

Supplementary Figure 1. Reproducibility of glycosylation profiles upon parallel expression.

Wild-type $gp120_{BaL}$ was expressed, purified and analyzed five times in parallel, starting with the same passage of 293T cells. N-linked glycans were released from the five batches of wild-type $gp120_{BaL}$, 2-AA labelled and analyzed by HILIC-UPLC. The five chromatograms are overlaid, and peaks corresponding to oligomannose-type glycans are indicated. Quantitation of the individual oligomannose-type glycan species by integration of the corresponding peaks was performed using Empower 3 software and values are reported in Supplementary Table 1. MX – Man_xGlcNAc₂.

Supplementary Figure 2. HILIC-UPLC profiles of PNGS-deletion mutants. Monomeric wildtype gp120_{BaL} and PNGS-deletion mutants were expressed in parallel in HEK 293T cells, followed by nickel-affinity purification. *N*-glycans were released from gel bands following SDS-PAGE using PNGase F, fluorescently labelled and analyzed by HILIC-UPLC. Integration of the chromatograms was performed using Empower 3 software. Peaks corresponding to oligomannose-type glycans (MX – Man_xGlcNAc₂) are indicated.

Supplementary Figure 3. Identification and glycoform characterization of the N197 glycosylation site. (a) ESI-LC-MS/MS spectrum of the deglycosylated tryptic peptide LISCDTSVITQACPK (deglycosylation by PNGase F causes conversion of N \rightarrow D. Precursor mass was 847.4, $[M_{pep}+2]^{2+}$. Cysteine residues were modified with carbamidomethyl (+57). (b) HILIC-UPLC chromatogram of glycans released from the LISCNTSVITQACPK glycopeptides (following 2-AB labelling). (c) MALDI-MS spectrum of fraction containing LISCNTSVITQACPK glycopeptides. Observed masses correspond to $[M+H]^+$. RF; relative fluorescence.

Supplementary Figure 4. Western blot analysis of PNGS-deletion mutants. Culture media from N130A, N262A and N386A mutant expressions were assessed for the presence of aggregates. N136A is included as a control. Following non-reducing SDS-PAGE of cell culture supernatant, proteins were transferred to a PVDF membrane. The membrane was blocked in 5% non-fat milk in PBS + 0.05% Tween for 1 h at room temperature and then incubated with anti-His-HRP antibody (1:10,000 dilution; Life Technologies) in 5% non-fat milk in PBS + 0.05% Tween for 1 h. ECL substrate (GE Healthcare) was used for detection by chemiluminescence and measured using a Fujifilm Las-1000 Intelligent DarkBoxII to visualize the membranes. Densitometric evaluation of the bands corresponding to the monomeric and aggregated dimeric forms was performed using Image J software, and the ratios of monomer:dimer are shown.

Supplementary Figure 5. MALDI MS and MS/MS analysis of a N332-containing tryptic glycopeptide. Recombinant monomeric gp120, resolved by SDS-PAGE, was reduced and alkylated, digested with trypsin, and then fractionated by RP-HPLC. Fractions containing the QAHCNLSR glycopeptide were pooled and analyzed by MALDI-MS and MS/MS in positive ion mode. (a) MALDI MS/MS of the QAHCN³³²LSR glycopeptide. The peptide contained a pyro-glutamine modification (mass difference -17 Da) and a carbamidomethyl modification of the cysteine (+57 Da). B fragment ions of the peptide are indicated. Characteristic fragmentation of the glycopeptide was also observed; a ^{0,2}X-ring cleavage of the inner *N*-acetylglucosamine produces a [Pep + H + 83]⁺ peak, a Y-type cleavage of the chitobiose core produces a [Pep + H + 203]⁺ peak, and loss of the amide side chain from the glycosylated asparagine produces a [Pep + H - 17]⁺ peak. Y-type fragments ions resulting from cleavage of the glycans were also observed. (b) MALDI-MS analysis of the QAHCN³³²LSR glycopeptides isolated from three separately expressed wild-type gp120_{BaL} samples to determine any intrinsic variation of the glycoforms present.

	% of total glycans						
	M5	M6	M7	M8	M9	M5-M9	Complex
Mean	5.2	4.1	6.7	10.5	10.2	36.7	63.3
Standard Deviation	0.4	0.1	0.1	0.2	0.3	0.6	0.6
Coefficient of Variance[‡]	6.7	2.6	2.2	2.2	3.3	1.5	0.9

Supplementary Table 1. Reproducibility of glycosylation profiles upon parallel expression[†]

^{\dagger} Wild-type gp120_{BaL} was expressed, purified and analyzed five times in parallel, starting with the same passage of 293T cells.

[‡] The coefficient of variance represents the standard deviation divided by the mean, and is expressed as a percentage. It is comparable with the % percentage change calculated for the PNGS mutants relative to wild-type.

Mutant	% change [†]						
	M5	M6	M7	M8	M9	Total	
N88A	-13	4	12	19	9	9	
N130A	-4	-11	-6	-11	-32	-15	
N136A	-13	1	6	11	12	6	
N141A	-18	6	12	21	23	13	
N144A	-17	8	18	21	15	12	
N156A	-14	5	14	16	6	7	
N186A	1	7	8	11	8	8	
N197A	-25	-11	1	7	-1	-3	
N241A	-5	8	23	15	-4	8	
N262A	15	13	19	-16	-57	-13	
N289A	-1	-6	0	7	1	1	
N295A	-8	7	20	14	-28	0	
N301A	-17	-5	0	9	0	0	
N332A	3	7	15	21	-7	8	
N339A	-6	-4	3	-3	-29	-10	
N356A	0	7	8	3	-30	-5	
N386A	23	3	-2	-24	-38	-14	
N392A	8	-7	-1	-22	-32	-15	
N396A	-2	-7	-4	4	-11	-4	
N406A	26	б	7	8	-14	4	
N411A	3	-3	6	7	-6	2	
N448A	8	12	16	5	-28	0	
N463A	-1	9	8	11	13	9	
N295A + N332A	-6	1	18	-11	-54	-17	
N295A + N339A	-15	0	16	-11	-54	-18	
N295A + N386A	20	2	3	-34	-71	-27	
N295A + N448A	5	6	23	3	-59	-11	
K160N	20	33	29	11	0	13	
A278S/T	19	7	2	-2	-5	1	
N160N +N276	43	34	28	5	-3	12	

Supplementary Table 2. Effect of PNGS-deletion on the abundance of oligomannose-type glycans within monomeric $gp120_{BaL}$

[†]Corresponds to the % change, relative to wild-type, of the relative abundance (%) of each glycan species.

			IC ₅₀ (µ	g ml ⁻¹)		
	PGT121	b12	PGT135	2G12	PGT128	17b
WT	0.52	0.08	0.48	0.20	0.19	1.96
N88A	0.87	0.07	0.73	0.36	0.19	1.34
N130A	2.07	0.07	0.89	0.41	0.66	>40
N136A	0.58	0.07	0.61	0.30	0.20	1.38
N141A	0.80	0.08	0.53	0.35	0.24	1.43
N144A	0.77	0.09	0.39	0.24	0.20	1.66
N156A	1.23	0.08	0.26	0.15	0.38	6.70
N186A	0.85	0.09	0.74	0.13	0.24	1.49
N197A	0.95	0.09	0.55	0.16	0.33	2.62
N241A	0.53	0.09	0.55	0.22	0.18	1.64
N262A	0.91	0.08	1.53	0.29	0.52	>20
N289A	0.79	0.06	0.29	0.20	0.16	1.12
N295A	0.57	0.08	0.21	>20	0.19	2.83
N301A	0.42	0.08	0.29	0.21	2.39	2.37
N332A	>20	0.07	>20	0.23	9.60	1.31
N339A	0.30	0.07	0.16	0.21	0.20	1.01
N356A	0.31	0.06	0.44	0.97	0.21	1.25
N386A	0.40	0.04	0.24	0.58	0.20	>20
N392A	0.58	0.09	0.92	>20	0.19	2.85
N396A	0.29	0.08	0.30	0.44	0.19	4.91
N406A	0.32	0.09	0.37	0.23	0.23	1.01
N411A	0.28	0.08	0.34	0.24	0.22	1.52
N448A	0.45	0.09	0.36	0.20	0.21	3.63
N463A	0.45	0.09	0.32	0.29	0.17	1.48

Supplementary Table 3. IC_{50} values for binding of N332-dependent and other conformation-dependent antibodies to $gp120_{BaL}$ PNGS-mutants

No binding Reduced binding plateau

Strain			% ch	ange		
	M5	M6	M7	M8	M9	Total
BaL	15	13	19	-16	-57	-13
BG505	9	10	3	-16	-54	-9
C22	18	-2	-13	-34	-47	-14
94UG103	-6	2	1	-12	-42	-14

Supplementary Table 4. Effect of deletion of the N262 glycosylation site on the abundance of oligomannose-type glycans within gp120s from different strains

Supplementary Table 5. Primers used for site-directed mutagenesis of $gp120_{BaL}$.

	Primer sequence (5'-to-3')
Forwards flanking (Age1)	CGACACCGGTATGGACGCCATGAAG
Reverse flanking (Kpn1)	CATGGTACCCACCACGCTGCTGATG
BaL N88A	GAAGTAGAATTGGAAGCTGTGACAGAAAATTTTAAC
	GTTAAAATTTTCTGTCACAGCTTCCAATTCTACTTC
D. I. M120 A	CTGTGCGTGACCCTGGCTTGCACTGATTTGAGG
Bal N130A	CCTCAAATCAGTGCAAGCCAGGGTCACGCACAG
D. I. N126A	GCACTGATTTGAGGGCTGCTACTAATGGGAAC
Bal N130A	GTTCCCATTAGTAGCAGCCCTCAAATCAGTGC
D., I. N141A	GCTACTAATGGGGCCGACACCAACACCAC
BaL N141A	GTGGTGTTGGTGTCGGCCCCATTAGTAGC
D., L. N1144A	GGAACGACACCGCCACCAGCAGCAG
Bal N144A	CTGCTGCTGGTGGTGGCGGTGTCGTTCC
D. L. NIISCA	GGCGAGATGAAGGCCTGCAGCTTCAAGATC
Dal N130A	GATCTTGAAGCTGCAGGCCTTCATCTCGCC
Dol N196A	GTGCCCATCGACGCCAACAGCAACAACC
Dal N180A	GGTTGTTGCTGTTGGCGTCGATGGGCAC
Dol. N107A	CGCCTGATCAGCTGTGCCACCTCAGTCATTAC
Dal N19/A	GTAATGACTGAGGTGGCACAGCTGATCAGGCG
Bal N2/1A	GAAAAGGACCATGTTCAGCTGTCAGCACAGTACAATG
Dal 11241A	CATTGTACTGTGCTGACAGCTGAACATGGTCCTTTTC
Bal N2624	CAGCTGCTGCTGGCCGGCAGCCTGGC
Dal N202A	GCCAGGCTGCCGGCCAGCAGCAGCTG
Bal N280A	CATAATAGTACAGCTGGCTGAATCTGTAGAAATTAATTG
Dal N207A	CAATTAATTTCTACAGATTCAGCCAGCTGTACTATTATG
Bal N2954	GAATCTGTAGAAATTGCTTGTACAAGACCCAACAACAATACACGC
Dal N2/JA	GCGTGTATTGTTGTTGGGGTCTTGTACAAGCAATTTCTACAGATTC
Bal N301A	GTACAAGACCCAACGCCAATACACGCAAGAGCATC
Bal N501A	GATGCTCTTGCGTGTATTGGCGTTGGGTCTTGTAC
Pol N222A	GAGAAATAATAGGAGATATAAGACAAGCACATTGTGCCCTTAGTAGA GCAAAATG
Dal N352A	CATTTTGCTCTACTAAGGGCACAATGTGCTTGTCTTATATCTCCTATTA TTTCTC
Bol N330A	TAACCTTAGTAGAGCAAAATGGGCTGACACTCTGAACAAGATCGTG
Dal N559A	CACGATCTTGTTCAGAGTGTCAGCCCATTTTGCTCTACTAAGGTTA
Bal N356A	GCGAGCAGTTCGGCGCCAAGACCATCGTC
Dal NJJOA	GACGATGGTCTTGGCGCCGAACTGCTCGC
Bal, N3864	GGAGGGGAATTTTTCTACTGTGCTTCAACACAACTGTTTAATAG
Ball NJOOA	CTATTAAACAGTTGTGTGTGAAGCACAGTAGAAAAATTCCCCTCC
BaL N392A	CAACACAACTGTTTGCTAGTACTTGGAATG

	CATTCCAAGTACTAGCAAACAGTTGTGTTG
BaL N396A	GTTTAATAGTACTTGGGCTGTTACTGAAGAGTC
	GACTCTTCAGTAACAGCCCAAGTACTATTAAAC
BaL N406A	GAATGTTACTGAAGAGTCAGCTAACACTGTAG
	CTACAGTGTTAGCTGACTCTTCAGTAACATTC
BaL N411A	CAAATAACACTGTAGAAGCTAACACAATCACAC
	GTGTGATTGTGTTAGCTTCTACAGTGTTATTTG
BaL N448A	CAAATTCGCTGCAGCAGCGCCATCACCGGCC
	GGCCGGTGATGGCGCTGCTGCAGCGAATTTG
BaL N463A	CGGCCCAGAGGACGCCAAGACCGAGGTCTTC
	GAAGACCTCGGTCTTGGCGTCCTCTGGGCCG

Mutation	Primer sequence (5'-to-3')
Bal N130A —	TCTGTGTTACTTTAGCTTGCACTGATTTGAG
	CTCAAATCAGTGCAAGCTAAAGTAACACAGA
Bal N262A —	CAACTCAACTGCTGTTAGCTGGCAGTCTAGC
	GCTAGACTGCCAGCTAACAGCAGTTGAGTTG
Bal N295A	GAATCTGTAGAAATTGCTTGTACAAGACCCAAC
	GTTGGGTCTTGTACAAGCAATTTCTACAGATTC
Bal N301A	TGTACAAGACCCAACGCCAATACAAGAAAAAGT
	ACTTTTTCTTGTATTGGCGTTGGGTCTTGTACA
Bal N332A	GACAAGCACATTGTGCCCTTAGTAGAGCAA
	TTGCTCTACTAAGGGCACAATGTGCTTGTC
Bal N386A	GGAATTTTTCTACTGTGCTTCAACACAACTGTT
	AACAGTTGTGTTGAAGCACAGTAGAAAAATTCC
Bal N392A	TCAACACAACTGTTTGCTAGTACTTGGAATGTT
	AACATTCCAAGTACTAGCAAACAGTTGTGTTGA

Supplementary Table 6. Primers used for site-directed mutagenesis of BaL pseudovirus.