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Supplementary Figure 1: The distribution of frequency and dwell time of the most
frequented locations. Bar charts of the mean frequency and mean dwell time (in hours)
of the users in the ten most frequent locations, for the GSM (left) and the GPS (right)
datasets. Whiskers indicate the standard deviation of frequencies and times.
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Supplementary Figure 2: Classification of returners and explorers. Split of the
population in 2-returners and 2-explorers according to the the three split methods on
GSM data (a, b, c) and GPS data (d, e, f).
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Supplementary Figure 3: Number of returners and explorers as k increases. Number
of k-returners and k-explorers in the population with k = 2, . . . , 10 for GSM data (a, b,
c) and GPS data (d, e, f) according to the three spit methods. In GSM data a balance of
the two profiles is reached at k = 4, while in GPS data k-returners are immediately more
numerous than k-explorers.
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Supplementary Figure 4: The correlation between total radius and distance of the
most frequented locations. Scatterplots of rg versus the distance between the two most
frequent locations dist(L1, L2) for 2-returners and 2-explorers, for GSM data (a, b) and
GPS data (c, d). The correlation is much stronger for 2-returners than 2-explorers, as we
can see from the values of the coefficient of determination r2.
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Supplementary Figure 5: The distributions of SSE and SSE∗. Distribution of SSE for
GSM data (a) and GPS data (b) separately for 2-returners and 2-explorers. Distribution
of SSE∗ for GSM data (c) and GPS data (d) separately for 2-returners and 2-explorers.
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Supplementary Figure 6: The correlation between the distance of most frequented
locations and SSE. Scatterplot of distance d(L1, L2) and SSE separately for 2-returners
and 2-explorers, for GSM data (a) and GPS data (b).

6



103 104

Total number of calls

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n

2-returners
2-explorers

103 104 105 106 107

Population of the municipality

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 2

-r
et

ur
ne

rs

Global fraction of 2-returners

Supplementary Figure 7: The role of call activity and demographic variables. (Left)
Distribution of total number of calls made by 2-returners (blue solid curve) and 2-explorers
(red dashed curve). We observe that the curves are very similar excluding a possible bias
due to heterogeneous call frequencies. (Right) The red solid curve represents the global
fraction of 2-returners in the population (GSM data), the black error bars represents the
distribution (mean and the standard deviation) of the fraction of 2-returners living in
municipalities with a given population. We observe that the fraction of 2-returners is
independent of the population of the municipality and compatible with the overall fraction
of 2-returners in the country.

GSM GPS 

a b 

Supplementary Figure 8: The correlation between total radius and k-radius com-
puted on total center of mass. Scatterplot of rg versus r(k)

g,cm for GSM data (a) and
GPS data (b), for k = 2. We observe that the split into 2-returners and 2-explorers is less
clear for GSM data and absent for GPS data.
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Supplementary Figure 9: The distance between k-center of mass and total center
of mass. Distance between the 2-center of mass and the overall center of mass, relative
to r(2)

g : (rcm − r(2)
cm)/r

(2)
g , where individuals are grouped according to the deciles of rg.

Supplementary Figure 10: The transition from the returners state to the explorers
state. Scatterplot of rg versus r

(2)
g for GSM data (left) and GPS data (right). The dashed

line indicates the curve r(k)
g = rg/2 which discriminates between 2-returners and 2-explorers

according to the bisector method.
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Supplementary Figure 11: The correlation between µk and µ(n−k). Scatterplot of µk
versus µ(n−k) (k = 2) for GSM data (a) and GPS data (b). Red squares indicate individuals
with sk = r

(k)
g /rg > 1, while the blue solid curve is the line y = x.
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Supplementary Figure 12: The returners/explorers dichotomy is independent of
the geographic scale. Scatterplots of rg versus the cluster-r(k)

g , for k = 2, GSM data.
The geographic clusters are computed through the DBSCAN algorithm with parameters
eps = 5, 10, 50, 100km and minPts = 2. The returner/explorer dichotomy appears again
and it is clear until eps = 10km (b), where clusters have the size of medium-sized city.
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Supplementary Figure 13: The correlation between total mobility and recurrent
mobility according to mobility models. The correlations between rg and r

(k)
g for

k = 2, 6, 10 for the EPR dataset (a, b, c), the s-EPR dataset (d, e, f) and the d-EPR
dataset (g, h, i).
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Supplementary Figure 14: The ratio between recurrent mobility and total mobility
according to the mobility models. Distributions of the ratio sk = r

(k)
g /rg with k =

2, 6, 10 for the original EPR dataset (a, b, c), the s-EPR dataset (d, e, f) and the d-EPR
dataset (g, h, i).
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Supplementary Figure 15: The correlation between total radius and the distance of
the most frequented locations according to mobility models. Correlation between
the rg and the distance between the two most frequent locations dist(L1, L2) of 2-returners
and 2-explorers, with k = 2, for the original EPR model (a, b), the s-EPR model (c, d)
and the d-EPR model (e, f).
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Supplementary Figure 16: The distribution of total radius according to the mo-
bility models. The distribution of rg for EPR model (a), s-EPR model (b), and d-EPR
model (c).
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Supplementary Figure 17: Temporal evolution of geographic spread for returners
and explorers. (a, d) The distribution of the number of location visited by 2-returners
and 2-explorers. We split the mobility history of each individual into ten equal time slots.
(b, e) The distributions of the area potentially covered by 2-returners and 2-explorers in
each time slot. (c, f) The distributions of rg(t) for 2-returners and 2-explorers. (g-i) The
three distributions for s-EPR and the d-EPR models. Models overestimate the geographical
spread of 2-returners. The insets shows the mean of the distributions in each time slot.
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Supplementary Figure 18: The global invasion diffusion threshold. (Left) The error
bars show how the distribution of the diffusion invasion threshold changes when different
proportions of 2-returners and 2-explorers are chosen. The red error bar indicates the
distribution where the fraction of explorers is 40%, the actual fraction of 2-explorers in
GPS data according to the bisector method. (Right) Average weight as a function of the
end-point degree. The dashed line corresponds to flat behavior (θ = 0).
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2 Supplementary Tables

timestamp tower caller callee type
2008/04/01 23:45:00 (132.567, 23.642) A45J23 F45J23 SMS
2008/04/02 06:02:10 (143.282, 54.221) K65232 V56YT4 Call
2008/04/02 06:15:12 (103.31, 22.34) K65232 F45J23 Call

...
...

...
...

...

Supplementary Table 1: Example of Call Detail Records (CDRs). Every time a user
makes a call or sends an SMS a record is created with timestamp, tower serving the call,
caller (anonymized) identifier, callee (anonymized) identifier and type of communication
(SMS or call).

timestamp origin destination vehicle
2011/05/12 08:31:20 (32.567,−2.546) (32.7,−2.511) F45J23
2011/05/24 17:53:08 (32.1982,−2.333) (33.123,−2.31) H2705L
2011/05/24 20:03:18 (33.15,−2.46) (33.123,−2.31) LP342L

...
...

...
...

Supplementary Table 2: Example of GPS records. Every time a vehicle stops for more
than 20 minutes we store in the dataset the timestamp, the origin and destination, and
the (anonymized) identifier of the vehicle.
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3 Supplementary Notes

Supplementary Note 1: GSM data

The mobile phones carried by individuals in their daily routine offer a good proxy to study
the structure and dynamics of human mobility: each time an individual makes a call the
tower that communicates with her phone is recorded by the carrier, effectively tracking her
current location. In our study we use an anonymized GSM dataset collected by a European
carrier for billing and operational purposes. The dataset consists of Call Detail Records
(CDR) describing each phone call performed by ≈3 million users in a period of three
months. Each call is characterized by timestamp, caller and callee identifiers, duration of
the call and the geographical coordinates of the tower serving the call (Supplementary Table
1). The time ordered list of towers from which a user made her calls forms a trajectory,
capturing her movements during the period of observation [1].

We apply several filters to the data. Firstly, for each user u we discard all the locations
with a visitation frequency f = ni/N ≤ 0.005, where ni is the number of calls performed
by u in location i and N the total number of calls performed by u during the period
of observation. This condition checks whether the location is relevant with respect to the
specific call volume of the user. Since it is meaningless to analyze the mobility of individuals
who do not move, all the users with only one location after the previous filter are discarded.
We select only active users with a call frequency threshold of f = N/(24∗91) ≥ 0.5, where
N is the total number of calls made by u, 24 is the hours in a day and 91 the days in our
period of observation. Finally, to exclude abnormally active users like line testers and alarm
managers we discard the users with a huge number of calls N > k ∗ 91, where k = 300.
Starting from ≈3 millions users, the filtering results in 67, 049 active mobile phone users.

Supplementary Note 2: GPS data

The GPS dataset stores information of approximately 9.8 Million different trips from
159,000 vehicles tracked during one month (May 2011) which passed through a 250km×250km
square in central Italy. The GPS traces are provided by Octo Telematics Italia Srl (http:
//www.octotelematics.com/), a company that provides a data collection service for in-
surance companies. The market penetration of this service is variable on the territory, but
covers in average around 2% of the total registered vehicles. The GPS device automatically
turns on when the vehicle starts, and the sequence of GPS points that the device transmits
every 30 seconds to the server via a GPRS connection forms the global trajectory of a ve-
hicle. When the vehicle stops no points are logged nor sent. We exploit these stops to split
the global trajectory into several sub-trajectories, corresponding to the trips performed
by the vehicle. Clearly, the vehicle may have stops of different duration, corresponding
to different activities. To ignore small stops like gas stations, traffic lights, bring and get
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activities and so on, we choose a stop duration threshold of at least 20 minutes: if the time
interval between two consecutive observations of the vehicle is larger than 20 minutes, the
first observation is considered as the end of a trip and the second observation is considered
as the start of another trip. We also performed the extraction of the trips by using different
stop duration thresholds (5, 10, 15, 20, 30, 40 minutes), without finding significant differ-
ences in the sample of short trips and in the statistical analysis we present in the paper.
Since GPS data do not provide explicit information about visited locations, we assigned
each origin and destination point of the obtained sub-trajectories to the corresponding cen-
sus cell, according to the information provided by the Italian National Institute of Statistics
(ISTAT, www.istat.it). As for the GSM data, we describe the movements of a vehicle by
the time-ordered list of census cells where the vehicle stopped (Supplementary Table 2).
We fllter the data by focusing only on trips performed within a single region (Tuscany),
and by discarding all the vehicles with only one visited location or with less than one trip
per day on average during the period of observation. This filtering results in a dataset of
46,121 vehicles.

The GSM and the GPS datasets differ in several aspects [2, 3]. The GPS data refers to
trips performed during one month (May 2011) in an area corresponding to a single Italian
region, while the mobile phone data cover an entire European country and a period of
observation of three months. The GPS data represents a 2% sample of the population
of vehicles in Italy [2], while the mobile phone dataset covers users of a major European
operator, about the 25% of the country’s adult population. The trajectories described by
mobile phone data include all possible means of transportation. In contrast, the GPS data
refers to vehicle displacements only. The fact that one dataset contains aspect missing in
the other dataset makes the two types of data suitable for an independent validation of
the universality of the patterns emerging from human mobility behavior.

Supplementary Note 3: importance of locations

We evaluate the importance of a GSM location, i.e. its weight, using the visitation frequency
as suggested in the seminal paper by González et al. [1]. For GPS data, we measure the
weight using the dwell time of a vehicle in a certain census cell. As Supplementary Figure 1
suggests, while in the GSM data there is no significant difference between the frequency and
time distribution, for the GPS data the time spent in a location is much more discriminant
of the importance of a location.
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Supplementary Note 4: classification methods

We develop three methods to split the population into returners and explorers. The bisec-
tor method uses a curve bisecting the plane to detect the subpopulation of k-returners. A
Support Vector Machine (SVM) and the Expectation-Maximization (EM) clustering algo-
rithm extract the two patterns from the population by means of data mining techniques.

The bisector method uses the curve r(k)
g − rg/2 = 0 to bisect the plane, defining all the

users above the curve as k-returners. Supplementary Figure 3 shows how the number of k-
returners varies with the number of locations k considered into the k-radius. Supplementary
Figure 2(a, d) shows the split of the population according to the bisector method.

Support Vector Machines (SVM) [4] are supervised learning models that analyze data
and recognize patterns. We first build the SVM classifier providing a set of training exam-
ples to the SVM learning algorithm, and then used the built model to classify individuals
as k-returners or k-explorers. We describe each individual as a pair (r(k)

g , rg). As train-
ing examples, we select the individual falling exactly on the diagonal (k-returners) or the
abscissa (k-returners) of the rg vs r(k)

g plot. Precisely, k-returners examples are all the
individual for which r(k)

g = rg, while k-explorer examples are all the individual for which
r

(k)
g = 0. Supplementary Figure 2(b, e) shows the split of the population according to the
SVM method.

The Expectation-Maximization (EM) algorithm [4] is an iterative method for finding
maximum likelihood of parameters in statistical models. It alternates between an expec-
tation (E) step, which creates a function for the expectation of the log-likelihood based on
the current estimate for the parameters, and a maximization (M) step, which computes
parameters maximizing the expected log-likelihood found on the E step. These parameter-
estimates are then used to determine the distribution of the latent variables in the next
E step. The EM algorithm outputs a pair of values for each individual, representing the
probability to be a k-returner and a k-explorer. We assign each individual to the category
with the highest probability. Supplementary Figure 2(c, f) shows the split of the population
according to the EM method.

The three methods produce similar trends of variation with k (Supplementary Figure
3). For GSM data, k-returners are initially the minority in the population. They start
outnumbering the k-explorers from k = 4. In the GPS case k-returners are immediately
the majority, and the gap increases with the value of k. Since the methods produce similar
results, we focus on the simplest, the bisector method.
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Supplementary Note 5: spatial distribution of locations

The spatial distribution of the visited locations is a characteristic feature that differentiates
between returners and explorers. We show that we can provide a quantitative and robust
confirmation to this observation by presenting the following two results:

1. The distance between the two most frequented locations of 2-returners grows propor-
tionally to their total radius of gyration, while it is not so for 2-explorers.

2. The locations visited by 2-returners are clustered around their two most frequented
locations, while those visited by 2-explorers are more spread out.

To show the validity of (1) we plot the correlation between rg and the distance between
the k = 2 most frequented locations, separately for returners and explorers. We observe
that the positive correlation between rg and the distance dist(L1, L2) is stronger for 2-
returners than 2-explorers, both for GSM data (Supplementary Figure 4 a, b) and GPS
data (Supplementary Figure 4 c, d). Therefore for returners there is a tendency of the
k most frequent locations to move far away from each other as total rg increases. This
tendency is very weak for explorers.

To show the validity of (2) we compute the clusters around the k most frequented
locations in the following way: the k most frequented locations L1, . . . Lk are the centroids
of k different clusters C1, . . . , Ck, then we assign each location Li (i > k) to the cluster
of the closest centroid, i.e. if Li is closer to L1 than the other k − 1 most frequented
locations we assign it to cluster C1. For each user we evaluate the cohesion of its clusters
using two measures: the SSE and the SSE∗. The SSE (Sum of Squared Errors) is the
total sum of the squared distances of locations within a cluster to their centroid, SSE =∑k

i=1

∑
x∈Ci

dist(ci, x)2 where ci is the centroid of cluster Ci. The higher the SSE, the
worse is the cohesion of the clusters. The SSE∗ is another measure of cluster cohesion:
SSE∗ = SSE/SSE, where SSE =

∑k
i=1

∑
x∈Ci

∑k
j=1,j 6=k dist(cj, x)2 is the sum of squared

distances of each location to the centroids of the other clusters. Supplementary Figure 5
shows the distribution of SSE and SSE∗ separately for 2-returners and 2-explorers and for
GSM and GPS data. We observe that a large fraction of 2-returners have dense clusters
around the 2 most important locations (small SSE and SSE∗), while 2-explorers have lower
cohesion, on average.

We also investigate the correlation between d(L1, L2) and SSE of individuals, observing
that 2-returners and 2-explorers follow two distinct behaviors. The SSE for 2-explorers
assumes values far larger than 2-returners, while the distance d(L1, L2) for 2-returners
has far larger variability than 2-explorers (Supplementary Figure 6). For 2-returners the
distance d(L1, L2) significantly changes with the radius of gyration while for 2-explorers it
does not, and the k clusters are much more cohesive for 2-returners than 2-explorers.
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Supplementary Note 6: call activity and demography variables

We have verified that the split of individuals into returners and explorers is not due to con-
founding variables like 1) the heterogeneity on the number of calls, and 2) the demography
of the municipality of residence.

1. In Supplementary Figure 7 (left) we show the two probability density functions of
the total number of calls made by 2-returners (blue solid curve) and 2-explorers (red
dashed curve). The two curves are very close, confirming that the level of activity of
the individuals in the two groups is comparable and thus excluding a possible bias
due to heterogeneous call frequencies.

2. In Supplementary Figure 7 (right) we consider groups of municipalities with similar
population and compute the fraction of 2-returners living in those municipalities.
From the figure it is clear that the fraction of 2-returners in a municipality is (i)
independent of the population of the municipality, and (ii) compatible (within a
standard deviation) with the overall fraction of 2-returners in the country. Hence,
we can exclude that the demography of the municipality of residence may affect the
classification of individuals to the observed groups of mobility behaviours.

Supplementary Note 7: k-radius on total center of mass

We also compute for each individual r(k)
g,cm which is the k-radius computed using the overall

center of mass instead of r(k)
cm. In the scatterplot rg vs r(k)

g,cm the split into 2-returners and
2-explorers is less clear for GSM data, and it is absent for GPS data (Supplementary Figure
8). Explorers move towards the diagonal (r(k)

g,cm ≥ r
(k)
g ) suggesting that for explorers r(k)

cm

is different from rcm (Supplementary Figure 8). Supplementary Figure 9 shows the error
bars of the distance rcm − r(k)

cm relative to r(k)
g , where individuals are grouped according to

the deciles of rg. While the relative distance is constant for 2-returners (the two centers of
mass are relatively close to each other), for 2-explorers the relative distance is higher and
increases with rg. As a consequence, 2-returners have similar r(k)

g and r
(k)
g,cm while this is

not true for 2-explorers.

Supplementary Note 8: transition between the two states

While explorers gradually become returners as k increases, the opposite process is extremely
rare. For k = 3, . . . 10 we compute the fraction n̄ of users who are k-explorers and (k− 1)-
returners. The number n̄ decreases with k and is very small, lower than 0.01 for any k. In
particular for k = 3, n̄ = 0.008 for GSM data (185 individuals) and n̄ = 0.004 for GPS
data (105 individuals). We plot the correlation between rg and r

(2)
g for these individuals

and observe that they are located on the curve r(k)
g = rg/2 (Supplementary Figure 10).

Since they are on the bisector line, they are not 2-returners neither 2-explorers the bisector
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method fails in classifying properly the individuals and generates the fluctuations between
the two profiles as k increases.

Supplementary Note 9: distance of locations to the center of mass

The ratio sk = r
(k)
g /rg is less than one for almost all individuals. sk > 1 means that

r
(k)
g > rg suggesting that the (n − k) less frequented locations are on average closer to
the center of mass than the k most frequented locations. We verify this hypothesis by
computing two measures:

• µk = 1/k
∑k

i=1(ri−rcm), the mean distance of the k most frequented locations to the
center of mass;

• µ(n−k) = 1/(n− k)
∑n

i=k+1(ri − rcm), the mean distance of the other n− k locations
to the center of mass.

Supplementary Figure 11 shows the scatterplot of µk versus µ(n−k) for k = 2. We observe
that individuals with sk > 1 are below the bisector of the plane meaning that µk ≥ µ(n−k).
Hence for individuals with r(k)

g > rg the k most frequented locations are distant from the
center of mass while the other n − k are very close contributing the produce a total rg
smaller than r(k)

g .

Supplementary Note 10: mobility clusters

We define the cluster k-radius c-r(k)
g as the radius of gyration computed on the k most

frequented geographic clusters. A geographic cluster of an individual is a dense group
of locations representing a geographic unit of individual mobility. An individual that
commutes weekly between two homes in two different cities has (at least) two different
geographic clusters. The c-r(k)

g is computed on the k most frequented clusters, considering
the most frequent location of each cluster only. In the above cited example, the cluster
radius of an individual is the radius of gyration computed on the two different homes.

We compute the geographical clusters through the DBSCAN algorithm [4], which ex-
tracts dense groups of points according to two input parameters: eps, the maximum search
radius; and minPts, the minimum number of points (locations) to form a cluster. We set
minPts = 2 and eps = 5, 10, 50, 100km. The split into 2-returners and 2-explorers emerges
also at cluster level, and it is clear until eps = 10km, where the clusters have the size of a
medium sized city. For high values of eps = 50, 100km the number of computed clusters is
small (mainly 2), penalizing the presence of 2-explorers (Supplementary Figure 12). The
presence of returners and explorers in the population, hence, is independent of the spatial
granularity of individuals’ location: it appears for GSM towers as well as when we take
districts or entire cities as individual locations.
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Supplementary Note 11: comparison with mobility models

We compare our findings with the results produced by the Exploration and Preferential
Return (EPR) individual mobility model [5], a state-of-the-art model that accurately cap-
tures the visitation frequency of locations, the distribution of the radius of gyration across
the population and its growth with time. The model does not fix the set of preferred loca-
tions but allows them to emerge naturally during the evolution of the mobility process. It
incorporates two competing mechanisms: exploration and preferential return. Exploration
is a random walk process with truncated power law jump size distribution. Preferential
return reproduces the propensity of humans to return to the locations they visited fre-
quently before. An agent in the model selects between the two modes: with probability
Pnew = ρS−γ (where S is the number of locations visited so far by the agent, ρ and γ

are two model parameters), the individual moves to a new location, whose distance from
the current one is chosen from the known power law distribution of displacements. With
complementary probability Pnew = 1− ρS−γ, the agent returns to one of the S previously
visited places (with the preference for a location proportional to the frequency of visits).
As a result, the model has a warmup period of greedy exploration, while in the long run
agents mainly move around a set of previously visited places.

We implemented the original version of the EPR model, along with two improved
versions: the s-EPR model, where agents are constrained within a limited geographical
space; and the d-EPR model, in which an individual selects a new location depending
on both its distance from the current position and its relevance measures ad the overall
number of calls places by all users from that location. We use the gravity model to assign
the probability of a trip between any two locations automatically constraining individuals
within the country’s boundaries. Supplementary Figures 13, 14 and 15 show the patterns
of returners and explorers emerging from the three versions of the EPR model.

24



Supplementary Note 12: EPR model

Here we describe the implementation of the original EPR model. We generate an initial
(home) location for each of the 67,000 synthetic individuals by randomly selecting a point
on a square of size 100 × 100. We then repeat the following steps 1,000 times for each
individual:

1. We extract a waiting time ∆t from the distribution P (∆t) ∼ ∆t−1−β exp(−∆t/τ), with
β = 0.8 and τ = 17 hours as measured in [5].

2. With probability Pnew = ρS−γ, where S is the number of distinct locations previously
visited and ρ = 0.6 and γ = 0.21 [5], the individual visits a new location (step 3),
otherwise she returns to a previously visited location (step 4).

3. If the individual explores a new location, a distance ∆r is extracted from the dis-
tribution P (∆r) = ∆r−1−α with α = 0.55 as in [5], and the individual moves to a
randomly selected location on the circle of radius ∆r centered on her current location.
The number of distinct locations visited, S, is increased by one. The new locations
can be outside the initial 100× 100 square.

4. If the individual returns to a previously visited location, it is chosen with probability
proportional to the number of visits to that location.

Supplementary Note 13: spatial EPR model

Here we describe the implementation of the s-EPR model, a version of the EPR model
where we constraint individual within spatial boundaries. We place each of the 67, 000

GSM users in her most visited location (GSM cell phone towers). For each individual we
repeat the following steps:

1. Same as the original model.

2. Same as the original model.

3. If the individual explores a new location, a distance ∆r is extracted from the dis-
tribution P (∆r) = ∆r−1−α with α = 0.55 as in [5], and an angle θ between 0 and
2π is extracted with uniform probability. If the location at distance ∆r and angle
θ from the current location is not in the country’s boundaries a new distance and a
new angle are extracted until this condition is satisfied. When the new location is
found the number of distinct locations visited, S, is increased by one.

4. Same as the original model.
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Supplementary Note 14: density EPR model

Here we describe the implementation of the d-EPR model. We place each of the 67, 000

GSM users in their most visited location (GSM cell phone towers). For each individual we
repeat the following steps:

1. Same as the original model.

2. Same as the original model.

3. If the individual who is currently in location i explores a new location, then the
new location j 6= i is selected according to the gravity model [6, 7] with probability
pij = 1

N

ninj

r2ij
, where ni(j) is the total number of calls placed by all users from location

i(j) representing its relevance, rij is the geographic distance between i and j, and
N =

∑
i,j 6=i pij is a normalisation constant. The number of distinct locations visited,

S, is increased by one.

4. Same as the original model.

Supplementary Note 15: temporal evolution of geographic spread

Following the temporal evolution of an individual’s trajectory, we split her mobility history
into time periods, and capture the geographical spread up to time t through the number
of locations visited, the area covered and the radius of gyration rg(t). Explorers distribute
over a larger territory, as they visit more locations, cover a lager geographic are and have a
higher rg(t) with respect to returners (Supplementary Figure 16). In contrast, the s-EPR
model and the d-EPR model overestimate the geographical spread of returners.

Supplementary Note 16: global diffusion invasion threshold

We compute the diffusion invasion threshold on several (unweighted) global mobility net-
works built by choosing randomly both 2-returners and 2-explorers with different propor-
tions, in order to understand how the threshold changes as the fraction of explorers in
the population increases. For each network we compute the mean degree 〈k〉, the mean
square degree 〈k2〉, and the mean number of residents in the each location N̄ . We use these
values to determine the global invasion threshold R∗ = N̄ · C(〈k2〉 − 〈k〉)/〈k〉2, under the
assumption of a diffusion dynamics with large subpopulations and a low reproductive num-
ber (i.e. close to the subpopulation epidemic threshold) [8]. Here the constant C depends
on the disease model and the mobility parameters (e.g. the reproductive number and the
mobility rate), which are the same for the two classes of user profiles. In a metapopulation
network an epidemic can spread and invade the system only if R∗ > 1, and this global
invasion threshold is affected by the topological fluctuations of the network’s degree: the
larger is the degree heterogeneity, the higher is R∗ and therefore the higher is the chance
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that the epidemic will globally invade the metapopulation. Error bars in Supplementary
Figure 17 (left) summarize the distribution (mean and standard deviation) of the diffusion
invasion threshold over 1,000 random experiments in ten different scenarios where different
proportions of 2-returners and 2-explorers are chosen. We observe that as the fraction of
2-explorers increases the mean diffusion invasion threshold increases.

We also build weighted global mobility networks using the number of trips between
locations performed by vehicles during the period of observation as weight of the edges.
The distribution of edge weights follows a power law, with maximum values of 30 (i.e. 30
trips between the locations). This is presumably due to the size of the census cells, which is
not uniform and tend to be very small in densely populated areas. To compute a weighted
version of the global invasion threshold Rw

∗ = N̄ · (〈k2+2θ〉 − 〈k1+2θ〉)/〈k1+θ〉2 we estimate
the parameter θ as the function between the average weight and the end-point degrees
[9, 10] (Supplementary Figure 17, right). We observe a flat behavior for almost six orders
of magnitude, hence we estimate θ = 0. For θ = 0 the Rw

∗ = R∗ being undistinguishable
to the unweighted scenario.

27



Supplementary References

[1] González, M. C., Hidalgo, C. A. & Barabási, A.-L. Understanding individual human
mobility patterns. Nature 453, 779–782 (2008).

[2] Pappalardo, L., Rinzivillo, S., Qu, Z., Pedreschi, D. & Giannotti, F. Understanding
the patterns of car travel. The European Physical Journal Special Topics 215, 61–73
(2013).

[3] Pappalardo, L., Simini, F., Rinzivillo, S., Pedreschi, D. & Giannotti, F. Comparing
general mobility and mobility by car. In Proceedings of the 1st BRICS Countries
Congress (BRICS-CCI) and 11th Brazilian Congress (CBIC) on Computational In-
telligence (2013).

[4] Tan, P.-N., Steinbach, M. & Kumar, V. Introduction to Data Mining (Addison Wesley,
2006).

[5] Song, C., Koren, T., Wang, P. & Barabási, A.-L. Modelling the scaling properties of
human mobility. Nature Physics 6, 818–823 (2010).

[6] Zipf, G. K. The p1p2/d hypothesis: On the intercity movement of persons. American
Sociological Review 11, 677–686 (1946).

[7] Jung, W. S., Wang, F. & Stanley, H. E. Gravity model in the korean highway. EPL
(Europhysics Letters) 81, 48005 (2008).

[8] Colizza, V. & Vespignani, A. Invasion threshold in heterogeneous metapopulation
networks. Physical Review Letters 99, 148701 (2007).

[9] Colizza, V. & Vespignani, A. Epidemic modeling in metapopulation systems with het-
erogeneous coupling pattern: Theory and simulations. Journal of Theoretical Biology
251, 450–467 (2008).

[10] Barrat, A., Barthélemy, M., Pastor-Satorras, R. & Vespignani, A. The architecture of
complex weighted networks. Proceedings of the National Academy of Sciences of the
United States of America (PNAS) 101, 3747–3752 (2004).

Correspondence and requests for materials should be addressed to: lpappalardo@di.unipi.it
and f.simini@bristol.ac.uk

28


	Supplementary Figures
	Supplementary Tables
	Supplementary Notes

