half-calls, and non-SNVs). After “cohort” cleaning, which included filtering multi-
allelic variants, variants with high no-call rate, and variants out of HWE, the number of non-reference
variants per individual was =~2.755-10° (SD ~12-103), a reduction of 13.6%. The average reduction in
novel variants (dbsnp135) was higher, as expected, at 28.7% (P = 3 - 10729, rank-sum test).
Interestingly, the variance of the number of variants per individual was much lower after cohort-based
cleaning compared to the local cleaning (Supplementary Note Figure 6; coefficient of variation
(SD/mean) 4.2:103 vs. 1.0-10% P = 1.1 - 1077, Levene’s test), demonstrating the utility of our cleaning
pipeline.
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Supplementary Note Figure 6. The number of non-reference variants per individual. Single-genome QC refers to
the variant filters that work on one genome at a time (e.g., removing half-calls or non-SNVs), while cohort QC
refers to the complete cleaning process, which includes filters applicable to multiple genomes (e.g., no-call rate or
HW equilibrium). The individuals were sorted in decreasing order of their number of variants after single-genome
Qc.

2.7.2. The complete project (128 genomes)
We first removed a number of genomes that were derived from either non-control individuals (n=9),
individuals having unclear ancestry (using PCA; section 2.9, n=4), or duplicates (n=1), leaving 128
genomes (including the individual with the consanguineous parents, GS000010967-ASM). We again
merged all genomes using CGA tools, but here using the listvariants and testvariants commands. We
then used a custom script to generate a Plink file directly from the testvariants output. Our script
removed variants just as in the smaller dataset: we retained only autosomal, bi-allelic, single-nucleotide
variants that were fully called as non-reference in at least one genome. We further used Plink to filter
out variants with >10% no-call rate or not in HWE (P<107®). Most variants removed in the last step were



due to missingness; out of 1,441,960 removed variants (of unfiltered 13,768,157; 10.5%) only 62,220
violated HWE (0.45%). The final number of remaining variants was 12,326,197.

2.8. Monomorphic non-reference variants
Our final cleaned genotypes (for the first batch) contained 152,058 monomorphic non-reference
variants. To determine whether those are due to a platform- or a sample-specific error, we inspected
their frequencies in other sequencing datasets. Specifically, we extracted the non-reference allele
frequencies from the 1000 Genomes project (EUR;
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/) and from CG’s public genomes (CEU;
ftp://ftp2.completegenomics.com/Diversity/ASM_Build37 2.0.0/). We assigned frequency zero to
Ashkenazi variants that were not found in those datasets. The frequency spectra are plotted in
Supplementary Note Figure 7, showing that the monomorphic variants tend to be of a very high
frequency in the other datasets as well. Specifically, 83.9% and 96.9% of the variants were also
monomorphic in the 1000 Genomes and the CG datasets, respectively. We therefore conclude that the
vast majority of our monomorphic non-reference variants are not due to a platform- or a sample-

specific error.
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Supplementary Note Figure 7. Monomorphic non-reference variants. The frequency of each monomorphic non-
reference variant detected in the first batch of our AJ genomes was extracted from the 1000 Genomes project
(Europeans) and CG’s public genomes (CEU). The histograms of the frequencies are plotted.

2.9. Ashkenazi Jewish ancestry
To verify that all of our sequenced individuals have Ashkenazi Jewish genetic ancestry, we ran Principal
Component Analysis (PCA) on a merged dataset that included our whole genome samples (n = 128),
the Flemish whole genomes (see section 2.12; n = 26), the Human Genome Diversity Project (HGDP)
genotypes 2 (lllumina 650k; n = 939) and the Jewish HapMap ! genotypes (Affymetrix 6.0; n = 237).



HGDP Genotypes were downloaded from the HGDP website and converted to Plink format using a script
from www.harappadna.org. A subset of unrelated individuals was selected according to Rosenberg,
2006 %. Following Leutenegger et al., (2011) *°, individual HGDP01097 was also removed. We further
filtered out SNPs with >5% no-call rate, monomorphic SNPs, and the sex chromosomes. All coordinates

were lifted over from hgl8 to hgl9 and SNPs that could not be lifted over were removed. The strand
was determined according to the reference allele, and negative strand alleles were flipped using Plink.
Jewish HapMap (JHM) genotypes were available from Atzmon et al. (2010) . A/T and C/G
polymorphisms, non-autosomal sites, and monomorphic sites were removed, and lift over and strand
identification were carried out as above.

To create the final dataset for PCA, the Ashkenazi Jewish (AJ) and Flemish Plink files (after filtering) were
used. Only SNPs that existed in all four datasets (AJ, Flemish, JHM, HGDP) and that had the same two
alleles in all datasets were retained. Merging was carried out using Plink, and the merged dataset was
pruned using Plink’s --indep-pairwise with parameters 50, 10, and 0.1 (leaving eventually 47,713 SNPs).
Finally, we removed all HGDP individuals that were neither European nor Middle-Eastern, as well as the
outlier Bedouin individual HGDP00621 (leaving n = 290). PCA was then performed using smartPCA 3!
with default parameters. The results (first two PCs) are plotted in Supplementary Figure 1, where for
clarity, we did not show data points for the JHM Ashkenazi samples (which completely overlapped our
Ashkenazi cluster), the JHM samples from Iran and Greece, and the outlier JHM individuals JHM70 (TUR)
JHMA457 (IRQ). Additionally, each of our AJ sequencing batches (section 1) was given a different symbol.

The PCA results largely recapitulate previous Jewish genetics studies ¥ 3% 333435 showing that the AJ
samples cluster tightly between European and Middle-Eastern populations. For our matter here, we
note the absence of outliers: all of our samples cluster together, indicating common Ashkenazi Jewish
ancestry (except perhaps for GS000010961-ASM and GS000014999-ASM, which are slightly outside the
cluster, but nevertheless have neither European nor Middle-Eastern or Jewish non-Ashkenazi ancestry).

Supplementary Figure 1 also demonstrates that samples from different batches cannot be distinguished,
and therefore (at least for common SNPs), a batch effect does not exist. We verified that the picture is
similar for all first 10 principal components as well as when carrying out PCA of the AJ samples alone.
Note that the two samples that are somewhat distant from the cluster come from two different batches,
further justifying their inclusion in the study.

To formally test for the absence of substructure in the AJ population, we used the full dataset of our AJ
cohort (128 individuals), removed all variants with minor allele frequency >5% and the individual with
the consanguineous parents (GS000010967-ASM) and pruned SNPs in LD, as above, leaving finally
165,306 SNPs. We ran PCA as above and computed the Tracy-Widom statistic to test for population
substructure 3% The P-value for the first PC was 0.18, indicating no significant substructure 3,

2.10. Cryptic relatedness
To verify that there is no cryptic relatedness in the cohort (all 128 samples), we ran Plink’s --genome
command. The average 7T was 1.48% and the maximum was 5.48%, indicating no close relatives in our
dataset. The distribution of 7 values is plotted in Supplementary Note Figure 8.
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Supplementary Note Figure 8. The distribution of the relatedness & among individuals in our full cohort (128
individuals).

2.11. Estimation of the false positive rate

2.11.1. Using runs-of-homozygosity
In theory, any two long genomic segments that descend from a recent common ancestor should be
separated by just 1-2 mutations, independently of the time to the ancestor or the segment length (see,
e.g, %%). In practice, sequencing errors generate a much larger number of mismatches, and therefore, if
identical-by-descent (IBD) segments can be accurately identified, the error rate can be calibrated. While
segments shared between individuals can be detected only with moderate confidence (see section 4.1),
long segments shared within individuals, or runs-of-homozygosity (or autozygosity), can be relatively
accurately detected even in the presence of errors. Note that using this error rate corresponds mostly to
false positives flipping a homozygous reference genotype into a heterozygous call.

To detect runs-of-homozygosity (rohs) in our full cohort (128 individuals, which, importantly, included
the individual with the consanguineous parents, GS000010967-ASM), we used the cleaned genotypes.
We removed variants with minor allele frequency <20% or missingness >5%, then variants that were in
LD (using the Plink command --indep-pairwise with parameters 50 10 0.5; leaving 243,880 variants), and
then used Plink’s --homozyg command to detect rohs. We noticed, however, that even long rohs can be
occasionally misidentified, particularly around their borders, which can affect the estimated error rate.
This is because considering similar but non-autozygous segments as rohs will count true heterozygous
sites as sequencing errors, whereas considering only nearly identical segments will bias the estimate
towards the rate at the most error-free regions. Therefore, instead of attempting to obtain a point-
estimate of the error rate, we looked for lower and upper bounds by using either high-quality roh
segments only or all roh segments, respectively. To detect high quality segment, we used

Plink’s --homozyg command with parameters --homozyg-window-snp 50 --homozyg-window-het

0 --homozyg-window-threshold 0.25 --homozyg-density 100 and minimum segment length of 7.5MB. To
detect all segments, we used the parameter set --homozyg-window-snp 25 --homozyg-window-het

1 --homozyg-window-threshold 0.1 --homozyg-density 50. We then also removed segments around the
HLA region (chr6:20-35M).



Using the strict parameters, we discovered nine segments in the individual with the consanguineous
parents, GS000010967-ASM, of total length 184MB. In all other individuals, there were 18 segments (in
17 different individuals) of total length 183MB. For the loose parameters, there were 13 segments in
GS000010967-ASM (of total length 232MB) and 81 other segments (59 individuals) of total length
598MB. None of the roh segments had an overlap of more than 5% with a gap in the reference genome
(e.g., centromeres, telomeres, etc.; according to the UCSC genome browser). The detected segments
enabled us to determine the error rate both in the genotypes originally reported by Complete Genomics
(SNVs and other variants) as well as in our cleaned genotypes.

In the original genotypes, we removed 1MB from each side of each segment and considered first all
heterozygous high-quality SNVs. Using the strict parameters, there were overall 2445 hets in 313MB of
sequence, corresponding to an error rate of 7.81 - 10~° hets/bp or =21,000 errors genome-wide (using
the autosomal hgl9 sequence length, excluding Ns). Using the loose parameters, there were 8235 hets
in 641MB, corresponding to an error rate of 1.28 - 10~> hets/bp or =34,500 errors genome-wide. When
considering all high-quality hets (not only SNVs) using the strict parameters, there were 5152 such
variants, corresponding to an error rate of 1.65 - 10~> hets/bp or 44,200 errors genome-wide. Using
the loose parameters, there were 14,477 hets, corresponding to an error rate of 2.26 - 10~5 hets/bp or
=60,600 errors genome-wide. While the overall number of SNV and multi-nucleotide errors came out
similar, there are, genome-wide, =6-fold more SNVs than multi-nucleotide variants, and therefore, the
fraction of false non-SNVs is =6 times higher than in SNVs, justifying our decision to eliminate non-SNVs
from our population genetic analyses. Manual inspection of the errors in GS000010967-ASM revealed,
as expected, either high missingness rate or an obvious violation of Hardy-Weinberg equilibrium (e.g.,
almost all genotypes were hets).

In the cleaned genotypes, we first removed 5000 SNPs (=1MB) from each side of each segment, and
then counted all heterozygous calls along the segment. Using the strict parameters, there were overall
706 hets over 306MB, corresponding to an error rate of 2.31 - 10~ hets/bp or 6200 errors genome-
wide. Using the loose parameters, there were 1821 hets over 614MB, corresponding to an error rate of
2.97 - 10~ hets/bp or 8000 errors genome-wide. The significant reduction (3-4 fold) in the error rate
demonstrates the efficacy of our cleaning pipeline. The average number of hets per segment (using the
strict parameters and after cleaning) was 26, justifying our assumption that recent mutations are
negligible. Qualitatively similar results were observed for the Flemish genomes (not shown).

2.11.2. Using a duplicate sample
One of the samples we sequenced (not included in the final 128) was a duplicate of another sample
(GS000010774-ASM). Comparing the genotypes of those samples gave another, independent estimate
of the sequencing error rate. To compare the genomes, we used the CGA tools mkvcf command to
generate a VCF file containing only the two duplicates. After removing low-quality calls and no-calls, we
remained with =24,000 SNV differences and =47,000 total differences. Assuming symmetry, this
amounts to 212,000 SNV differences and =23,500 total differences per sample. This is somewhat lower
than the estimates obtained using runs-of-homozygosity (Section 2.11.1), perhaps since the duplicate
samples were derived from the same DNA extraction, such that the actual error rate is somewhat higher
than observed by comparing the sequences. Using the CGA tools testvariants command, we obtained



similar figures of =25,000 and =51,000 SNV and total differences, respectively. Our cleaning pipeline,
had it operated on the entire dataset including the duplicates, would have decreased the number of
(SNV, autosomal) differences to just =12,000 (or =6,000 per individual).

To summarize, in the absence of ground truth, we employed two independent methods to estimate the
sequencing false positive rate. Estimates vary, for SNVs, between 12,000 and 35,000 errors per genome
before cleaning (24,000 and 61,000 for all variants) and between 6,000 to 8,000 errors after cleaning.

2.12. Flemish genomes

2.12.1. Samples
The Flemish genomes reported in this paper are from VIB, a life science research institute based in
Ghent, Flanders, Belgium. Of the 26 samples, 13 are the parents in a study of seven trios of healthy
volunteers (one sample was dropped because it was related to one of the other samples). These
samples were recruited under the condition of Flemish ancestry (up to grandparents). Another 10
samples are blood samples from Flemish cancer patients. The remaining three samples consist of two
normal control samples, and one sample of an Amyotrophic Lateral Sclerosis (ALS) affected individual, all
of Flemish ancestry. Two more samples were initially included in the analysis but then removed during
QC (see below). We verified (using the actual sequences) that all remaining 26 individuals are indeed
unrelated and of Flemish ancestry (see Supplementary Figure 1). The Flemish samples were sequenced
by Complete Genomics, as our AJ samples, but using earlier computational pipelines (1.8, 1.10, and 1.11
vs. 2.0 for AJ) and earlier reference genome version (hgl8 vs. hgl9). The average raw sequencing depth
was 70x and average fraction of the genome called was 95.9%.

2.12.2. Processing pipeline
To merge the Flemish genomes, we ran CGA tools listvariants and testvariants commands (mkvcf is not
compatible with the 1.x pipeline). We then lifted over the resulting testvariants file from hg18 to hg19.
We removed variants that could not have been lifted-over or for which the reference allele has changed.
We created a VCF file (to be used later when merging with the AJ genomes; see section 2.13) using the
testvariants2VCF-v2 Perl script available at the Complete Genomics tool repository. Using a custom
script, we generated a Plink file from the testvariants output. Two genomes were then removed due to
unclear ancestry and abundance of runs-of-homozygosity. The rest of the cleaning pipeline was identical
to the one used for the AJ samples. Specifically, we removed the non-autosomal variants, multi-allelic
and half-called variants, non-SNVs, variants not fully called in any individual, monomorphic reference
variants, and variants with >10% call rate or not in HWE (P<10°®). The number of remaining SNVs was
7,613,082.

2.13. Merging the AJ and Flemish genotypes
While both the AJ and Flemish samples were sequenced to high coverage by Complete Genomics, a
direct comparison of the cohorts was complicated by the use of two different reference genome
versions (hgl9 for AJ; hgl8 for Flemish) and assembly pipelines. The genome comparison methods
provided by CGA tools accept only genomes assembled using the same reference, and CG’s assembly
tools are unavailable to the public. Remapping and reassembling all genomes using the raw reads and



publicly available software, while perhaps being a principled solution, is strongly advised against by CG
(due to the peculiarities of their raw read structure; see, e.g.,
http://www.completegenomics.com/FAQs/Data-Results/#q5) and was also logistically prohibiting. To

minimize the heterogeneity due to the differences between the cohorts, we merged the AJ and Flemish
genotypes using the following pipeline.

We considered as input the processed genotypes for the 57 Al genomes of the first batch and the 26
Flemish genomes. Then, we first removed variants that might have exhibited discrepancy between the
different reference genomes used. We defined those variants as having hg19 coordinates that either
could not be mapped to hgl8 (variants that could not be mapped in the opposite direction were
removed when processing the Flemish genomes; see section 2.12.2), that mapped to hgl8 non-
autosomal chromosomes, or that after mapping to hgl8 and back to hgl9 did not map to the original
coordinate. We also removed SNVs with a different non-reference allele in AJ and in Flemish.

Next, a fundamental problem in merging two sets of filtered genotypes from whole-genome sequences
is how to treat missing variants. Had sequencing been error-free, a missing variant in one set would
indicate that all samples in that set are homozygous-reference. However, suppose a variant exists in one
set but not the other; it might be that the variant was observed in the other set but was filtered out.
Interpreting the missing variant as homozygous-reference, therefore, would falsely create the
impression that the variant is specific to the first set. In our case, we have genotypes available from both
before and after cleaning. We therefore approached the merging problem as follows. If a variant was
found in the cleaned genotypes of both sets, it was retained. If it was found in the cleaned genotypes of
the first set but never in the second set, it was retained and the second set was assigned the
homozygous-reference genotype. However, if the variant (found in the cleaned genotypes of the first
set) was found in the original, but not in the cleaned, genotypes of the second set, it was removed from
both sets. This strategy has the advantage of enabling set-specific processing, without falsely creating
set-specific variants (although at the expense of missing some true variants). In our case, the original
genotypes were extracted from our VCF files and the cleaned genotypes from our filtered Plink files (see
sections 2.7.1 and 2.12.2). All downstream analyses involving AJ and Flemish genome comparisons were
carried out on the above-described merged dataset, even when single-population parameters were
compared (in which case we considered only individuals and variants specific to the population under
consideration, e.g., as in section 3.1). The number of SNVs in the merged dataset was 10,499,312.

2.14. Phasing and imputation of sporadically missing genotypes

2.14.1. Using molecular phasing information
Complete Genomics provides partial molecular phasing information along with its reported genotypes.
This is implemented by assigning a “HapLink ID” to heterozygous alleles that were sequenced in the
same read or mate-paired reads. Recently, a SHAPEIT-based *’ phasing tool called seqgphase was
developed to take advantage of this information 3. To create the molecular phasing input for seqphase,
we considered each of our masterVar files separately. From each file, we extracted all autosomal, high-
quality, heterozygous SNPs that had HapLink ID for both alleles. We further filtered out sites that were
absent or no-call in the cleaned Plink file. We then searched for chains of alleles with identical HapLink



ID, and for each pair detected, we created an entry in seqgphase format that had the coordinates of the
linked sites as well as the linked alleles. To run segphase, we used the genetic maps of HapMap2 *° and
the parameters -burn 10 -prune 20 -main 50. segphase was unpublished at the time of our data analysis;
we used a developer version kindly provided by Fouad Zakharia of Stanford University. Using seqgphase,
we were able to phase most (but not all) chromosomes of the cleaned genotypes of the 57 AJ individuals
(the first batch), before running out of computational resources. We therefore limited the use of those
phased genotypes to the imputation analysis, where only chrl was used (section 5). We verified that all
alleles for which we provided seqgphase with molecular phasing information were correctly phased; in
the absence of ground truth phase, we did not further benchmark the phasing quality.

2.14.2. Using SHAPEIT
To phase and impute (for sporadic missingness) the merged 83 (57+26) AJ-Flemish genomes, we used
SHAPEIT version 2 %°, without employing any molecular phasing information. As recommended by
SHAPEIT's authors, for samples of size <100, a reference panel needs to be provided. We used the 1000
Genomes Project reference panel (all populations), available from SHAPEIT's website (www.shapeit.fr).
Alleles that were in strand conflict with the 1000 Genomes data were removed (leaving 10,473,620
SNVs), and SNVs appearing in the merged AJ-Flemish genomes but missing in the 1000 Genomes data

were added to the 1000 Genomes as homozygous-reference. SHAPEIT was run with the 1000 Genomes
genetic map and default parameters, except for a window size of 0.5 (as recommended for sequencing
data). Unless otherwise mentioned, all population genetic analyses reported below used the phased and
imputed dataset.

We also used SHAPEIT to phase and impute the genotypes for the complete AJ dataset (128 genomes).
As the number of samples was >100, we did not use an external reference panel. All other parameters
were as above.

2.14.3. Assessment of phasing quality
When phasing using SHAPEIT, the molecular phasing information was not utilized. We could therefore
use it as ground truth to evaluate the phasing quality, as measured by the switch error rate. The
molecular phasing dataset described in section 2.14.1 was used, and we stratified the switch error rate
by whether or not one of the sites was a singleton. For the AJ-Flemish merged data, the switch error
rate was 0.965% (0.960% for AJ and 0.98% for Flemish) for all variants and 0.329% for non-singletons.
For the complete AJ dataset (128 genomes), the switch error rate was 0.892% for all variants and
0.268% for non-singletons.

2.15. dbSNP comparisons
Coordinates of variants in dbSNP (version 135) were obtained from the UCSC Table Browser *! group:
Variation and Repeats, track: All SNPs (135), table: snp135, and filtered according to
molType="genomics"; class="single"; locType="exact"; weight=1; exceptions=does not match
everything except "SingleClassTriAllelic" or "SingleClassQuadAllelic". dbSNP132 coordinates were
similarly extracted.



3. Supplementary Note 3: Comparison of variant statistics between A]
and Flemish

3.1. Variant counts, heterozygosity, and novelty
Basic variant statistics were computed for each population using the merged and imputed AJ-Flemish
genotypes and are presented in Supplementary Table 3 and Figure 1 of the main text. The reported
guantities are the mean and standard deviation (SD) over 57 AJ and 26 Flemish individuals. All P-values
were computed using the non-parametric ranksum (Mann-Whitney U) test. The results did not
gualitatively change when we normalized the first three properties (variant counts) by the fraction of
the genome called in each individual.

The results suggest that AJ have a slightly but significantly larger number of variants (1.5%) compared to
Flemish, mostly due to increased heterozygosity (2.4%; the number of homozygous variants was only
0.13% larger in AJ (P=0.30)). The fact that AJ show higher genetic diversity than Flemish is somewhat
surprising. Recently, purportedly unrelated AJ were found to share, by-descent, a large fraction of their
genomes (see also section 4), which was inferred to be due to a recent narrow bottleneck %36 4243,
European populations do not exhibit such a large degree of IBD sharing, suggesting no bottlenecks in
their recent history *2. Additionally, mutations for a number of genetic diseases show elevated
frequencies in AJ, again, consistently with strong genetic drift ** 4> 46, We would therefore expect to see
less genetic diversity in AJ compared to Flemish. There are several possible resolutions, which we
explore in section 6.1. For now, we note that the larger AJ genetic diversity has been in fact already
observed using SNP arrays 3* %" % microsatellites 33, and even Y-chromosome markers *° (see, in

particular, the discussion in Bray et al. (2010) 3* and Behar et al. (2004) *).

Finally, it is interesting to note that AJ have lower or equal SD in all categories. However, this was
significant only for the dbSNP novelty (either dbSNP version; Levene’s test)) and may represent a larger
heterogeneity in the Flemish sample selection and sequencing quality rather than a true population
difference.

3.2. The frequency spectrum of the variants within each individual
When considering all variants in a cohort, most variants are rare, and the frequency spectrum decreases
sharply with increasing frequencies. When concentrating only on the variants carried by a single
individual, the frequency spectrum (where the frequency is still defined with respect to the cohort)
changes, with most variants being common (e.g., °*°). To compute the per-individual frequency
spectrum, we first down-sampled each population to n=25 individuals. Then, for each individual, we
determined the counts of its non-reference alleles (in each population separately) and generated a
histogram. Finally, we removed monomorphic variants and averaged the normalized spectrum over all
individuals in each population.

The average fraction of singleton non-reference variants was the same in AJ and Flemish and equal to
3.09%. The average fraction of doubletons was 2.41% in AJ and 2.17% in Flemish. The complete per-
individual spectra are plotted in Supplementary Note Figure 9, and indeed, there is only little excess of
rare variants: for any given individual, most variants are common (cf. the population frequency



spectrum in Figure 3 of the main text). Al have a slightly larger fraction of rare variants than Flemish
(variants with frequency < 10% vs. all others; P < 10719; y2-test). There does not seem to be any

consistent trend for higher frequencies. We defer a population-genetic interpretation to later sections
(specifically 3.5 and 6).
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Supplementary Note Figure 9. The per-individual frequency spectrum. After sampling 25 individuals (50
chromosomes) from each population, we calculated, for each individual, the frequency spectrum of its non-
reference alleles. We plot the average and standard deviation over all individuals in each population.

3.3. Utility of the sequencing panel for clinical genetics
In Figure 1 of the main text, we plot the fraction of variants in an AJ individual that are found in a panel
of either other AJ or Flemish. For that analysis, we used the merged genotypes (57 AJ, 26 Flemish) after
phasing and imputation of sporadically missing genotypes. Variant novelty was determined based on
dbSNP135 (see section 2.15). To find variants that are novel and non-synonymous (non-syn.), we used
ANNOVAR %2, Specifically, we used the --geneanno command and considered as non-synonymous each
exonic variant that was not annotated as “synonymous” or “unknown” as well as splicing variants. For
each Al individual, we selected 26 other, random Al individuals (to match the Flemish panel size) out of
the remaining 56. For each novel (or novel and non-syn.) non-reference variant found in the given
individual, we determined whether it appears in any of the (26) Flemish individuals or the selected 26 AJ
individuals. The reported counts are the average and standard deviation over all 57 AJ individuals. To
compute the number of variants left after filtering with a panel of 127 individuals, we used the complete
dataset of 128 AJ individuals. For each of the 128 Al individuals, we counted how many of their novel (or
novel and non-syn.) non-reference variants appear in any of the other 127. We then reported the
average and standard deviation over all 128 individuals. Comparing the number of variants in each
category, all differences were significant (P < 10719; rank-sum test).



3.4. Rate of variant discovery

3.4.1. Non-reference variants
To compute the number of non-reference variants discovered with the sequencing of each additional
genome, we used the AJ-Flemish merged genotypes after phasing and imputation. For each population,
and for each of 50 iterations, we ordered the individuals randomly and counted the number of non-
reference variants (regardless of zygosity) in the first n individuals, wheren =1, ...,57 for Al and n =
1, ...,26 for Flemish. We then averaged the number of discovered variants over all iterations. To predict
the number of discovered variants in a sample size larger than ours, we used the jackknife estimator of
Gravel et al. (2011) 3, which is “based on sampling theory and inspired by an analogy with capture-
recapture approaches to estimating animal population sizes”. Specifically, the estimator uses the
number of non-reference variants that appeared once, twice, or three times in a sample to predict the
total number of variants that will be discovered in a larger sample. The results are shown in
Supplementary Figure 3, demonstrating the same trend as Figure 1 of the main text: while in our sample
the number of discovered variants was greater in Al than in Flemish, an opposite trend is predicted for
larger samples.

3.4.2. Segregating sites
The variant discovery rate can also be predicted based on demographic historical models and population
genetics theory, which predicts the number of segregating sites in a sample. To calculate the empirical
number of segregating sites in the AJ and Flemish samples, we used the same dataset and approach as
in section 3.4.1, except that for a given subset of individuals, a site is segregating only if both alleles have
been seen (i.e., seeing the non-reference allele alone did not designate the site as segregating). The
number of segregating sites for n = 1 is, of course, just the average heterozygosity.

To calculate the theoretical expected number of segregating sites in a model of constant-size population
(Wright-Fisher; WF), we first estimated the scale mutation rate 8 as the number of sites discovered after
sequencing one individual (i.e., the average heterozygosity). The average number of segregating sites
observed after sequencing n (diploid) individuals, S(n), is >

(1) S(n) = 0¥ 1(1/0).

For the more complex models with variable historical population size, the average number of
segregating sites was calculated by Zivkovi¢ and Stephan (2011) >* based on the diffusion equation for
the evolution of the allele frequency spectrum. Specifically, we used a slightly simplified version of their
Eq. (37),

2n 2k
(2) S(n; t) = 6 221((“‘71:,})) £ exp (— N E (Zu)) du)ds,
where p(t) = N(t)/Ny. In Zivkovi¢ and Stephan’s (2011) demographic model, t = 0 is some time in the
past before which the population size has always been N, (diploids) and N(t) is the population size
2Nyt generations later. Finally, the scaled mutation rate is defined as 8 = 4Nyu, where u is the
mutation rate per generation per site. Here too, we estimated 8 as the average heterozygosity. The



population size at each generation was computed based on demographic models of an ancient
bottleneck followed by slow exponential growth that we inferred using the allele frequency spectra of AJ
and Flemish (section 6.3.3). For AJ, we also used a model of an ancient bottleneck/growth with an
additional recent one (corresponding to the recent AJ expansion and inferred using IBD sharing;

section 4.3.2), giving similar results (not shown). We also obtained qualitatively similar results also when
considering the joint AJ-Flemish demographic model (section 6.3.3). To evaluate the integrals in Eq. (2),
we used Matlab’s quadgk. We computed the ratio of the binomial coefficients in the prefactor by taking
the logarithm of the ratio and then exponentiating; to compute In m!, we used the exact factorial up to
m < 20 and otherwise the Stirling approximation, Inm!  mInm — m + In(2mm) /2. The empirical
and theoretical numbers of new segregating sites (S(n) — S(n — 1)) are shown, for both populations, in
Figure 1 of the main text.

To attach significance to the observed trend (larger number of Flemish variants for large samples), we
sampled demographic models for each population using a parametric bootstrap approach, as explained
in section 6.3.2. For each cohort that we simulated with the maximum-likelihood parameters, we used
the bias-corrected inferred demographic history to compute the expected number of segregating sites.
For all (n = 99) bootstrapped demographic reconstructions of the two populations, the number of
Flemish sites exceeded the number of AJ sites when sequencing n > 212 individuals (and on average
when sequencingn > 178).

3.5. The allele frequency spectrum

3.5.1. Likely artifacts in high-frequency, population-specific variants
Initial inspection of the joint AJ-Flemish allele frequency spectrum revealed a relatively large number of
high-frequency, population-specific non-reference variants. In AJ, there were 2000 non-reference
variants with frequency 250%; in Flemish, there were 159 such variants. While these numbers are
virtually negligible relative to the total number of variants (=10 million in the two populations), we also
noted that our demographic (neutral) models predicted zero population-specific variants at those
frequencies (see, e.g., section 6.3.5). We therefore suspected that those frequency differences are, for
the most part, artifacts of the different reference genome used for variant calling (hg18 for Flemish,
hgl9 for Al). To test this hypothesis, we used CG’s 54 public genomes
(ftp://ftp2.completegenomics.com/Multigenome_summaries/), called either using hgl8 or hg19. For
each variant found in either AJ or Flemish and that was also found in the public genomes, we recorded
the non-reference allele count difference between the hgl9 and hgl8 versions the public genomes. In
Supplementary Note Figure 10, we plot the hg19-hg18 differences vs. the non-reference allele count for
variants that are either AlJ-specific, Flemish-specific, or appear in both populations. As expected, for
variants that are observed in both populations, the allele counts in hgl9 and in hgl8 are usually the
same. However, AJ-specific variants tend to have higher counts in hgl9, and Flemish-specific variants
tend to have higher counts in hgl8. Hence we conclude that even though we removed, prior to merging,
all variants with potential mapping problem (i.e., coordinate that did not map from hgl18 to hgl19 or

backwards; or did not remap to the original coordinate), some poorly mapped variants escaped this
filtering. We therefore removed from the allele frequency analysis (including the demographic inference
of section 6.3) all population-specific variants of frequency of 25% or higher (4048 variants).
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Supplementary Note Figure 10. Likely artifacts in high-frequency population-specific variants. For each variant
found in either AJ-only (blue), Flemish-only (red), or both (green), and that is found in the Complete Genomics
public genomes, we plot the difference between the allele count (in the public genomes) when called either using
hgl9 or using hgl8. Each variant is plotted as a dot (only for the population-specific variants; the allele count
difference is shifted by a random W'(0, 1) to improve visibility), the medians over each allele count bin are
connected by lines, and the error bars show standard deviations. While variants found in both populations show
no bias, high frequency variants in AJ only tend to have higher allele counts in hg19 (and vice versa), indicating a
likely mapping artifact.

3.5.2. Computing the spectrum, projecting to equal sample sizes, and folding
The joint non-reference allele frequency spectrum was computed using the merged and imputed AJ-
Flemish genotypes. High-frequency population specific variants were removed as explained in
section 3.5.1. As there were 57 Al and 26 Flemish, the resulting spectrum was of size 115x53. To
perform population comparisons, we reduced the spectrum to equal population sizes of 50 haploids
each. To avoid sampling artifacts, we computed the expected down-sampled variant counts analytically.
Denote the original AJ population size as N; = 114, the original Flemish population size as N, = 52, the
new population size (for both) as n = 50, and denote the original number of sites with i; (non-
reference) alleles in AJ and i, (non-reference) alleles in Flemish as C[iy,i5]; iy =0, ..., Ny, i =0, ..., N;.
The expected counts after down-sampling, S[iy,i2]; iy =0, ...,n,i, =0, ...,n, are given by

(3) Slix, o] = T X2, Clin 2] X HG (i, m, j1, Ny) X HG (i, 1, o, Na),

J1=iy

where HG (i, n, j, N) is the hypergeometric probability of ending up with i labeled items when choosing
n items out of total N, j of which are labeled (HG(i, n,j,N) = ({)(?’l:{)/(ﬁ)) After applying Eq. (3),

5[0,0] was set to zero (variants that disappeared due to down-sampling).



To obtain the joint minor allele frequency spectrum, S;,in, the spectrum was “folded” across the
diagonal. We set Spin[iq, io] = S[iy, i2] + S[n — iy, n — i3] and $p,in[0,0] = 0 for iy + i, < nand then
Sminli1,iz] = 0 fori; + i, > n. For sites on the diagonal, we set Syin[i, n — i] = Spin[i, n — i] =
Sli,n—i]l+ S[n—1i,i])/2fori =0,1,...,(n/2 — 1) and Spin[n/2,n/2] = S[n/2,n/2]. To
marginalize the (non-reference allele) spectrum over one of the populations, say, over the Flemish, we
used Syj[i] = X7-0S[i,j];i =1, ..., n. To compute the spectrum for, say, AJ-specific variants, we used

SA]-spe
Sln—il;i=1,..,(n/2—=1)and Spin[n/2] = S[n/2].

[i] =S[i,0];i =1, ..,n. Tofold a single-population spectrum, we used S, [i] = S[i] +

3.5.3. The single-population spectrum
The total number of variants (after down-sampling) was 7,316,494 in AJ and 7,083,447 in Flemish. The
number of population-specific variants was 1,866,963 in AJ and 1,633,916 in Flemish, leaving 5,449,531
variants polymorphic in both populations. In Figure 3 of the main text, we plot the single-population
normalized frequency spectra for AJ and Flemish. We also plot the theoretical expected normalized
spectrum for a constant size population, or the Wright-Fisher (WF) model >3,
@) Swelil = Y0200 =1, (/2 1) 5 Sweln/2] =5k
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The fraction of singletons was about the same in both populations. The fraction of doubletons was
larger in AJ compared to Flemish, while the fraction of variants of frequencies >10% was slightly smaller.
Note, however, that the total number of variants is larger in AJ across all frequency bins (Supplementary
Figure 9). As expected, for both populations, the Wright-Fisher model underestimated the number of
singletons. However, the discrepancy is not as large as observed in other studies (e.g., 55> °%57), likely
due to our small sample size (see also section 3.5.5). In Figure 3 of the main text, we also plot the
normalized frequency spectra for AJ- and Flemish- specific variants, showing a depletion of singletons in
AJ but an excess of variants across all higher frequencies. Here too, the total number of variants is larger
in AJ for all frequency bins (Supplementary Figure 9, inset). We validated that all the results for the
frequency spectra were qualitatively identical when using the non-reference allele frequency (instead of
the minor allele frequency; not shown).

In Supplementary Figure 10, we plot the fraction of variants that are population specific for each minor
allele frequency. The fraction of variants that are population specific reaches =0.7 for singletons, and is
larger in Al for all frequencies (particularly for intermediate ones).

3.5.4. The joint AJ-Flemish spectrum
The joint AJ-Flemish (minor) allele frequency spectrum is plotted in Figure 3 of the main text. The results
were qualitatively similar when using the non-reference allele count. The spectrum shows correlation of
allele frequencies between the two populations (r = 0.88). To determine, qualitatively, whether the AJ
and Flemish populations are distinct or are, alternatively, two samples from a single population, we
compared the real spectrum to the expected spectrum assuming random mating. Under random mating
(or a panmictic population), the total number of copies of each variant (i.e., AJ+Flemish) can be
distributed randomly between the two populations. Mathematically, if S[i, j] is the minor allele
frequency spectrum (after down-sampling to n haploids in each population), define T[k] as the number



of copies of the minor allele in the combined population: T[k] = ¥4 =k S[i,j], kK = 1, ...,n (wherein

thesum,i =0,..,nandj = 0,...,n). Then the panmictic spectrum, S,[i, ], is
(5) Spli,jl =T[i+j]-HG(i,n,i +j,2n),

where HG (i, n, j, N) is the hypergeometric probability of ending up with i labeled items when choosing
n items out of total N, j of which are labeled. The last equation follows because to observe i AJ and j
Flemish minor alleles when randomly choosing the n AJ alleles, we need i alleles to be the minor (out of
total i + j). Eq. (5) is equivalent to Eq. (3) of Gravel et al. (2011) 3. The panmictic spectrum is plotted in
Figure 3 of the main text, demonstrating that the two populations are distinct.

3.5.5. Population genetic parameters: 0, Tajima’s D, Fst, and f; variant sharing
A number of population genetic indices can be computed directly from the allele frequency spectrum.
Denote the (single-population) spectrum as S[i],i = 1, ...,n/2, where S[i] is the number of sites with i

copies of the minor allele. The average number of nucleotide differences,  (also equal to the average
n/2 i(n-i)

=1n(n-1)/2
According to the theory >3, for a constant-size population (the Wright-Fisher model), the scaled mutation

S[i], and the total number of sites, S, is simply § = Z?ﬁ S[i].

heterozygosity) is m = ).
rate, 8 = 4uN,, (where u is the genome-wide mutation rate per generation and N, is the effective
populations size) can be estimated either as 8, = mwor as f; = S/(Z?;ll 1/i) (Watterson’s estimator).
Assuming the mutation rate is 1.44-10°8 per bp per generation *® and using the (autosomal non-N)
genome size, 2.685-10° bp (for further correction due to false negatives, see section 6.2.1), we can
immediately obtain an estimate of N,. For AJ, we have 8, = 1.634 - 10 and 5 = 1.633 - 10°, giving
population size estimates of IVe,n = 13,048 and IVe‘S = 13,041, respectively. For Flemish, én = 1.603 -
106 and §5 = 1.581 - 10°, giving N, = 12,797 and N, s = 12,626, respectively. Therefore, the A
effective population size (as we already mentioned in section 3.1) is slightly larger than that of the
Flemish. This is of course not to say that the AJ population size has always been larger (or smaller; in
fact, it has likely been highly variable (e.g., sections 4.3 and 6.3)). It is to say that when summarizing the
genetic diversity into a single statistic, the AJ population seems more diverse. Indeed, the picture
changes when using more complex demographic models (section 5.3), as we have seen in section 3.4. In
section 6.1, we investigate possible reasons for the AJ’s increased heterozygosity.

Tajima’s D is a statistic based on the difference between the two estimates of 8 *°. For both populations,
the (genome-wide) Tajima's D was positive (0.0018 for AJ, 0.0497 for Flemish). We expect negative
values for larger samples, where an excess of rare variants (due to the recent growth) is expected to
reduce Tajima’s D sharply (see, e.g., Figure S9 in Tennessen et al. (2012) °1). The fixation index, Fsr, a
measure of population differentiation, was calculated using dadi * (based on %), and came out as 1.56%.
This value of the Fsr is of the same order of magnitude as previously found between AJ and European
(non-Jewish) populations 34354 variants that appear twice in the entire sample are known as f>
variants 2. In our dataset, 39.9% of f, variants were Al-specific, 27.2% were Flemish-specific, and 32.9%
were shared.



4. Supplementary Note 4: Identical-by-descent (IBD) shared segments

4.1. Detecting IBD segments

4.1.1. Initial detection
Identical-by-descent (IBD) shared segments were detected based on the genetic map distance between
sites. We used the HapMap2 genetic maps ¥, linearly interpolated at sites not in the map. We then used

Germline #* 5!

, a window-based IBD detection tool that works by finding and extending seeds of exact
matches. We used the default parameters except for a window size of 100 (-bits), one allowed
homozygote mismatch per window (-err_hom), and one allowed heterozygote mismatch per window
(-err_het). We ran Germline in the “genotype extension” mode #?, in which a matching segment is
extended either if one of the haplotypes is matching or if sites that are homozygous in both individuals
are matching. While the second criterion is rather liberal (and is expected to lead to false positives), we
preferred to avoid over-dependence on phasing quality and employed an extensive series of post-
Germline filtering steps (sections 4.1.2 and 4.1.3), which, as can be seen in section 4.2, seem to reduce
the number of false positives considerably. Finally, we used a minimal segment length of either 3cM or

5cM (-min_m).

4.1.2. Initial filtering
In the initial filtering step, we removed segments whose length in MB was (numerically) <0.4 of their cM
length (the average ratio is =0.8). We further removed segments with >10% overlap with any of the gaps
in the reference genome (UCSC Table Browser *!). We then retrieved, for each shared segment, the
original genotypes of the two individuals along with their allele frequencies. We removed segments
where all (double homozygous) matching genotypes were of the major allele.

4.1.3. Additional filtering using segment scores
We further filtered our segments based on a score related to the probability of a segment to be truly
shared by-descent. We considered only sites homozygous in both individuals. For each segment, we
computed a score as a product of approximate likelihoods over all double-homozygous sites, either
under the hypothesis that the segment is truly IBD, or assuming it is a random segment (see below).
Finally, we filtered out all segments with a score ratio less than an arbitrary cutoff.

For each (double homozygous) site i, denote by M (i) the indicator that the two individuals are matching
and by p the probability of having a sequencing error or a recent mutation. For a pair of truly IBD
haplotypes, the probability of a site to be matching (neglecting the possibility of a double error) is 1 — p,
and the probability of the site to be a mismatch is p. We used p = 0.001, which is the order of
magnitude of the estimated error rate (sections 2.5 and 2.11). Taken together, for a segment containing
sitesi = 1, ..., n, the approximate likelihood is

(6) Pigp = [T, (1 — p)MD pl MO,

For a random, non-IBD segment, denote the minor allele frequency at site i as f; and assume Hardy-
Weinberg equilibrium at all sites. We also assume first that it is given that at least one of the individuals



is homozygous to the minor allele. The probability of a minor allele match is therefore (neglecting
sequencing errors)

_ * N
(7) Pminor match = FA42f2(1-f)2 - f2+2(1—f)2'

where, e.g., f* is the probability of both individuals to be homozygous to the minor allele, etc., and the
probability of a mismatch is

2(1-£)*
(8) Pmismatch = 1 — Pminor match = m

For the probability of a major allele match, we assume that it is given that at least one individual is
homozygous to the major allele, and then

_ (-pN* __a-n?
(9) Pmajor match = (1—f)*+2f2(1-f)? - (1-f)2+2f2"

Since the probabilities in Egs. (7), (8), and (9) do not sum to 1, they should be thought of as scores that
aim to capture the degree of surprise in the observed match or mismatch. The distinction between
major and minor matches is needed, because otherwise, the probability of a match would be p =

fr+a-nt
fr+2f2(1-H*+Qa-NH*
be surprising).

which would be high even when the match is of the minor allele (which is ought to

Denote by p; the frequency of the shared allele (for a match). The score of a segment is given by the
product of the probabilities over all sites,

(10) Prandom = ITi=1 [M( )T)z ( - M@ ))f 24(-12({Lf)2]

Note that as the frequencies in neighboring sites are not independent, this is again only an
approximation. Our final quality score for the segment is the log-ratio of the probabilities under the IBD
and the random segment hypotheses,

(11) D= log(PIBD) — 10g(Prandom)-

We removed segments with D smaller than an arbitrary cutoff of 100.

4.2. IBD analysis

4.2.1. Sharing within and between populations
We used the AJ-Flemish merged and phased dataset (57 AJ, 26 Flemish; section 2.14), ran Germline with
a minimal segment length of m = 3cM, and filtered the results as explained in section 4.1. For each pair
of individuals, we computed the total shared genetic map distance (cM) and the fraction of genome
shared (using a total autosomal map distance of 3546cM 3° and for sharing between any of the two
haplotypes of each individual). In Figure 2 of the main text, we plot the distribution of the fraction of the
genome shared, broken by population: within AJ, within Flemish, or between AJ and Flemish. The



average fraction of the genome shared was 1.85% within AJ, 0.23% within Flemish, and 0.10% between
AJ and Flemish, a trend consistent with previous findings 3442, All Al pairs shared at least one segment,
compared to 86.1% for Flemish and 63.1% for AJ-Flemish pairs. We also repeated the analysis with a
minimal segment length of m = 5cM, and the results came out qualitatively the same, but with an even
larger ratio between the AJ and the non-AJ sharing (mean sharing 0.84% in AJ, compared to 0.03% in
Flemish and 0.005% between AJ-Flemish; fraction not sharing 1.6% in AJ, compared to 87.7% in Flemish
and 97.2% in AJ-Flemish). These results suggest that within-Flemish and AJ-Flemish sharing is mostly
detection noise, and may vanish completely with better IBD detection methods (see also sections 4.2.2
and 4.2.3).

The amount of IBD sharing we detected is close to what is expected based on our runs-of-homozygosity
(roh) analysis. Searching for roh in the complete project data, excluding the individual with the
consanguineous parents (GS000010967-ASM; 127 remaining), and using the same approach as in
section 2.11.1 and with a minimal length of 4MB (corresponding roughly to 5cM) yields a total of
935MB shared. Per autosomal genome (2.881 - 10°bp) and per 127 haplotype pairs, this is =0.26% of
the genome. Since there are four haplotype pairs between any pair of diploid individuals, for IBD with
m = 5¢cM the fraction of the genome shared per haplotype pair is =0.21%, close to the roh fraction. In
the rest of the section, unless otherwise mentioned, we use m = 3cM.

4.2.2. Segment quality scores
To evaluate a possible quality difference between the segments detected in each population, we studied
the distribution of the segment scores (D in Eq. (11)) for segments shared either within AJ, within
Flemish, or between AJ and Flemish. However, as the segment score increases roughly linearly with the
segment length (r = 0.69), comparing the raw scores between populations would reflect the
differences in overall IBD sharing. We therefore show, in Supplementary Figure 4, the distribution of
segment scores per cM. The scores of the intra-AJ segments have the highest quality (mean score per
cM 148.8), followed by the intra-Flemish segments (118.7) and the AJ-Flemish segments (92.0). The P-
value for the difference between the distribution of the AJ segment scores and the Flemish scores is
1.2 - 10738 (rank-sum test); for the difference between Al scores and AJ-Flemish scores the P-value is
1.2 - 107253, These results suggest again that the non-AJ segments are of lower quality and are largely
due to noise.

4.2.3. Number of pairs sharing at each locus
In Supplementary Note Figure 11, we plot the “sharing intensity” along the genome. We divided each
chromosome into bins of 1MB each and used BEDTools ®2 to determine the fraction of pairs sharing at
each bin, broken by population. Sharing within-AJ is consistently higher than non-AJ sharing along the
entire genome, as expected. The majority of sharing within-Flemish and between AJ and Flemish is
concentrated in a handful of peaks; sharing in the rest of the genome is sporadic. In the absence of a
gold standard for IBD detection, it is hard to evaluate the importance of those peaks; we note, however,
that except for the AJ-specific peaks on chrs 9 and 19, all other peaks disappear when using m = 5cM
(not shown). This observation further supports our identification of most of the non-AlJ shared segments
as noise.



We also note that there was no enrichment of sharing in the HLA region (=chr6:25-35MB), as previously
observed in both Jewish and non-Jewish populations (e.g., ** ®%), even when directly examining the
unfiltered Germline output and even when using more liberal detection parameters. However,
increasing dramatically the window size (up to 2000 or even 5000 SNPs) did show =5-fold enrichment in
the HLA region. The HLA region has about double the number of SNPs (in the merged AJ-Flemish
dataset) and about half the recombination rate compared to the rest of the chromosome. Therefore,
even very short IBD segments in this region can potentially comprise a large number of SNPs and hence
be detected even with very strict parameters. While this would suggest that the previously observed

HLA enrichment was an artifact, improved detection methods and additional datasets will be required to
reach a definite conclusion.
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Supplementary Note Figure 11. /BD sharing along the genome. The fraction of pairs sharing (at least one
haplotype) at each 1MB bin along the genome is plotted for segments shared within AJ (blue), within Flemish (red),
or between AJ and Flemish (green). Sharing within AJ is consistently higher than in the other groups; most of the
within-Flemish and AJ-Flemish sharing is concentrated in a small number of peaks.

4.2.4. Coverage of the genome by IBD segments
A potential application of our Al sequencing dataset is imputation of partly genotyped samples (e.g.,
SNP arrays). In section 5, we study the performance of an “off-the-shelf” imputation algorithm using an
Al reference panel. Most standard methods, however, do not take into account the long-range
information offered by the presence of IBD shared segments. Here, we quantify the potential benefit of
using such information. In the AJ population, where IBD is abundant , one can impute a partly genotyped
segment, shared IBD with a fully sequenced individual, either by simply copying the shared segment (if
phase data is available) or by more sophisticated approaches 3 6% 656667, 68 69 Aq shared segments
differ, on average, by only *1-2 recent mutations 3, this approach is expected to be highly accurate. The
key question is therefore, what is the fraction of the genome, in an average AJ individual, that is
“covered” by such shared segments.



In this analysis, we considered sharing within-AJ and within-Europeans separately. For AJ, we used the
complete dataset of 128 genomes (which was processed exactly as the AJ-Flemish dataset, section 4.1).
For Europeans, we used either the Flemish IBD data (section 4.1) or data from the larger CEU cohort in
the 1000 Genomes project. Phased haplotypes for CEU were downloaded from
http://mathgen.stats.ox.ac.uk/impute/data_download _1000G_phasel_interim.html. Non-CEU
haplotypes were removed, as well as sites that became monomorphic reference. The haplotypes were

then converted to Plink format (including adding genetic map distances) and processed using the
pipeline detailed in section 4.1.

To quantify the rate of coverage gain with increasing panel size, we used subsets of sequenced
individuals of size n and varied n between 2 and 128 for AJ (2 to 26 for Flemish, 2 to 87 for CEU). For
each n and for each individual in the subset, we calculated the fraction of the (autosomal; using physical
distance) genome found in IBD segments shared with others in the subset. Note that this guarantees
sharing of at least one of the haplotypes but not necessarily both; we did not attempt to resolve the
shared haplotypes or determine whether both are covered. We then averaged the coverage over all
individuals in the subset and over 50 random orderings of the individuals. The results are shown in
Figure 2 of the main text for CEU and in Supplementary Note Figure 12 here for Flemish (for both m =
3cM and m = 5¢cM), demonstrating that as expected, the coverage in Al is much higher than in
Europeans.
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Supplementary Note Figure 12. A comparison of coverage by IBD in AJ and Flemish. This figure is exactly as Figure
2B in the main text, except that the European comparison cohort is the Flemish.

To predict the coverage for sample sizes larger than ours, we considered a toy model where a
population is assumed to undergo a bottleneck G generations ago, lasting a single generation. The
population size is assumed to be extremely large otherwise. Our mathematical analysis (not shown)
demonstrates that under these assumptions, a given study haplotype is shared with at least one
haplotype from the panel with probability = cmax(l — e‘”/”O) (see also %). The prefactor ¢y, the
upper bound on the probability of haplotype coverage, is a product of two terms. The firstis (1 +



mG /100)e~™G/190 the probability that the given haplotype cannot be shared due to excessive
recombination along its lineage. For a bottleneck G = 28 generations ago (the value inferred for AJ in
section 4.3) and m = 3cM, this equals to =0.8 (=0.6 for 5cM). The second term is the fraction of the
population not admixed, because admixed haplotypes are assumed to have a recent co-ancestry

2
different from those in the panel and therefore not to be shared. Next, [1 - cmax(l - e‘”/”O)] is the
probability that both haplotypes of the given individual are not covered. Therefore, the average
coverage of a given individual’s diploid genotype by IBD segments is

(12) (€)= 1—[1 = cax(1 — e/m0)]".

We obtained the best-fit parameters using Matlab’s nlinfit (for AJ only). The asymptotic coverage, Cpax,
came out as 46.7% and ny was 56.4 (34.7% and 88.7, respectively, for m = 5cM). Even when taking into
account the theoretical limit on sharing due to recombination, the fraction of admixed ancestry was
surprisingly high at about =41%. This is nevertheless of the same order of magnitude as our admixture
fraction estimate using the allele frequency spectrum (Supplementary Table 7). On the other hand, the
admixture event was dated either just at the bottleneck or much earlier (depending on the precise
model inferred; Supplementary Table 7 and Supplementary Note Table 3) and additionally, some of our
unpublished results suggest that using a much larger sample of over 2600 AJ arrays (from 3>79), the
asymptotic coverage is close to 100%. The coverage results from the arrays were consistent with the
sequencing results for small cohorts, but deviated from Eq. (12) for larger cohorts. Note also that the
true fraction covered (in this study) is potentially somewhat higher: for =8% of the genome, there was
not even a single segment shared, usually due to sequence gaps (centromeres, etc.), and additionally,
the asymptotic coverage, cpax, increased up to =55% when using minimal segment lengths smaller than
3cM (not shown). Our estimate of =70% diploid coverage should therefore be considered as
conservative in the context of the potential imputation power.

4.3. Demographic inference

4.3.1. Method
IBD sharing is due to strong genetic drift in the recent history of the population. Therefore, it can be
used to infer demographic parameters of the recent history. We used the inference method of Palamara
et al. (2012) %, which works by matching the decay of the amount of IBD sharing vs. the segment length
to the theoretical expectation for a given demographic model. To create the decay curve, we first
recorded the lengths of segments shared between all pairs of individuals (AJ only). We then divided the
space of lengths (m = 3cM to an arbitrary cutoff of 15cM) into 11 intervals, such that the length of each
interval is a constant factor times the length of the previous interval. For each interval, we summed the
total length (in cM) of segments shared having length in the interval and divided by the total genome
size (3546cM *) and by the total number of (haplotype) pairs. The resulting curve, which we denote
Preal(£), is shown in Figure 3 of the main text. We then searched for a demographic model whose decay
CUrVe, Pmodel(?), is closest to the empirical curve.

We examined a model of a recent bottleneck followed by an exponential expansion (Supplementary
Note Figure 13). The population size is Ny (diploids) until T}, generations ago, when it is reduced to Np.



From T, generations ago until the present, the population size increases at rate r percent per
generation (the final population size, Ny, is therefore Ny = N, (1 + 7/100)™). The theoretical Pogel (£)
was calculated using Eq. (6) in Palamara et al. (2012) *3. The (haploid) population size at generation g in
the past, needed in that equation, was setto N(g > Tj,) = 2Ny and N(g < Tp) = 2N, (1 +
r/100)72~9. The approximate summation in Appendix A of Palamara et al. (2012) was replaced by the
exact solution

Nge~G%/50[(Ny—1) (50+Gx) — Ny e*/5° (50+x+Gx) |
50[1+N, (ex/50-1)]

2
ZZIOZG+1(1 - 1/N0)g_G_1 f (:;0) xe_gx/Sde -

To identify the model with the best fit to the empirical p,ca1(¥), we used a simple grid search centered
approximately around the bottleneck parameters inferred by Palamara et al. (2012). The parameter N
was varied between 500 and 20,000 (increments of 500), N, between 50 and 1000 (increments of 50),
between 1% to 60% (increments of 0.5% or 1%), and T, between 10 and 60 (increments of 1). For each
configuration, we computed ppnodel (£) analytically, as explained above, and then the sum-of-squared-
error (SSE) between the model and the real curves,

2
(13) SSE = ZiEintervals[10g(preal(’€i)) - 1Og(pmodel (fl))] .
The inferred demographic model had the minimal SSE.

For comparison with a constant-size population (Wright-Fisher model), we inferred the best fitting
(haploid) population size as 3¢ 4

= 100 75
(14) N = iy
Where (f) is the average (haploid) fraction of the genome shared IBD. Using N (haploids), and for

segment lengths in the range [#;, ¢, ], the fraction of the genome shared is given by *

100N2(£,—£1)[25(L1 +£,)+£, £, N]

(15) p(f1,£2) = (5042, N)2(50+£, N)?
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Supplementary Note Figure 13. A diagram of the demographic model inferred using IBD information.

4.3.2. Results
Inferring the bottleneck and growth parameters as explained in section 4.3.1 gave the following best fit
model: Ny = 4500 (diploids), N, = 300 (diploids), T;, = 27 (generations), and r = 41% (growth rate
per generation; corresponding to Ny = 3.2 - 10°). The decay curve, Pmodel (£), is plotted in Figure 3 of
the main text, showing good agreement with p.c,1(€). Usingm = 5cM gave similar results (Ny = 2500,
Np =400, T, = 25,andr = 45% (N = 4.3 10°)). The curve corresponding to a constant-size

—~

population (with the same overall total sharing; N = 3620 diploids) shows, as expected, less sharing
than the real data for short segments (since the bottleneck is not modeled) and more sharing for long
segments (since the recent explosive expansion is not modeled).

Palamara et al. (2012) *3, who developed the IBD-based inference method , used a bottleneck/expansion
model identical to ours (Supplementary Note Figure 13) to infer the history of AJ using SNP arrays for a
different set of Al samples. They demonstrated that the bottleneck/expansion model fitted well for
segments of length >2cM, but for shorter segments, a double-bottleneck/expansion model fitted better.
Our inferred parameters are in general compatible with those of Palamara et al. (2012) *3, except for Ny,
which is here =10-fold smaller than in their single bottleneck/expansion model (but is in agreement with
their ancestral population size for the double-bottleneck/expansion model). The current population size
that we inferred, =3 million, is reasonable given the current census size, =10 million.

When fitting the demographic model, we assumed that the population is isolated; that is, each pair of
lineages must coalesce within the population. However, our results in section 4.2.4 show that the AJ
population may be admixed, with up to =40% of ancestry not traceable to the bottleneck (see also
section 6.3.5). This implies that the actual bottleneck has likely been even more severe (or prolonged) .
More accurate inference of the bottleneck parameters will require identifying the admixed segments,
perhaps through local ancestry inference.



4.3.3. Sum of Squared Errors (SSE) plots
In section 4.3.2 we provided a point estimate of the demographic parameters. Before turning to
confidence intervals, we examined the SSE surface around the best-fit parameters. To facilitate
visualization, we plotted (Supplementary Figure 11) the one-dimensional projection of the SSE surface
(Eq. (13)) when varying each parameter at a time, fixing all others at their optimal value. Note that the
same y-axis scaling was used in all panels. The parameters with the narrowest SSE minima were the
bottleneck parameters: the time T}, and the size N,,. The SSE surface is flatter around the ancestral
population size Ny and the growth rate r. The lower precision for the ancestral population size is
expected, as IBD is less informative on the ancient history. The growth rate (or the current population
size) is also less precise, with growth rates between =35% and =45% differing little in their SSE
(corresponding to a current population size between =1 and =10 million).

4.3.4. Jackknife resampling
To estimate the variance of the inferred demographic parameters, we used a simple delete-n jackknife
resampling. In each iteration, we randomly selected a subset of 50 AJ individuals (out of overall 57), and
repeated the demographic inference exactly as in section 4.3.1. For each parameter 6, the 95%
confidence interval was computed, assuming normal distribution of the estimated parameter g, as
[(67) —1.96- SD(@), (6) + 1.96 - SD(@)], where (8) and SD(@) are the mean and standard deviation of

8, respectively, over 100 iterations % The results (for m = 3cM) are presented in Supplementary Table 6.

The final mean values of Ny, Nr, and T}, given in Supplementary Table 6 were later used for the
inference of the more ancient history, as explained in sections 6.2.2.4 and 6.2.3.2. The results form =
5cM were qualitatively similar, with, as expected, a slightly larger variance (not shown).

4.3.5. Parametric bootstrap
To obtain an alternative estimate of the confidence intervals for the demographic parameters, we
carried out parametric bootstrap resampling, as in Gutenkunst et al. (2009) . Specifically, we generated
simulated populations having a demographic history equal to that we inferred for the real data
(section 4.3.4). Then, the simulated IBD decay curves were fitted to the demographic model and the
model parameters were inferred. The confidence intervals were then computed based on the
distribution of inferred parameters.

To generate simulated data, we used MacCS (version 0.4f) 7%, In each run, we generated 114 artificial
genomes (corresponding to the 57 Al individuals), each of which consisted of 22 chromosomes with
lengths equal to the corresponding hgl9 autosomal chromosomes. We set the mutation rate to 2.35 -
1078 per bp per generation (see discussion in section 6.4.16.4.3; however, here this should have only a
minor effect) and the recombination rate to 1.23 - 10~2 per bp per generation (corresponding to the
total hgl9 genetic map distance 3°). The “recombination history” parameter was set to 100 bp, and all
other parameters were left at their default values. We simulated the demographic model of
Supplementary Note Figure 13 with the parameters given in section 4.3.4 or Supplementary Table 6
(Ng = 4755, N, = 334, r = 34%, and T}, = 28).



To detect IBD segments, we first converted each synthetic dataset into the Plink format (maintaining
haplotypes phase). We then carried out IBD detection and filtering exactly as for the real data, as
described in section 4.1 (except, of course, that no segments were removed due to overlap with gaps or
a too short physical length; we did not introduce sequencing or phasing errors). Inference of the
demographic parameters was carried out as in section 4.3.1. For each parameter 8, the biased-corrected
95% confidence interval was computed as [9* — ((5) — 9*) —1.96- SD(@),H* — ((@) — 9*) +1.96-
SD(@)], where (9) and SD(@) are the mean and standard deviation of é, respectively, over 100
simulated datasets, and 8* is the value inferred from the real data % The final results (for m = 3cM)
were:

(16) Ny = 6090 + 398 [5310,6870], N, = 246 + 75[99,392],r = 44% +
14% [17%, 72%] (Or, for the mean rate, Ny = 4.464 - 10°), T, = 27 + 2 [22,31],

where for each parameter, the mean and SD are given, followed by the biased-corrected 95%
confidence interval. While the results of Eq. (16) indicate a bias of up to *30% compared to
Supplementary Table 6 (although remarkably, not for the bottleneck time T}), our approach confirms
the existence of a very recent and very narrow bottleneck in the AJ population. The results for m = 5cM
were qualitatively similar, with, as expected, a slightly larger variance (not shown).

5. Supplementary Note 5: Utility of the A] genomes as an imputation
reference panel

5.1. Study design
We set out to determine whether we could gain accuracy in imputation of AJ array genotypes by using
Al sequences as a reference panel instead of the 1000 Genomes Project CEU panel (Northern and
Western European ancestry) 22237273 We used the 57 AJ genomes of first batch, processed according
to the pipeline described in section 2.7.1. In the absence of AJ sequences from an independent source,
we used 50 AJ sequences as our reference panel and the remaining seven as our study panel.

In a typical imputation pipeline, the array genotypes to be imputed consist of =0.5-1M common SNPs
and are unphased. To simulate a realistic study panel using our seven AJ sequences, we masked all
genotypes but a small subset (typical of a modern commercial array; see below) and discarded any
phasing information. Since our study panel was too small for effective phasing and imputation, we
supplemented our seven AJ (reduced) sequences with SNP arrays for 1000 additional AJ individuals. We
then jointly phased and imputed the combined study panel of 1007 individuals. By uncovering, after
imputation, the true genotypes of the seven sequences, we could compare the relative accuracies of
using the Al panel vs. using the CEU panel. A schematic of our study design is shown in Supplementary
Figure 5. Details are provided in the following sections.



5.2. Preparation of the datasets

5.2.1. The 1000 Genomes Project CEU panel
The 1000 Genomes dataset was downloaded from
http://mathgen.stats.ox.ac.uk/impute/ALL_1000G_phaselinterim_jun2011 impute.tgz.
We extracted the 87 CEU individuals and removed all sites that were monormorphic reference. Note

that the CEU panel was larger than the AJ panel (see also section 5.3). We ran all of our imputation
experiments on chrl only. The total number of CEU variants (on chrl) was 880,219.

5.2.2. SNP arrays for 1000 AJ individuals
We started with SNP arrays for 2610 AJ, 938 of which were schizophrenia cases, genotyped on lllumina
HumanOmnil-Quad arrays in the Long Island Jewish Medical Center (LIJMC) and previously reported in
Guha et al. (2012) and Lencz et al. (2013) 3> 7°, After removing all cases, we removed individuals with
cryptic relatedness (Plink’s 7 > 0.15) or high inbreeding coefficient (Plink’s F > 0.05), SNPs and
individuals with missingness rate >1%, and SNPs not in Hardy-Weinberg Equilibrium (P < 0.01). We
then used PCA to compare our genotypes to those of HapMap Europeans 3° and removed all individuals
with full or partial non-AJ ancestry. We finally retained the 1000 individuals with the lowest missingness
rate, genotyped on 726,252 SNPs each. To match the AJ sequences, we first performed an hg18=>hg19
lift-over and then strand flipping of array alleles that were given in the negative strand. To determine
the strand, we usually used the hgl19 reference allele. For A/T and C/G polymorphisms, we determined
the strand by comparing the allele frequencies to the 57 AJ sequences (all of which are known to be in
the positive strand), except for any SNPs whose minor allele frequency was in the range [0.35,0.5],
which were discarded. We finally considered chrl only (60,476 SNPs).

5.2.3. Splitting the AJ sequences between a reference panel and a study panel
We randomly selected seven of the 57 AJ samples to become our test (or study) individuals; the
remaining 50 would serve as a reference panel for imputation. The sequences of the reference panel
were previously phased using molecular phasing information, as explained in section 2.14.1. For the
seven individuals serving as our study panel, we used the original un-phased data, as they would later be
re-phased, once merged with the 1000 AJ arrays. Only chrl was used for the imputation experiments,
with genotypes available for 757,752 variants.

5.2.4. Merging the study panel genotypes and phasing
To reduce the seven AJ sequences in the study panel to array genotypes, we removed all variants not in
the arrays. Then, we removed from the arrays all SNPs not in the sequences and merged the two
datasets (1000 LIJMC arrays + 7 reduced sequences). The total number of remaining SNPs, on chrl, was
57,036. As recently recommended 74, we “pre-phased” our merged genotypes prior to imputation, using
SHAPEIT (version 2) with default parameters and the 1000 Genomes genetic map.

5.3. Imputing
We imputed our merged and pre-phased study panel using IMPUTE2 (version 2.3.0) 7° with default
parameters (except for the -allow_large_regions flag). Imputation was carried out in =<5MB blocks,
chosen to have an approximately similar number of SNPs. We used the two reference panels in two



separate imputation experiments; one of the panels comprised the 50 AJ sequences and the other the
87 CEU individuals. While using a larger CEU panel would supposedly give it an unfair advantage, our
results (section 5.4) nevertheless show that the AJ panel was superior. We also performed an
imputation experiment using the two reference panels together, a new feature in IMPUTE2 (using the -
merge-ref-panels flag). The results from this experiment were not reported in the main analysis due to
potential technical problems (see below).

5.4. Analysis of the imputation accuracy

5.4.1. Genome-wide discordance and r?
After imputation completed, we uncovered the true genotypes of the seven AJ sequences (at sites in the
original genotypes of the 57 AJ individuals) to evaluate the imputation accuracy. The true genotypes
were compared to the most likely genotypes and dosages returned by IMPUTE2. For sites not imputed
by the CEU panel, we set the imputed genotypes as homozygous reference. Sites imputed by the CEU
panel that were not found in the AJ sequences were discarded. Our reasoning was that counting those
sites as discordant would discriminate against the CEU panel, because those variants might have actually
been present in the Al sequences but removed during cleaning. Note that this is conservative: it reduces
the discordance when using the CEU panel but not when using the Al panel, whereas our goal is to
demonstrate the higher accuracy of the AJ panel. We also discarded sites that were monomorphic non-
reference in the AJ panel, again, conservatively, since some of those sites may have been missing from
the CEU panel just because they were monomorphic world-wide (see section 2.8). That left 200,000
non-reference variants per individual. The average number of discordant genotypes (over the study
individuals) as well as other statistics are presented, for each reference panel, in Supplementary Table 4,
showing that the AJ panel achieves higher accuracy than the CEU panel. Supplementary Table 4 also
shows 2, which was computed between the aggregate of all true genotypes (over all sites and study
individuals) and all imputed dosages.

In Supplementary Table 4, we break the discordant genotypes based on whether they were false
negatives (non-reference alleles missed) or false positives (non-reference alleles wrongly suggested).
The greatest gain using the AJ panel came from reducing the number of false negatives. This is expected,
since AJ-specific variants cannot be imputed using a European panel. The number of false positives was
only slightly smaller using the AJ panel. We also ran an imputation experiment using the combined AlJ-
CEU panel. However, while the number of false negatives was 13% lower than when using the AJ panel
alone, the number of false positives was 31% higher, and the overall imputation accuracy was slightly
lower. This is at odds with our expectation that combining panels should eliminate many false positives
5 and, we believe, might reflect a side-effect of IMPUTE2’s yet unpublished new approach (at the time
of writing) for merging reference panels. In their implementation, each panel is imputed using the other
panel prior to imputing the study genotypes. Therefore, the frequency of rare variants that are specific
to one of the panels may be artificially inflated, which could lead to false positives. Note that a poor
performance of the combination panel was also recently reported by Duan et al. (2013) 73. One could,
alternatively, merge the panels by setting as homozygous reference all sites missing in one panel and
existing in the other (see also the discussion in section 2.13), which improved accuracy in preliminary
results from another study ’®. However, we did not further pursue this direction here.



IMPUTE?2 also provides, as a diagnostic tool, an estimated discordance between the real and imputed
genotypes at the known array SNPs, based on a leave-one-out approach. The average estimated
discordance over the 1000 array genotypes is presented in Supplementary Table 4. The distribution of
the discordances over the 1000 arrays is plotted in Supplementary Note Figure 14.
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Supplementary Note Figure 14. IMPUTEZ2’s self-estimated discordance. The figure compares the distribution of the
discordances (over 1000 arrays genotypes) when using different reference panels: AJ or CEU. The distributions are
distinct with P-value < 107190 (signed rank test).

5.4.2. The results stratified by minor allele frequency
It is of interest to evaluate the imputation accuracy at different minor allele frequencies ”. In Figure 2 of
the main text and Supplementary Figure 6, we plot 72 and the number of discordant genotypes,
respectively, vs. the minor allele frequency for the two reference panels. In Supplementary Note Figure
15, we plot the number of variants in each frequency bin. The minor allele frequency was determined
using the 50 AJ individuals in the AJ panel. According to this definition, variants with frequency 0% are
monomorphic reference in the AJ panel and are thus necessarily wrongly imputed whenever a study
individual has a non-reference allele. We therefore excluded them from the plots, although not from the
numbers reported in Supplementary Table 4. Figure 2 of the main text and Supplementary Figure 6
agree with the results of section 5.4.1, showing that accuracy is improved by using the AJ panel instead
of the CEU panel. The number of discordant genotypes is higher, using both panels, for low frequency
variants (Supplementary Figure 6). However, this mostly reflects the total number of variants at each
frequency bin (Supplementary Note Figure 15 and Supplementary Note Figure 16).
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Supplementary Note Figure 15. The total number of variants at each minor allele frequency. Minor allele
frequencies were computed using the 50 AJ sequences that served as the reference panel. The figure
demonstrates that the higher number of discordant genotypes at low frequencies (Supplementary Figure 6) is
largely due to a larger number of overall variants.
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Supplementary Note Figure 16. The fraction of discordant genotypes vs. the minor allele frequency. The average
fraction (over the seven AJ study sequences) of genotypes that are discordant is plotted (using the original
genotypes of the 57 individuals; excluding sites monomorphic non-reference at the AJ panel).

We finally note that it is easy to see several ways by which our study could be extended. First, we could
expand our working dataset from the 57 genomes of the first batch to the full project data (128
sequences), and to the entire genome instead of just chrl. We could also use the entire 1000 Genomes
Project European samples, or even the entire cosmopolitan panel, and test other approaches for
merging panels. Finally, it would also be interesting to determine whether the AJ reference panel can
improve imputation in populations other than AJ (say, in populations from the Near-East). Such
extensions are left for future studies.



6. Supplementary Note 6: Demographic models based on the allele
frequency spectrum

6.1. Reasons for increased heterozygosity
Our initial comparison of AJ and Flemish genomes showed higher heterozygosity in AJ (section 3.1),
which we considered as somewhat counterintuitive, given the larger amount of IBD sharing in Al
(section 4.2). However, we notice that for an average pair of Al individuals, long IBD segments cover
only about =1-2% of their genomes (Figure 2 of the main text). While for the shared loci, coalescence
times are extremely recent (=20-30 generations), for the remaining loci, coalescence times are much

more ancient and likely longer in AJ compared to Europeans. We consider three demographic processes

that could have led to increased coalescence times (and hence genetic diversity).

1.

A larger Al population size in ancient history, either due to a larger ancestral population size or due
to an additional bottleneck in Europeans. An additional bottleneck would be consistent with the
(partly) Middle-Eastern origin of AJ and the “serial founder model” describing the human expansion
out of Africa 787881 which asserts that the farther the population is, by land, from East or South
Africa, the more bottlenecks its founders underwent and the smaller its contemporary genetic
diversity is. Additionally, AJ genomes were shown to have *3% West-African ancestry 8. As
heterozygosity is ~1.35-fold larger in Africans than in Al or Europeans (e.g., 28), this could explain
=40% of the increased heterozygosity in AJ (+2.4% compared to Flemish).

“Explosive”, =1000-fold growth of AJ population size in the recent millennium, which might have not
been paralleled in the rest of Europe %*4* 157 To test this hypothesis, we used dadi, a demographic
inference tool %, to generate synthetic allele frequency spectra (and thereby the heterozygosity) for
a number of representative models. Our results (not shown) suggest that explosive growth would
lead to very little increase in heterozygosity, if at all. Intuitively, this is because even though recent
growth introduces a very large number of rare variants, those are usually in a homozygous
(ancestral) state and therefore contribute very little to the heterozygosity.

The Al ancestry has been shown to be a mixture of Middle-Eastern and European ancestries. Recent
European admixture might have introduced many new variants into AJ and thereby increased the AJ
heterozygosity 34. Our numerical results using dadi showed that admixture is a plausible cause of
increased heterozygosity.

The goal of this subsection was to develop an intuitive understanding of the increased heterozygosity in
AlJ. In the following subsections, we infer specific demographic models using the complete frequency

spectrum.

6.2. Specification of demographic models

6.2.1. General

To infer demographic models from the allele frequency spectrum, we use dadi, which determines the

most likely demographic parameters by fitting the observed allele frequency spectrum (AFS) to the

theoretical AFS, computed using the diffusion approach. Some general settings of the demographic

models are listed below. Specific models are described in the following subsections.



To compute the theoretical AFS, we set the mutation rate to 1.44 - 10~8 per bp per generation,
following Gravel et al. (2013) * and based on the time of the human settlement in the Americas (see
discussion in section 6.4.3). The total genome length was set to 2.685 - 10° bp (the autosomal hg19 less
the number of N’s), further multiplied by 0.81, which is the fraction of variants that remained after our
quality-control filters (=2.6M out of raw 3.2M variants; see section 2.7.1 and Supplementary Table 3). In
total, the mutation rate per autosomal genome was g = 1.44 - 1078 x 0.81 x 2.685 - 10° = 31.3.
Some of our initial analysis was carried out using a higher mutation rate of 2.35 - 108, following *
(based on the human-chimp divergence time) as well as the full genome length 2.881 - 10°, yielding

Uo = 67.7. As we elaborate in section 6.4.3, this change has the effect of rescaling all parameters
(except admixture fractions). The results of any analyses that used the higher mutation rate were then
converted to their appropriate value under the lower mutation rate.

In all demographic models, the ancestral population size was assumed to be N, diploids up to the point
when specific population dynamics begins (see sections 6.2.2 and 6.2.3). The scaled mutation rate is
then defined as & = 4Nyu,. As explained in Gutenkunst et al. (2009) 4, since the AFS is proportional to 6,
then for any demographic model, 8 can be estimated directly from the total number of segregating sites
in the real data. That is, each theoretical spectrum was generated using & = 1, and then 8 was
computed by dividing the total number of segregating sites in the real data by the number of sites in the
theoretical spectrum. Using 8 and py, we computed the ancestral population size as Ny = 8/(4uo).

In the rest of the section, the units used are as follows. Population sizes (N) are given in number of
diploid individuals. Times (T') are usually given in number of generations. When given in years, 25 years
per generation were assumed. Migration rates (m) are given, for each population, as the fraction of
individuals migrating from the other population in each generation. Admixture fractions (f) are given,
for each population, as the fraction of individuals originating from the other population at the admixture
event.

6.2.2. Single population models
We used a number of single population models to fit the history of the AJ and Flemish populations.

6.2.2.1 Wright-Fisher model (constant-size)
The simplest demographic model is the Wright-Fisher (constant-size): the population size is N, at all
times. The AFS is given by Eq. (4) in section 3.5.3 3. Inference of the population size N, for the Wright-
Fisher model was described also in section 3.5.5. Here (section 6.3.3), we infer N using the total
number of segregating sites (as explained in section 6.2.1) and using the full dataset (without down-
sampling).

6.2.2.2 Growth-only
The model has three parameters: Ny, Ty, and N¢. The population size is Ny until T, generations ago,
when exponential growth begins. The growth rate is such that the current (final) population size is Ny.

6.2.2.3 Bottleneck and growth
The model has four parameters: Ny, Np, Tp, and Ny. The population size is Ny until Tj, generations ago,
when it is instantaneously reduced to Nj. The population then begins an exponential expansion until



reaching a final size N¢. The model is schematically depicted in Supplementary Note Figure 13. When the

inferred bottleneck is ancient, say, of the order of 2000-4000 generations ago (=50-100 kya), this likely
corresponds to the Out-of-Africa (OoA) founder event (see more in section 6.4.2).

6.2.2.4 Ancient bottleneck/growth with additional, known, recent
bottleneck/growth
The model has two bottleneck and growth episodes: ancient and recent. There are six parameters
beyond Ny: Np g, Tpq, and N 4, the ancient bottleneck/growth parameters, and N, -, T, and Ny -, the
recent bottleneck/growth parameters (Supplementary Note Figure 17).
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Supplementary Note Figure 17. A diagram of a demographic model with an ancient and then a recent bottleneck
and growth episodes.

When using this model to infer the history of the Ashkenazi Jewish population, we assumed that the
recent bottleneck/growth episode describes the founder effect and explosive growth of the Al
population in the past millennium. For such recent events, the allele frequency spectrum has little
power, in particular with our relatively small sample size **. Indeed, our attempts to fit the full seven-
parameter model did not converge to sensible results (not shown). However, the parameters of the
recent bottleneck and growth were successfully inferred using information on IBD sharing (section 4.3).
Therefore, we fixed the recent demographic parameters, Ny, , Tp -, and Ny ., to their corresponding
values obtained via the IBD analysis (section 4.3.4, Supplementary Table 6): N}, , = 334, T, = 28, and
Nf, = 1.450 - 10°. [Note that the value of Ny inferred using IBD was not used, because the simple
ancestral constant size history assumed in section 4.3 is replaced here by a more elaborate
bottleneck/growth model]. We then used the allele frequency spectrum and dadi to infer the values of
the remaining four ancient-history parameters (No, Ny q, Th ., and N¢ 4).

6.2.3. Two population models
While some of the single-population demographic models fitted quite well to the observed AFS
(section 6.3.5), those inferred parameters are “projections” of the real history, had the populations been



evolving in isolation. In reality, gene flow between population has likely played a major role in human
evolution in general (e.g., ¥) and in Ashkenazi Jews in particular 3*3¢, We therefore attempted to fit a
two-population model to the AJ-Flemish joint spectrum.

6.2.3.1 The basic model
In our model, both AJ and Flemish populations originated from a single ancestral population of size N,
(presumably living in Africa). At T}, pp4 generations ago, the ancestral population underwent a
bottleneck and its size was reduced to Nj, o4 (corresponding to the Out-of-Africa event and the
colonization of the Middle East). It then began growing exponentially at a rate that would bring its final
size to the AJ current population size, Nf 4;. At T gy generations ago, a second population of size Nj, gy
split from the ancestral one, corresponding to the founder event at the population of Europe. The
second population then began growing exponentially at a rate that would bring its final size to the
current European population size, Ny gyy. At T, generations ago, a fraction f, of the first population (AJ)
was assumed to be replaced by migrants from the second (European), corresponding to a unidirectional
admixture event of Europeans into Al. The model is illustrated in Supplementary Note Figure 18. In
summary, there are nine parameters: Ny, Ny 004, Tp,004, Nr,a5» Nv,gv» To.pus Nr,gus Ta, and fg.

Further interpretation and justification of the demographic model is discussed in section 6.4.4.
Alternative models are discussed in section 6.4.7.
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Supplementary Note Figure 18. A diagram of our two-population demographic model.

6.2.3.2 A model with recent, known, AJ bottleneck/growth
We also consider a variant of the model of Supplementary Note Figure 18, where, as in section 6.2.2.4,
we assume that the AJ population underwent an additional bottleneck/growth episode. In this model
(Supplementary Note Figure 19), Ny 4; is the Al population size before the recent bottleneck, Np, 4 is the



population size at the bottleneck, T, 4; is the time of the bottleneck, and N, 4; is the current A
population size. Due to the limited power of the frequency spectrum to resolve the parameters of
recent events, here too we fix the recent bottleneck/growth parameters to the values inferred from the
IBD analysis (section 4.3.4, Supplementary Table 6): N, 4; = 334, T, 45 = 28, and N, 4; = 1.450 - 106.
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Supplementary Note Figure 19. A diagram of our two-population demographic model with a recent AJ bottleneck
growth episode. The model is exactly as in Supplementary Note Figure 18, except that the AJ population is
assumed to undergo an additional bottleneck and expansion epoch (based on the IBD results, section 4.3).

6.3. Inference

6.3.1. Method
The observed allele frequency spectrum (AFS) was computed, as in section 3.5.2, using the merged and
imputed genotypes and with respect to the minor allele (in the entire sample) and without down-
sampling (57 AJ, 26 Flemish). High frequency population-specific alleles, which are likely mapping
artifacts, were removed as explained in section 3.5.1. The effect of the removal on the final inferred
demographic parameters was negligible (not shown). While we initially computed the derived allele
frequency based on the genomes of chimpanzee or other primates 3, we suspected that a large number
of alleles remained misclassified (a jump was observed in the AFS at frequencies close to 100%; not
shown), similar to observations in previous studies *°¢. We therefore opted to use the unambiguous
minor allele frequency.

Demographic inference was carried out using dadi version 1.63 # and the optimize_log function. The
maximal number of iterations was set to 50 and the fold change perturbation of the initial parameters to
2. The integration time-scale factor varied between 10~° for models with a known recent expansion



(where according to the dadi manual, a relatively short time-step is necessary to maintain accuracy) to
1073 for the other models, which did not exhibit any sharp recent changes in population size. For the
single-population models, spectra were computed by extrapolating over three grids with (140,160,180)
points for AJ (114 chromosomes) and (70,85,100) points for Flemish (52 chromosomes). For the joint
AJ-Flemish spectrum, we projected the original spectrum to 50x50 chromosomes, and did not use
extrapolation when integrating (a warning appeared that extrapolation was not accurate) but rather
used a single grid of 400 points.

For each population and demographic model, we manually experimented with different parameter
regions until we identified the most plausible one. We then set the initial parameters to some arbitrary
values in that region and randomly perturbed them before launching the optimization procedure. The
lower and upper bounds on the inferred parameters were set as the (unperturbed) initial parameters
divided and multiplied by a number between 100 and 1000, respectively. In all cases, the final
parameters were not close to the boundary and were not sensitive to the magnitude of the initial
perturbation. The only exception was the Flemish population with the growth-only model

(section 6.2.2.2), where the final population size was always as large as the boundary, with negligible
change in the model likelihood. This, however, is in line with our observation that the model provides
poor fit (section 6.3.5). For each model, we repeated the inference process 100 times (10 for the
synthetic spectra used for the bootstrap, section 6.3.2) with 100 different initial values and reported
(section 6.3.3) the configuration that yielded the maximal likelihood. We discarded runs that did not
converge.

6.3.2. Parametric bootstrap
Parametric bootstrap sampling was carried out essentially as in section 4.3.5. Using MaCS (version 0.4f)
1, we generated artificial genomes consisting of 22 chromosomes with the lengths of the hg19
autosomal chromosomes. We generated 57 X 2 = 114 genomes for inference on AJ alone, 26 X 2 =
52 genomes for Flemish alone, and 25 X 2 = 50 of each population for the joint inference. We set the
mutation rate to 1.44 - 108 per bp per generation and the recombination rate to 1.23 - 10~8 per bp
per generation (corresponding to the total hgl9 genetic map distance ¥). The “recombination history”
parameter was set to 100 bp, and all other parameters were left at their default values. We did not
introduce artificial sequencing errors. For each demographic model, we generated 100 synthetic allele
frequency spectra, which we then folded and converted to the dad!’s format. We then ran dadi on each
spectrum exactly as in the real data (sections 6.2.1 and 6.3.1). For each parameter 8, the biased-
corrected 95% confidence intervals were computed as [9* - ((é) — 9*) —1.96- SD(é),H* -
((6) —6*) + 1.96 - SD(8)], where () and SD(8) are the mean and standard deviation (SD) of § over
the simulated datasets, and 8* is the value inferred from the real data % Note that the confidence
intervals account only for sampling noise but not for systematic errors such as sequencing errors or
model and mutation rate misspecification (see sections 6.4.3 and 6.4.7).

6.3.3. Results
In Supplementary Table 5, Supplementary Table 7, and Supplementary Note Table 3, we present the
inferred parameters for all models and populations. Whenever parametric bootstrap sampling was
carried out (section 6.3.2), we report the bias-corrected means, the standard deviations (SD), and the



confidence intervals. Otherwise, we report the maximum-likelihood parameters. A diagram with the
inferred parameters for the single-population bottleneck/growth models for AJ and Flemish appears in
Supplementary Figure 7; a diagram for the two-dimensional model (with a recent AJ bottleneck) is
presented in Figure 4 of the main text. The results are discussed in section 6.4.

Parameter Maximum likelihood Bias-corrected 95% confidence interval
meanzSD
No 14,148 14,1051£54 [13,999, 14,210]
Npoo04 4879 5004+101 [4806, 5202]
Tpo0a 114,733 112448+3375 [105,832, 119,064]
Nf,A] 16,502 16,203+417 [15,387, 17,020]
Npru 3365 3897160 [3779, 4014]
Tpru 22,952 23,426+406 [22,631, 24,222]
Nf,EU 122,204 125,357+6296 [113,017, 137,698]
i 4196 36461211 [3232, 4060]
fa 55% 55%+1% [53% , 57%]

Supplementary Note Table 3. The inferred parameters for the joint AJ-Flemish demographic model without recent
AlJ bottleneck. The model is defined in section 6.2.3.26.2.3.1 and illustrated in Supplementary Note Figure 18. The
maximum likelihood parameters were computed using dadi * (section 6.3.1); confidence intervals were obtained
using parametric bootstrap (section 6.3.2): we report the bias-corrected means, the standard deviations (SD), and
the 95% confidence intervals. Population sizes are given in number of diploid individuals and times in years.

6.3.4. Likelihood surfaces
Two interesting results of the two-population model (see discussion in section 6.4.4) are the large
fraction of European ancestry in Al (f, = 50%) and the relatively recent date of the European founder
event (T, gy =~ 21,000 years ago). Both parameters have standard deviation of just 2% of the mean
(Supplementary Table 7), indicating high confidence. To examine the curvature of the likelihood surface
around these parameters, we plot, in Supplementary Note Figure 20, the log-likelihood when fixing all
other parameters to their maximum likelihood estimate and varying f, and T}, gy. For both f; and T, gy,
the likelihood is clearly maximized at the inferred values, lending support to an admixture fraction
around 50% and to a European founder event taking place around 21,000 years ago.
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Supplementary Note Figure 20. Likelihood curves for the admixture fraction (f,) and the time of the European
founder (Ty, gyy). We used the two-population model of section 6.2.3.2 (Supplementary Note Figure 19). We fixed
the values of all parameters to their maximum likelihood estimates, and varied f; and T}, gyy. The log-(composite-)
likelihood was computed, for each parameter set, using dadi.

6.3.5. The best fitting spectra
In Supplementary Figure 8, we compare the single-population real spectra to the maximum likelihood
spectra of the different models. To generate the model spectra, we used the same dadi configuration as
used for inference, with an integration time-scale factor of 10™# (or 10~5, whenever the model included
a recent expansion). The constant-size and growth-only models fit the real spectrum poorly for both
populations. The ancient bottleneck and growth models fit the data well, with or without a recent
bottleneck and growth episode for AJ.

In Supplementary Figure 12, we plot the joint two-population real and maximum likelihood spectra.
When generating the inferred spectrum using dadi, we set the spectrum to zero at any frequencies
appearing non-zero in the “mask” field, indicating that the spectrum could not have been reliably
computed. To visualize the difference between the real and maximum likelihood joint spectra, we used
the Anscombe residuals, as recommended by Gutenkunst et al. (2009) # (Eq. (2) in the dadi manual;
Supplementary Note Figure 21). We set to zero any residual that was infinite or undefined, as well as
residuals at frequencies where the number of sites was <5 for both the real data and the model. For
visibility purposes, all residuals larger, in absolute value, than an arbitrary cutoff of 10 were set to the
cutoff. The maximum likelihood spectrum qualitatively reproduces the features of the real spectrum,
but with room for improvement: Supplementary Note Figure 21 reveals regions in the joint frequency
space where the model is biased one way or another. However, we verified the correlation between the
residuals at nearby frequencies (the “splotchy” pattern) is due to the down-sampling, as previously
observed (Figure S8 in Gutenkunst et al. (2009) 4).
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Supplementary Note Figure 21. The normalized differences (residuals) between the real joint AJ-Flemish spectrum
and the best fitting spectrum. The model inferred is from Supplementary Note Figure 19, which includes the recent
Al bottleneck. The color of each square corresponds to the Anscombe residuals at the given allele count, which
were computed according to the recommendation of Gutenkunst et al. (2009) “. Blue colored squares correspond
to a larger number of sites in the model (see the color bar on the right); red colors correspond to more sites in the
real data. Residuals larger in absolute value than 10 were truncated. Squares appear white where there were too
few sites having the given allele count or when the model could not have been reliably computed. The dashed line
corresponds to equal frequencies in AJ and Flemish.

6.4. Discussion

6.4.1. Consistency of the ancestral population size across models and populations
Remarkably, the estimated ancestral population size Ny is highly similar among all models and
populations (=14,000). The ancestral size was estimated using the total number of polymorphic sites
(section 6.2.1). Using Eq. (2) of section 3.4.2, the number of sites is S(n) =

2n 2k
Oyn_, (E*zknél(zlk)) f w0 €XP <_ fsf[()(zu)) du) ds, where p(t) is the scaled population size at time t and n is

the sample size. We noticed that for all bottleneck/growth models reported in Supplementary Table 5,
S(n) differs by no more than =10% from its value under the Wright-Fisher model (6 Y271 1/i).
Therefore, the effect of the relatively recent demography (=100,000 years) on the number of sites, and
hence the estimated Ny, is small.

6.4.2. Interpretation of the single-population models
Our results showed that a bottleneck/growth model fits the empirical allele frequency spectrum very
well for both AJ and Flemish (Supplementary Figure 8), whereas simpler models (constant-size or
growth-only) do not. Therefore, for our sample size, the four-parameter bottleneck/growth model is
“necessary and sufficient” to describe the AFS (but larger samples will likely require more elaborate
models). The inferred parameters suggest some very general trends, such as a more recent and severe
bottleneck at the founder event of Europeans compared to Al. We do not attempt to attach a more
precise historical interpretation to the inferred values, which are averages (and single-population
projections) of the more complex actual demographic histories. We provide some historical



interpretations for the more detailed two-population model below (section 6.4.4). Our four-parameter
set (ancestral population size, bottleneck time and size, and final population size) can also be thought of
as a generalization of the single effective population size Ny (or equivalently, the scaled mutation rate
6), which is traditionally used to describe genetic data. This is an important extension; for example,
when considering the expected number of variants in large samples (section 3.4.2, Figure 1 of the main
text), using the simple constant-size model predicted more variants in AJ than in Flemish, whereas the
more elaborate bottleneck/growth model predicted the opposite trend.

6.4.3. The effect of the mutation rate
As mentioned in section 6.2.1, the ancestral population size Ny, and consequently, all inferred times and
population sizes, are inversely proportional to the mutation rate. Therefore, uncertainty in the mutation
rate has chief effect on the inferred parameters. For example, if the true mutation rate is two-fold
smaller, all population sizes and times will double; this magnitude of uncertainty is at least 10-fold the
uncertainty associated with sampling noise, as captured by our confidence intervals (see, e.g.,
Supplementary Table 5 and Supplementary Table 7). Gutenkunst et al. (2009) 4, who introduced dadi, as
well as others (e.g., ¥ 880 87) ysed a mutation rate calibrated using the human-chimp divergence, or the
phylogenetic rate estimate (in 4, u = 2.35 - 1078 per bp per generation). We carried out our initial
analysis using that rate. However, the phylogenetic mutation rate depends crucially on rare fossils to
estimate the human-chimp divergence time. Recently, the mutation rate was estimated more directly by
looking at differences between individuals in a pedigree (de novo rate estimate) and was found to be =1-
1.5- 1078 per bp per generation, that is, about half of the phylogenetic estimate (see, e.g., the recent
reviews at Refs. 14 8 890 and references therein). Very recently, Gravel et al. (2013) 8 estimated the
mutation rate as 1.44-10%, at the upper range of the de novo estimates, by analyzing Native American
whole-genomes. To obtain that rate, Gravel et al. (2013) inferred the parameters of a demographic
model for the settlement of the Americas using Native Americans tracts in whole genomes from
Colombia, Mexico, and Puerto-Rico. Then, they equated the time of a narrow bottleneck in the early
history of the region with the accepted time of the population of the Americas (16,000 years). The
results we present here are based on this rate.

We note that concerns over the mutation rate are not specific to our study and will affect any attempt
of demographic inference based on allele counts/frequencies. In our case, using whole genomes
reduced the (sampling) confidence intervals so dramatically that uncertainties due to the mutation rate
(or the model specification) became prominent. As the topic remains debatable (e.g., %), we
occasionally suggest alternative historical interpretations based on the higher mutation rate.
Additionally, when referring to the key parameter of the Middle-Eastern-European divergence time, we
often cite a conservative interval of 12-25 kya (using the point estimate of =21 kya and mutation rate
between 1.2:10® to 2.5-10%), to fairly represent the uncertainty in the mutation rate.

6.4.4. Historical interpretation of the two-population model
We constructed two-population demographic models (section 6.2.3; Supplementary Note Figure 18 and
Supplementary Note Figure 19) to capture the main events in the AJ and European histories. Multiple
lines of evidence from archaeology, linguistics, and human and microbial genetics suggest that all
anatomically and behaviorally modern humans descend from an ancestral population living in Africa



=150-200 kya. Non-African populations are thought to have arisen as a result of a single, or at most a
handful of, migration events into the Near East, with time estimates varying between =50 to =100 kya.
More distant regions were populated in a series of bottlenecks and subsequent expansions, known as
the “serial founder effect”, and leading to gradual loss of genetic diversity with increasing distance from
Africa %78 7%.80.81,92,93,94 |n oyr model, the population on the right side of Supplementary Note Figure 18
(or Supplementary Note Figure 19) is assumed to initially represent the ancestral African population,
and then to undergo a bottleneck when the Middle-Eastern population was formed. The timing of the
bottleneck, corresponding to the Out-of-Africa event, was estimated as =90,000 years ago, within the
range previously suggested (in particular since we used a lower mutation rate; see also section 6.4.5).
We do not model the African population after the exit from Africa. Following the Out-of-Africa
bottleneck, the Middle-Eastern population is assumed to begin a slow exponential expansion.

In line with the serial founder effect, the European population (represented by the Flemish, left side of
Supplementary Note Figure 18 or Supplementary Note Figure 19) is then assumed to depart from the
Middle-Eastern population and undergo a bottleneck. Fossils of anatomically modern humans from as
early as ~40-45 kya > % %" have been found in Europe. However, the point estimate of the divergence
time between the European and Middle-Eastern populations was more recent at =21 kya. A possible
explanation is that contemporary Europeans descend, for the most part, from a near-Eastern population
that repopulated Europe at the end of the Last Glacial Maximum (LGM) between =19-26 kya % 9 190,
These results have consequences to European origins, suggesting genetic discontinuity between modern
Europeans and the original hunter-gatherer inhabitants of the continent, and that the major dispersal
from the Near-East to Europe preceded the Neolithic revolution. However, the implications to Neolithic
migrations are highly sensitive to the mutation rate and the model specification, as we further discuss in
section 6.4.6. At any rate, this is a coarse grained picture; finer details being resolved by examination of

relevant ancient genomes 10 102, 103,104,105, 106

The inferred exponential population growth in Europe from =3700 to =170,000 is in line with other
studies observing a dramatic recent population expansion °%°% 57107108 The slower growth rate in AJ
could be due to a more stable ancient population size (post-Out-of-Africa) ’8. The inferred time of
European admixture into AJ coincides with the time we inferred (using IBD, section 4.3) for the recent Al
bottleneck, at =700 years ago. While the proposed time is plausible (the AJ population has resided in
Europe at that time), we also cannot rule out numerical issues due to the very fast changes in population
size after the recent bottleneck. When not fixing a recent bottleneck, the admixture time came out as
=4000 years ago. We are not aware of a possible interpretation for such an early date, but a somewhat
earlier date of *3000 years ago may be consistent with gene flow from Philistines 1. An even more
recent date of =2000 years ago (using a higher mutation rate) may correspond to the exile of Jews from
Palestine, partly into Rome *°, The fraction of European ancestry, around 50%, is a little higher than was
previously thought %, but still within the range of previous estimates 34, and consistent with the
substantial European maternal ancestry recently suggested by Costa et al. (2013) 2,

6.4.5. Comparison of our inferred dates to previous estimates
There is vast literature on (genetic) estimation of the Out-of-Africa and the European bottleneck

parameters, including some very recent publications (e.g., 3 8> 86 87,93, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121,



122,123,124,125,126) The type, magnitude, and population of origin of the genetic data vary widely between
studies, as well as the summary statistics used for inference, the proposed model, and the inference
method. To complicate things further, almost all previous studies used the higher phylogenetic mutation
rate estimate. Therefore, a complete review of all previously published estimates is beyond the scope of
this study. Li and Durbin (2011) 8 summarized the main features and inferred parameters of papers that
appeared at the time of their publication, most of which relied on small-scale data. We summarize
below a number of recent estimates for the timing of the Out-of-Africa and European foundation
events.

Li and Durbin (2011) &, followed by Sheehan et al. (2013) !* (using the de novo estimate), developed a
coalescent-based Hidden Markov Model for the inference of the population size history using whole
genomes. However, the method considers one population at a time and has lower resolution for
relatively recent events. Broadly, both studies inferred divergence of Africans and Europeans =50-100
kya followed by a reduction in the population size. Gronau et al. (2011) ** used six whole genomes from
six diverse populations and a Bayesian, coalescent-based approach to infer European-African divergence
time of =50 kya and European-East-Asian divergence time of *30-40 kya. Gutenkunst et al. (2009) # and
Luki¢ and Hey (2012) # used 5MB of re-sequencing of ~200 non-coding regions and the joint allele
frequency spectrum (computed using different numerical approaches) to infer European-African
divergence time of =140 kya or =52 kya and European-East-Asian divergence time of =21 kya or =30 kya
(Gutenkunst et al. and Luki¢ and Hey, respectively). The studies also disagreed on the magnitude of
inter-continental migration. Laval et al. (2010) & used data of similar nature and allele frequency and
haplotype summary statistics combined with Approximate Bayesian Computation to estimate the out-
of-Africa event at =60 kya and the European-Asian divergence at =22 kya. Lohmueller et al. (2009) 7
used haplotype diversity statistics and genome-wide SNP arrays for European individuals to infer a
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European bottleneck time of =37 kya. Theunert et al. (2012 used the average haplotype length

around mutations of given frequencies, Approximate Bayesian Computation, and European genome-

125 ysed the coalescent-

wide array data to infer a bottleneck time of =40 kya. Harris and Nielsen (2013)
based distribution of identity-by-state (IBS) tract lengths and African and European pairs of whole
genomes to infer a divergence time of =55 kya. Finally, a particularly relevant study is that of Gravel et
al. (2011) 3, since we used the same inference method (based on the allele frequency spectrum and dadi
%) and similar type and magnitude of data (few tens of whole genome sequences; albeit our data is high
coverage). They used genomes of Africans, Europeans, and East-Asians to infer the Out-of-Africa time at

=51 kya and the European-Asian divergence at =23 kya.

Taken together, with the phylogenetic mutation rate estimate, previous studies have estimated the time
of the Out-of-Africa dispersal at =50-80 kya, and the time of a European bottleneck, sometimes bundled
with the divergence from Asians, at =20-50 kya. Due to the extreme diversity of data types and modeling
approaches, a direct comparison to our results is impractical. However, in general, had we also used the
phylogenetic estimate, the time we would have inferred for the Out-of-Africa event (=50-60 kya) is
within the range of previous estimates (and particularly close to * 8 113 115) The time we inferred for the
European bottleneck (=10-15 kya under the phylogenetic estimate) was more recent than all previous
studies, with %16 being the closest at =20 kya. The ratio between the Out-of-Africa time and the



European divergence time that we inferred (=4-5), which is independent of the mutation rate, is higher
than most studies, again except * ¢ (which are also based on the allele frequency spectrum), but who
also inferred a less realistic Out-of-Africa time of >100 kya (>200 kya under the de novo rate estimate).
We propose that our more recent time estimate is (i) due to our novel data on and explicit modeling of
genomes with (partly) Middle-Eastern origin, and (ii) because we do not force the European founder
event to take place simultaneously with the European-Asian divergence. Indeed, the recent study of
Haber et al. (2013) %, who used SNP array data of Lebanese and European populations, inferred the
divergence time between Levantines and Europeans (but without explicit demographic modeling) at =9-
16 kya, close to our estimate.

6.4.6. The debate over European origins
Our results for the European-Middle-Eastern divergence time have potential implications regarding
open questions on European origins and the Neolithic revolution. The fundamental point of contention
is whether the transition to farming was due to cultural exchange (“cultural diffusion”) or was also
accompanied by human migration, replacing all or most of the existing hunter-gatherer population
(”demiC diﬁ:usion") 98, 100, 101, 102, 103, 104, 105, 106, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145.
Studies have so far employed a wide variety of methods and datasets, with most studies focusing on
modern Europeans and unipaternal markers. With advancement in ancient DNA technology, several
studies have incorporated the sequencing of ancient early farmers and their contemporary hunter-
gatherers. Inferences from previous studies, however, did not converge to a single conclusion, with
some studies supporting cultural diffusion and others demic diffusion. Many studies adopted a middle
ground, assuming that farming technology was introduced by migrants, but that those early farmers
admixed with existing hunter-gatherers, hence giving rise to only a fraction of the modern European
ancestry. Estimates of that ancestry fraction, however, also diverged widely between studies and ranged
between 20% and close to 100%. Recent studies of ancient European mitochondrial and nuclear DNA
suggested multiple waves of migration as well as recovery of some of the hunter-gatherer lineages. To
our knowledge, no modeling of European origins so far has been carried out with genome-wide

sequencing data for modern European and Middle-Eastern populations.

Our estimated European-Middle-Eastern divergence time of =12-25 kya suggests that the major
dispersal from the Middle-East into Europe took place long before the invention of agriculture % 1,
Consequently, the spread of agriculture within Europe has been facilitated by either cultural exchange

or migrations within the continent.

However, the picture is complicated by the uncertainty in estimating the mutation rate and, to lesser
extent, by our inability to infer significantly more complex models (for our sample size). If the
phylogenetic mutation rate estimate is true, then the divergence time would be dated to =10-15 kya.
This is still earlier than the time of the Neolithic revolution in Europe (=5-8 kya). However, this smaller
gap can be reconciled with demic diffusion, since Neolithic migrants may have not taken over the

101,102 ' modern

population entirely. In this view, which is also supported by recent ancient DNA studies
Europeans descend from both the original hunter-gatherers and recent Neolithic migrants (=5-8 kya),
and our inferred time reflects a weighted average of the two. Another potential reason why even an

early divergence time of =10-15 kya could support demic diffusion is an ancient Middle-Eastern



substructure. The debate is expected to last at least until the uncertainty in the mutation rate is
significantly reduced.

6.4.7. Robustness to model specification

6.4.7.1 The necessity of admixture into AJ
One of the components of the two-dimensional model is a recent admixture pulse from Europeans into
AJ. The admixture pulse is necessary to guarantee that the AJ-Flemish allele frequencies are correlated.
To see this, we generated the joint AFS for a model that has exactly the same parameters as the inferred
AJ-Flemish model (without the recent bottleneck; Supplementary Note Table 3), except with no
admixture. The synthetic AFS is compared to the real AFS in Supplementary Note Figure 22, clearly
showing that in the absence of recent admixture (even with a relatively recent EU-Middle Eastern
divergence time =21 kya), the allele frequencies are considerably less correlated than in the real data.
When re-inferring the parameters of a model similar to that of Supplementary Note Figure 18 except
without recent admixture, the correlation is similar to that of the real data (not shown), but with a much
lower overall likelihood (log-likelihood -14,901 vs. -8079 for the full model) and with the inferred current
Flemish population size being unrealistic at 1.7-10°. To test formally for the necessity of admixture, we
generated 100 synthetic spectra for the inferred model without admixture (using the same simulation
method of section 6.3.2). Then, we fitted each spectrum to the demographic model either with or
without admixture. Since the full model has two additional parameters (the time and fraction of
admixture) it is expected to fit better, even for data generated without admixture. However, the
improvement in the log-likelihood when using the full model was on average only 32.7 log-likelihood
units (maximum 117.1), compared to 6822 for the real data. We therefore conclude that including
admixture in the full model (Supplementary Note Figure 18) significantly improves the model’s fit to the
AJ-Flemish joint spectrum.

Real data No-admixture model #sites

108

10°

10

10°

10?

10’
10 20 0

Supplementary Note Figure 22. The real AJ-Flemish spectrum compared to the spectrum of a model without
admixture. The real spectrum (left) is as in Figure 3B of the main text. The parameters of the model spectrum are
the ones inferred from the real data and using the full model (without the recent bottleneck; Supplementary Note
Table 3), except with no recent pulse admixture from the European population into AJ. The allele frequencies in
the no-admixture model are less correlated than in the real data (r = 0.79 vs. 0.88 in the real data).
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6.4.7.2 European population derives from African, not from the Middle-East
One of the assumptions of our model (Supplementary Note Figure 18) is that the European population is
derived from the Middle-Eastern population. Alternatively, one may suggest a model where both
European and Middle-Eastern populations descend from the ancestral (supposedly) African population.
We therefore created a new model, in which an ancestral population of size N, gives rise, via a
bottleneck, to both populations at different times. The two populations are then assumed to grow
exponentially. We allowed either population to be the first to diverge, and we did not follow the
ancestral population after the second split. We then assumed recent admixture of Europeans into the
Middle-Eastern population (corresponding to Al), as in section 6.2.3. However, fitting the model gave
very poor results compared to our original model. We therefore conclude that a Middle-Eastern origin of
the European population is more likely.

6.4.7.3 Two-way, continuous migration between Europeans and AJ
Another assumption of our model (Supplementary Note Figure 18) is that gene flow between Europeans
into AJ takes the form of instantaneous , directional admixture from Europeans into AJ (where the
directionality is justified, to some extent, by the larger number of AJ-specific variants). To relax this
assumption, we allowed bi-directional, asymmetric migration for a variable period of time since the
beginning of the admixture epoch. The results for the maximum likelihood fit are given in
Supplementary Note Table 4. The best fitting model is generally similar to that inferred in
Supplementary Note Table 3. The Out-of-Africa event was dated to =108 kya, and the European
bottleneck to =25 kya. Gene flow, however, is dated to =11 kya, likely capturing a non-Jewish-specific
event. The extent of migration into AJ, =0.0026 per generation for =300 generations, corresponds to =~
1— (1 —0.0026)3° ~ 54% European admixture, as inferred in Supplementary Note Table 3. The time
when admixture ended, =4000 years ago, is in agreement with the admixture time inferred without the
migration period. We note, however, that our experiments (not shown) demonstrated limited power of
dadi to infer migration parameters even in simple models, in particular for asymmetric migration. The
above results should therefore be interpreted with caution.

Two-population model | Maximum likelihood
with known, recent AJ values
bottleneck
No 14,113
Npooa 4335
Tb,OOA 107,569
Nyay 20,811
Npru 2238
Tpry 24,498
Nygy 51,021
Tostart 11,450
mEu_)A] 2.61- 10_3
my;- gy 0.84-1073
Toend 3925

Supplementary Note Table 4. The inferred demographic parameters for a two-population model with recent, bi-
directional, continuous migration. The parameter T, 5.+ stands for the time when admixture started. Then,



mgy, 4 is the migration rate from the European population into the AJ (or ancestral Middle-Eastern) population in
units of the fraction of the AJ population per generation replaced by migrants. my; gy is the migration rate in the
opposite direction. Migration ended T, .4 Years ago, after which the populations were isolated. All other
parameters are as in Supplementary Note Figure 18. Population sizes are given in number of diploid individuals and
times in years.

6.4.7.4 An additional migration wave from the Middle-East into Europe
In section 6.4.6, we suggested that the ancestry of modern Europeans could be traced partly to Neolithic
migrants and partly to pre-existing hunter-gatherers. To investigate this possibility, we inferred the
parameters of the model shown in Supplementary Note Figure 23, which is exactly as in section 6.2.3
(Supplementary Note Figure 18), except that we added an admixture event from the Middle-Eastern
population into the European population. We hypothesized that in this model, the divergence of
Europeans would correspond to the initial peopling of Europe (=40-45 kya), while the more recent
admixture event would correspond to incoming Neolithic migrants. The maximum likelihood parameters
(Supplementary Note Table 5) show, surprisingly, that even with the additional admixture event, the
divergence time of Europeans from Middle-Easterners is as recent as =27 kya. This further supports
genetic discontinuity of modern Europeans with the original settlers. According to the inferred model,
the admixture event from the Middle-East into Europe occurred =17 kya and replaced 63% of the
European population, which could correspond to the recovery from the LGM or to Neolithic migration
into Europe, in case of a higher mutation rate. Other parameters with notable difference from the
simpler model (Supplementary Note Table 3) are a very narrow European bottleneck size (=400 diploids)
and a more ancient admixture of Europeans into AJ (6000 ya). We note that this model achieved a
much higher log-likelihood than the simpler model of Supplementary Note Figure 18 (-5170 vs. -8078),
but we did not compare the models formally using simulations. The confidence intervals (generated as
usual using parametric bootstrap) were of similar magnitude to those reported in Supplementary Note
Table 3 (not shown). Inferring a model as presented in Supplementary Note Figure 23 but with a (fixed)
recent AJ bottleneck did not converge to a consistent parameter set.
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Supplementary Note Figure 23. A diagram of a two-population demographic model with an admixture event from
the Middle-East into Europe. The model is exactly as in Supplementary Note Figure 18, except that Ty gy
generations ago, there was an admixture event from the Middle-Eastern population (right) into the European
population (left), replacing a fraction f, pyy of Europeans. The time and fraction of the more recent admixture
event from Europeans into AJ are denoted T, 4; and f, 4, respectively.

Two-population model | Maximum likelihood
with two waves of values
migration into Europe
Ny 14,093
Nb,OOA 4402
Tpo04 106,044
Ny 18,305
Npeu 436
Tyeu 26,980
N¢Ey 185,868
Toru 17,259
faEu 63%
P 6087
faay 54%

Supplementary Note Table 5. The inferred demographic parameters for a two-population model with an additional
admixture event from the Middle-East into Europe. Population sizes are given in number of diploid individuals and
times in years.

6.4.7.5 More complex models
We also attempted to fit a number of more complex demographic models. Those were based on the
model of Supplementary Note Figure 23 with additional parameters, such as different growth rates at



each epoch (specifically, attempting to capture the different growth rates before and after the Neolithic
revolution). However, no model more complex than Supplementary Note Figure 23 showed consistent
convergence into a single parameter set— that is, optimizing from different initial conditions gave
markedly different final parameters with a comparable likelihood (not shown). We therefore conclude
that more elaborate models would require either more samples or improved inference methods.
Another potential future refinement of the model is the inclusion of an African population, either as a
“ghost” population that is eventually integrated out or using real data.

7. Supplementary Note 7: Functional variants

7.1. The allele frequency spectrum of coding variants
Recently, several genome-wide studies have demonstrated that deleterious alleles have lower
frequencies than benign ones, as expected under purifying (negative) selection 23 156,57, 146,147,148, 149 1
explore the relationship between allele function and frequency in our sequencing data, we used the
merged and imputed AJ-Flemish genotypes (section 2.14.2) and further retained random 26 Al
individuals to match the Flemish sample size (variants appearing only in the removed individuals were
discarded). We then annotated all variants using the SeattleSeq Variant Annotation server

(http://snp.gs.washington.edu/SeattleSeqAnnotation137/), which provides relevant information,

including PolyPhen2 score for coding variants °. In Supplementary Figure 13, we plot the average
PolyPhen2 score vs. the (non-reference) allele frequency for the coding variants in AJ and Flemish.
Indeed, the score (which corresponds to the posterior probability that the variant is damaging)
decreased with increasing allele frequency, with no significant difference between Al and Flemish (P =
0.982 for combined linear regression with ancestry as an additional covariate). Supplementary Figure 14
shows violin plots for the distribution of (non-reference) allele frequencies for AJ and Flemish and for
several functional categories (intergenic, intronic, coding synonymous, missense, non-sense, and splice
sites). Here too, allele frequencies decrease with increasing functional significance, with no visual
difference between the AJ and Flemish spectra.

7.2. A comparison of the deleterious allele burden between Ashkenazi Jews

and Flemish
The comparative load of deleterious mutations has been a subject of recent interest and debate
149,150, 151, 152,153, 154, 155, 156, 157 |t has been conjectured that “bottlenecked” populations harbor

(proportionally) more deleterious mutations, because of the increased genetic drift and thus the

51, 107,

weakening of natural selection during the bottleneck. In AJ, such a mechanism was proposed to explain
the accumulation of several Al-specific genetic disorders * 18, To determine whether such an effect is
observed when comparing the AJ population and the Flemish, we used the merged (and reduced to
equal sample sizes) dataset described in section 7.1. We recorded the number of (non-reference)
variants in each population according to four definitions (Supplementary Table 8, rows): (i) the total
number of unique variants; (ii) the total number of appearances of the variants; that is, weighing each
variant according to its frequency; and (iii) and (iv) same as (i) and (ii), but only for variants of (non-
reference allele) frequency <10% in the combined AJ-Flemish dataset. The reason for considering only



variants with low frequency is that more common variants are less likely to be deleterious. With each of
the above definitions, we counted variants that were either (i) non-coding; (ii) coding and synonymous;
(iii) coding and non-synonymous; (iv) coding and benign (according to the PolyPhen2 annotation); and
(v) coding and damaging (‘possibly-damaging’ or ‘probably-damaging’ according to PolyPhen?2)
(Supplementary Table 8, columns).

To determine whether there are proportionally more deleterious variants in AJ, one must account for
the genome-wide larger number of variants in Al (section 3.1). This was carried out by using the
background neutral variation to compute the expected number of deleterious variants, had no
enrichment of deleterious variants existed:

#neutral_A]

a7 t#texpected_deleterious_A] = #moutral FL

X #deleterious_FL,

where, e.g., #neutral_A], is the number of neutral variants in AJ, etc. In other words, we assumed that in
the absence of enrichment, the ratio between the number of deleterious variants in AJ and in Flemish
should be the same as the ratio for neutral variation. When computing the expected number of
deleterious variants of low frequency (see above), we used all variants to compute the expected neutral
ratio. We finally considered three comparisons: (i) the number of non-synonymous AJ variants
compared to the expected number based on both non-coding and synonymous variation; (ii) the
number of non-synonymous AJ variants compared to the expectation based on synonymous variation
only; and (iii) the number of coding damaging AJ variants compared to the expectation based on coding
benign variation. To obtain an approximate P-value, we first computed the Poisson residual:

(18) R = #observed_deleterious_A]—#expected_deleterious_A]
- \/ #expected_deleterious_A]

To transform the residual R into a P-value, we assumed that R is distributed like a standard normal
variable. We did not correct for multiple comparisons.

The results for all (3x4=12) comparisons are shown in Supplementary Table 8. In all comparisons, the
number of deleterious AJ variants was larger than expected, and in most cases, the difference was
significant (P < 0.05). Specifically, the P-value was lowest for comparisons involving the total number of
appearances of variants with low frequency, which is expected to be the most informative on
deleterious variant load. However, care must be taken when interpreting the results. First, the
enrichment is not as high when comparing non-syn. to syn. (or damaging vs. benign) variation as it is
when comparing non-syn. to non-coding variation. This could be due to differences in exome sequencing
guality between the AJ and Flemish genomes. Indeed, for AJ, the average fractions of the genome and
exome called were 96.5% and 98%, respectively, while for Flemish (for the genomes where those
statistics were available), the fractions were 97% and 94.6%, respectively. On the other hand our AJ-
Flemish merging pipeline has specifically removed variants systematically not called in one of the
populations. The next concern is with respect to the definition of a deleterious variant. We assumed that
the non-reference allele is the deleterious, but other choices are possible, such as using the derived
allele (but see section 6.3.1).



Another concern is whether high frequency or even fixed alleles (which are only weakly selected, if at
all) should be considered deleterious. We showed results when considering either all variants or only
variants of low frequency (<10%). However, our frequency cutoff is arbitrary, and there might have been
some non-obvious artifacts due to removing variants found above the cutoff in one population and
below in the other (but with an overall high frequency). When considering singletons only, there is no
enrichment (although this is reasonable, if the effect of the genetic drift was indeed to increase
frequencies of deleterious variants). Finally, a recent paper ! has demonstrated technical problems in
previous comparative studies of the mutation burden and suggested, based on simulations and theory,
that recent bottlenecks are expected to have only a negligible effect on the total load.

7.2.1. Additional analyses

7.2.1.1 The number of functional variants per individual
To address the question from additional angles, we show in Supplementary Figure 15 violin plots for the
distribution of the number of coding variants per individual (among 26 AJ and 26 Flemish) for
synonymous, UTR, and missense variants (the number of nonsense and splice variants was <100 per
genome). As above, to account for the effect of neutral evolution, we normalized the number of variants
in each category by the corresponding number of intergenic variants. There were =0.3-1% more coding
variants in AJ, across all categories. However, the differences between AJ and Flemish were not or barely
significant (P=0.321 for synonymous, 0.021 for UTR, and 0.074 for missense).

7.2.1.2 Genome-wide GERP analysis
Finally, we examined variation outside coding variants by computing GERP scores for variants along the
genome. GERP scores provide indication of the evolutionary constraints at each position in the genome
based on alignment of several mammalian genomes **°. We computed the average GERP score for all
non-reference variants in each of 26 AJ and 26 Flemish genomes. A box plot for the distribution of the
average scores within AJ and within Flemish is presented in Supplementary Note Figure 24,
demonstrating slightly higher scores (i.e., more conserved sites) for AJ (P=0.01; t-test). This result is
consistent with (small-scale) relaxation of natural selection in the AJ population.
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Supplementary Note Figure 24. The distribution of GERP scores in AJ and Flemish. The average GERP score was
computed over all variants in each individual. The distributions of the average scores over 26 AJ individuals and 26
Flemish individuals are compared.



In summary, our results support a slight (and only weakly significant) enrichment in the deleterious
mutation load in AJ compared to Flemish. We expect more definitive conclusions regarding the
significance of this effect to be reached with future improvements in sequencing quality, annotation
tools, and population genetics theory. The results, however, exclude a large effect such as the one found

in French Canadians **°.

7.3. A comparison of the deleterious variant load between AJ and Flemish

in different disease categories
Ever since the past century, Al have been shown to have a higher prevalence of a number of diseases
(compared to non-Jewish Europeans), including several Mendelian disorders (e.g., Tay-Sachs disease,
Gaucher disease, etc.) °, cancers (e.g., hereditary breast cancer and colorectal cancer 1% 161),
inflammatory bowel diseases 12, diabetes %3, and some psychiatric diseases %% %4, Many of the
suggested health disparities were later refuted 0% 165 1% \We sought to determine, using our sequencing
data, whether there is any disease category with particularly high deleterious mutational burden in AJ.
To this end, we used the merged (and reduced to equal sample sizes) AJ-Flemish dataset described in
section 7.1, and computed, for each gene, the total number of non-synonymous (non-reference)
variants appearing in each population. To determine the disease categories associated with each gene,
we used the gene annotation dataset developed by Moore et al. (2011) 2! and later expanded and kindly
provided to us by Omicia Inc. (http://www.omicia.com/). The Omicia catalog has 5494 annotations of

2488 genes into 17 disease categories (the rows of Supplementary Table 9). For each category, we
counted the total number of non-synonymous variants appearing in all genes belonging to the category,
either in AJ or in Flemish.

The results (Supplementary Table 9) show an overall slight excess of non-syn. variation in AJ, as
expected from the results of section 7.2. We also observe variability between different categories, with
aging genes, in one extreme, demonstrating an excess of 6.5% in AJ, compared to psychiatric genes, in
the other extreme, with an excess of 7.4% in Flemish. To determine whether such variability is expected
by chance or, alternatively, there is a disease category with an unexpected excess of non-syn. variation
in one of the populations, we used the following approach. First, we computed, for each annotated
gene, a Poisson residual, R, according to

#non_syn_A]—#non_syn_FL

(19) R

- \/ max(#non_syn_AJ,#non_syn_FL) '

This is similar to Eq. (18), except that due to the often very small number of overall (non-syn.) variants,
the denominator is the maximum of the AJ and Flemish counts. We then ranked all annotated genes
according to their value of R. Finally, we used Gene Set Enrichment Analysis (GSEA) ¥’ to determine
whether any of the categories is enriched with particularly top (or bottom) ranked genes. GSEA works by
computing, for each gene set, the maximal enrichment score over each possible definition of how many
genes constitute the “top” of the list, and then computing empirical (permutation-based) P-value and
false discovery rate (FDR). The analysis showed no gene set had reached FDR<0.05. Moreover, except
for the aging-related genes, no gene set was even nominally significant (P<0.05). The GSEA report for
the aging category is displayed in Supplementary Note Figure 25; the top-ranked aging genes are listed



in Supplementary Note Table 6. In conclusion, our results suggest that (at least using our data) no
disease category can be associated with high mutational burden in AJ.
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Supplementary Note Figure 25. A screen shot of the Gene Set Enrichment Analysis (GSEA) applied to genes in the
aging disease category. The aging category attained the highest “maximal enrichment score” (green) among all
disease categories. The ranks of the genes in the set are shown as black vertical bars.

Number | Aging gene | Rank
among all
annotated
genes

1 IL2RB 302

2 FBN2 362

3 TGFBR2 391

4 MMP3 468

5 MMP12 646

6 GPX1 832

7 TYMS 1048

8 SAFB 1081

9 CSF3R 1139

10 NUP88 1145

11 MCL1 1300

12 MYT1 1388

13 PIK3CA 1771

14 TNFRSF11B | 1937

15 MADD 2257

16 CSE1L 2265




17 DRAP1 2351

18 DAD1 2398

19 HPGD 2625

Supplementary Note Table 6. Aging genes top ranked for higher non-synonymous variant load in AJ. All genes with
annotated variants (12,157) were ranked according to Eq. (19). The first 19 aging genes were ranked higher than
expected by chance (P=0.04; Fisher’s exact test).

7.4. Mutations in known AJ disease genes

7.4.1. Creating a list of known disease genes and mutations
To create a catalog of mutations in known Al disease genes, we started with the list of genes in the
Supplementary Table of Ostrer and Skorecki (2013) *. We did not consider non-Ashkenazi diseases.
Gene names were occasionally corrected and updated to comply with standard gene symbols. For each
disease, the coordinates of the indicated mutations (with respect to hg19) were manually determined by
combining a number of online databases and tools. We usually began with the HGVS symbol
(http://www.hgvs.org/) and attempted to convert it to an absolute coordinate using Mutalyzer
(https://mutalyzer.nl/positionConverter) 8 or Variation Reporter

(http://www.ncbi.nlm.nih.gov/variation/tools/reporter). Occasionally, we located the disease mutation

by examining the sequence surrounding it, as reported in the original publication. We cross-validated
the resulting coordinates against OMIM (http://www.omim.org/), UCSC Genome Browser
(http://genome.ucsc.edu/), dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/), 23andMe

(https://www.23andme.com/health/), and occasionally, the Israeli Ministry of Health catalog of genetic
) 169'

diseases in Jews (http://www.health.gov.il/Subjects/Genetics/Documents/book_jews.pdf

Specifically, we validated that all sources agreed on the gene, coordinate, reference allele, alternate
allele, and wherever available, the dbSNP “rsID”, the RefSeq ID, and the amino acid change (or position
with respect to the exon, for intronic mutations). In Supplementary Data 4, we report, for each
mutation, the disease name, the gene symbol and OMIM ID, the mutation in HGVS format (with
coordinates following the current RefSeq annotation, even if that changed the “classic” name for the
mutation), the dbSNP ID (whenever exists), the chromosome and coordinate, the reference allele, and
the alternate allele. For the latter three fields, we followed the convention of the VCF format
(http://www.1000genomes.org/node/101). Our final list included 73 mutations in 48 genes

(Supplementary Data 4). For the few long, structural variants listed in Ostrer and Skorecki (2013), we
only report the corresponding gene start and end coordinates.

7.4.2. Detecting disease genes variants in the sequencing data
To detect variants in the known AJ disease genes, we used the complete project data (128 individuals)
and the CGA tools mkvcf command to generate a combined sample VCF. We did not carry out any
filtering, even of low-quality variants. Using the UCSC Table Browser, we extracted the coordinates of
the coding exons (plus two nucleotides upstream and downstream) of all UCSC genes that correspond to
our list of disease genes. The resulting intervals were merged using BEDTools ®2. We then used Tabix ”°
to extract all variants in either the disease mutation coordinates or in the entire coding regions of the
disease genes. We used VCFtools 17! to compute the alternate allele frequency, as well as extract disease
genes variants that were previously unknown (with respect to our list).



We detected carriers of 35 known disease mutations in 29 genes. For each known disease mutation, we
report the alternate allele count and frequency in our 128 AJ genomes (Supplementary Data 4). We
verified that for all mutations, the alternate allele corresponded to the known mutation allele. The
absence of an alternate allele count in the table indicates that the locus was homozygous reference forn
all individuals. We do not report counts for the structural variants.

We then annotated, using ANNOVAR *2, the previously unknown variants for their effect on the protein
product. We considered exonic variants as well as splice variants, and treated each allele separately in
case of multi-allelic variants. The list of our 953 “discovered” variants along with their annotation and
allele counts is reported in Supplementary Data 4. In the future, we plan to integrate our list with the
“catalog of risk alleles for Ashkenazi Jewish genetic disorders” maintained by the Erlich lab at the
Whitehead Institute (http://erlichlab.wix.com/riskcatalog). We note that theoretically, with a reference
panel of 128 diploid individuals, variants with allele frequency >1% should be detected with probability
atleast1 — (1 —0.01)%%¢ =~ 0.92.

For further analysis, we retained only non-synonymous variants with non-reference allele frequency
<10% (to eliminate likely benign alleles) and no-call rate <10%. We classified the remaining 533 variants
according to the following categories: missense, non-frameshift (for multi-nucleotide variants), nonstop,
nonsense, splicing, and frameshift. For each gene and each category, we computed the number of
unique variants, the number of singletons, the number of doubletons, and the total number of non-
synonymous variants appearing in all individuals. We also computed similar counts for variants not in
dbSNP135 (see section 2.15 for definitions). A table summarizing the results per gene as well as the
totals for each functional category also appears in Supplementary Data 4.

The results show, as expected, that most non-synonymous variants (in particular in the loss-of-function
categories) are rare— mostly singletons or doubletons. The total number of non-synonymous variants
per gene is mostly a function of the gene coding length (r = 0.92). The number of multi-nucleotide
variants was surprisingly high (although note that for the non-frameshift variants, 11 were in fact single-
nucleotide variants co-localizing with a multi-nucleotide variant at multi-allelic loci). Manual inspection
of a number of frameshift variants indicated that they generally occur on the main RefSeq transcript,
and thus cannot be assumed to affect only rare splicing isoforms. The initial data from the Erlich lab for a
comparable number of individuals (n=96) showed a significantly lower number of multi-nucleotide
variants (about a dozen, compared to =200 here). Many of our multi-nucleotide variants are likely false
positives (see section 2.11; using the same method, we observe that without filtering of low-quality
variants, the false positive rate for multi-nucleotide variants can be as high as =18%). However, this still
does not explain the magnitude of the difference, and more work is required to reconcile the two
estimates.

8. Supplementary Note 8: A simple association study model
In this section, we analyze a simple model for disease architecture and association study in order to
demonstrate the increased power to detect causal variants in founder populations (see also 172).

Suppose the genetic component of a disease is due to N, alleles, each having frequency f. Each allele is



assumed to have penetrance p and a dominant effect, independently of all other alleles. Denote the
disease prevalence as D. Assuming that N, fo << 1, each (diploid) individual has probability 2N, f; to be
a carrier, or probability 2N, fop (< D) to be infected. The population is assumed to maintain size >
fo_1 in its recent history, implying that that the disease allele frequency is approximately constant
during that period. Suppose a case-control study is carried out with N cases and N; controls. For a given
locus, the frequency of carriers in the controls, f;, is given by Bayes’ theorem,

P(control|carrier) XP(carrier) _ (1-p)-2f,
P (control) - @-bp)

(20) f¢ = P(carrier|control) =

Similarly, the frequency in cases, f, is

P(case|carrier)xP(carrier) _ p-2fy

21 fs = P(carrier|case) = P (case) 5

The number of carriers among the controls (cases) is therefore binomial with parameters N; (Ng) and f;
(fs). Suppose a y? test (with 1 degree of freedom) is used to compare the number of carriers in the
cases and the controls, and that P-values lower than Q are considered significant. The power to detect
an association, I, can then be easily computed using the binomial probabilities. The average number of
detected loci, IT - N, is plotted for typical parameter values in Supplementary Note Figure 26.

D=0.01, f0=0.0001 , B=330, Na=1000‘ N5=5000, Nt=5000‘ Q=0.0001
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Supplementary Note Figure 26. Power to detect an association for outbred and founder populations. In the
outbred population, the frequency of the disease allele is assumed to be fo = 1074, while in the founder
population, we assume a bottleneck of (diploid) size 330, thus enforcing a minimal disease allele frequency (for the
surviving alleles) of fo = 1/660. The disease prevalence, the number of total alleles, the number of cases and
controls, and the P-value threshold are assumed to be D = 0.01, N, = 1000, N, = N, = 5000, and Q = 1074,
respectively, typical values for exome-based association studies in complex diseases. The increase in allele
frequencies due to the bottleneck makes detection of disease alleles feasible for a wide range of penetrance
values.

In a founder population, we assume a similar model, except that the population underwent a recent
bottleneck of diploid size B (as we describe for AJ). At the bottleneck, most disease alleles are lost.
However, the = 2B fyN, alleles that survive increase in frequency to = 1/2B. We assume that the
bottleneck was so recent that we can neglect the effects of genetic drift and natural selection in the
period between the bottleneck and the present. The disease allele frequency is therefore assumed to



equal fop = 1/2B. Egs. (20) and (21) are then still valid with the new value of f;;, and the power can be

computed assuming a x? test as above. The average number of detected loci for an Al-like bottleneck
(B = 330) isalso plotted in Supplementary Note Figure 26, demonstrating an increased success rate

compared to the outbred population (at least as long as the penetrance is not very high).
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