Supplementary Information

Integrated molecular analysis of clear cell renal cell carcinoma

Yusuke Sato, Tetsuichi Yoshizato, Yuichi Shiraishi, Shigekatsu Maekawa, Yusuke Okuno, Takumi Kamura, Teppei Shimamura, Aiko Sato-Otsubo, Genta Nagae, Hiromichi Suzuki, Yasunobu Nagata, Yasunobu Nagata, Kenichi Yoshida, Ayana Kon, Yutaka Suzuki, Kenich Chiba, Hiroko Tanaka, Atsushi Niida, Akihiro Fujimoto, Tatsuhiko Tsunoda, Teppei Morikawa, Daichi Maeda, Haruki Kume, Sumio Sugano, Masashi Fukayama, Hiroyuki Aburatani, Masashi Sanada, Satoru Miyano, Yukio Homma and Seishi Ogawa

Table of contents:

1. Supplementary Figures

Figure 1. Mean coverage by whole-genome sequencing for paired tumor (T)/normal (N) DNA from 14 ccRCC cases........................... p. 3

Figure 2. Somatic mutations detected by whole-genome sequencing for 14 ccRCC
specimens... 4
Figure 3. Circos plots of 14 ccRCC genomes.................................... p. 5
Figure 4. Mean coverage by whole-exome sequencing for paired tumor (T)/normal (N) DNA from 106 ccRCC cases.. p. 6

Figure 5. Diagonal plots of validated coding sequence mutations detected by whole-genome and/or exome sequencing for 14 ccRCC specimens analyzed with both platforms.
p. 7

Figure 6. Lower allele frequencies of somatic mutations detected only by
whole-exome sequencing... 8
Figure 7. Intratumoral heterogeneity in ccRCC cases......................... p. 8
Figure 8. LOH mapping in the $3 p$ arm in ccRCC.................................. p. 9
Figure 9. Mutation distributions in 3p targets, including VHL, PBRM1, SETD2 and BAP1
p. 9

Figure 10.Amino-acid sequence alignments for Elongin C (TCEB1) from different species p. 10
Figure 11.Compromised binding of mutant Elongin C (TCEB1) to VHL and other BC-box proteins p. 10
Figure 12. HIF1a expression in IHC. p. 11
Figure 13. Significantly mutated genes/pathways in 106 exome cases p. 12
Figure 14. Histologies of tumors having KEAP1/NRF2/CUL3 mutations. p. 13
Figure 15. Copy number profiles of 240 ccRCC specimens p. 14
Figure 16. Higher allele frequencies of mutations in the $3 p$ target genes in cases with 3p UPD p. 15
Figure 17. NONO-TFE3 fusion transcript p. 16
Figure 18.ccA and ccB clusters identified from the expression profiles of 101ccRCC samplesp. 17

Figure 19. Different expression signatures between BAP1- and PBRM1-mutated tumorsp. 18

Figure 20.Difference of methylation level among high/intimidate/low methylation clusters
p. 18

Figure 21. Association between methylation of PRC2 target genes and BAP1
mutation/expression and EZH2 expression p. 19
Figure 22. Histolgies of tumors having no VHL or TCEB1 alterationsp. 20
2. Supplementary Tables
Table 1. Characteristics of the patients excel file (Stable1.xlsx)
Table 2. List of mutations in whole-genome sequencing
excel file (STable2.xIsx)
Table 3 List of mutations in exome-sequencing excel file (STable3.xIsx)
Table 4 Recurrently mutated genes found in whole-exome sequencing excel file (STable4.xIsx)
Table 5 Multivariate analysis of prognosis for 240 ccRCC cases p. 21
Table 6. Clinicopathological characteristics of VHL- and TCEB1- mutated tumors p. 22
Table 7. Knockdown efficacy of siRNA for TCEB1 mRNA p. 23
Table 8. Results of immunostaining of HIF1 α and HIF2 α p. 24
Table 9. Significantly enriched mutational pathways p. 26
Table 10. Summary of RNA sequencing data. excel file (Stable8.xIsx)
Table 11. Fusion transcripts detected in RNA sequencing
excel file (Stable9.xlsx)
Table 12. Overrepresented annotation terms among differentially methylated genes
excel file (Stable10.xIsx)
Table 13. List of PCR primers for frequently mutated genes
excel file (Stable11.x|sx)
Table 14. List of PCR primers used for deep sequencing excel file (Stable12.xlsx)
Table 15. List of antibodies for immunoblot analysis p. 27
3. Supplementary Note p. 28

Supplementary Figure 1

Mean coverage by whole-genome sequencing for paired tumor (T)/normal (N) DNA from 14 ccRCC cases.
Genomic fractions analyzed by the indicated coverage are shown by colors.

Supplementary Figure 2

b

Somatic mutations detected by whole-genome sequencing for 14 ccRCC specimens
(a) Total number of mutations within coding and non-coding regions. (b) Differential counts of non-silent mutations. (c) Spectrum of single-nucleotide substitutions.

Supplementary Figure 3

ccRCC-18

ccRCC-56

ccRCC-66

ccRCC-100

ccRCC-34
ccRCC-51
ccRCC-55

ccRCC-64

ccRCC-96
ccRCC-95

Circos plots of 14 ccRCC genomes

Locations of non-silent mutations, including missense (orange), nonsense (blue) and frameshift (green) mutations are indicated. Total (black) and allele-specific (red and green) genomic copy numbers and structural variations (transverse lines) are indicated in the inner circles. Sample IDs are shown at the top of each circos.

Supplementary Figure 4

Mean coverage by whole-exome sequencing for paired tumor (T)/normal (N) DNA from 106

 ccRCC cases.Fractions of target exome sequences analyzed by the indicated coverage are shown by different colors.

Supplementary Figure 5

Diagonal plots of validated coding sequence mutations detected by whole-genome and/or exome sequencing for 14 ccRCC specimens analyzed with both platforms
Observed allele frequencies from both sequencing platforms are plotted for each mutation. Major driver mutations are indicated. SNVs are shown in blue whereas indels are shown in red.

Supplementary Figure 6

a

b

Lower allele frequencies of somatic mutations detected only by whole-exome sequencing for 14 ccRCC specimens
(a) Number of confirmed somatic mutations detected by whole-genome and/or exome sequencing.
(b) Comparisons of allele frequencies between validated somatic mutations detected by wholeexome sequencing only and by both whole-genome and exome sequencing.

Supplementary Figure 7

Intratumoral heterogeneity in ccRCC cases
Kernel density estimations of clonal populations based on allele frequencies of observed somatic mutations using deep sequencing (top panels). The frequency of each variant allele is plotted against the total number of sequencing reads that covered the corresponding nucleotide positions (bottom panels).

Supplementary Figure 8

Chromosome 3p

LOH mapping in the $3 p$ arm in ccRCC
LOH in the $3 p$ arm found in a total of 226 ccRCC cases by SNP array analysis. The genetic loci of the 4 major targets of 3 p LOH are indicated in which the PBRM1 locus demarcates the common LOH regions.

Supplementary Figure 9

- missense - nonsense/frameshift indel - inframe indel - splice site

SETD2
(3p21.31)

2564aa
Mutation distributions in 3p targets, including VHL, PBRM1, SETD2 and BAP1
Mutations of VHL, PBRM1, SETD2 and BAP1 in a cohort of 240 ccRCC cases. Types of mutations are distinguished by the indicated colors.

Supplementary Figure 10

Elongin C (TCEB1)

[Homo sapiens]	NP_001191786.1
[Pan troglodytes]	XP_001154170.1
[Pan troglodytes]	XP_003311809.1
[Macaca mulatta]	XP_002805434.1
[Canis lupus familiaris]	XP_535104.1
[Bos taurus]	NP_001039958.1
[Mus musculus]	NP_080732.1
[Rattus norvegicus]	NP_072115.1
[Gallus gallus]	NP_001007889.1
[Danio rerio]	NP_001002440.2
[Drosophila melanogaster]	NP_725894.1
[Anopheles gambiae str. PEST]	XP_309973.2
[Caenorhabditis elegans]	NP_497405.1

1 MADQNNAIQCDQDAAQPKQYGGIEGPTSQYVKLVSSDDHEFIIKRELALT
Y79S
Y79C

A100P

SGTIKAMLSGPGQFAENETNEVNFREIPSHVLSKVCMYFTYKVRYTNSSTEIPEFPIAPEIALELLMAANFLDC
39 SGTIKAMLSGPGQFAENETNEVNFREIPSHVLSKVCMYFTYKVRYTNSSTEIPEFPIAPEIALELLMAANFLDC
39 SGTIKAMLSGPGQFAENETNEVNFREIPSHVLSKVCMYFTYKVRYTNSSTEIPEFPIAPEIALELLMAANFLDC 39 SGTIKAMLSGPGQFAENETNEVNFREIPSHVLSKVCMYFTYKVRYTNSSTEIPEFPIAPEIALELLMAANFLDC 39 SGTIKAMLSGPGQFAENETNEVNFREIPSHVLSKVCMYFTYKVRYTNSSTEIPEFPIAPEIALELLMAANFLDC 39 SGTIKAMLSGPGQFAENETNEVNFREIPSHVLSKVCMYFTYKVRYTNSSTEIPEFPIAPEIALELLMAAANFLDC 39 SGTIKAMLSGPGQFAENETNEVNFREIPSHVLSKVCMYFTYKVRYTNSSTEIPEFPIAPEIALELLMAANFLDC 39 SGTIKAMLSGPGQFAENETNEVNFREIPSHVLSKVCMYFTYKVRYTNSSTEIPEFPIAPEIALELLMAANFLDC 39 SGTIKAMLSGPGQFAENETNEVNFREIPSHVLSKVCMYFTYKVRYTNSSTEIPEFPIAPEIALELLMAANFLDC 39 SGTIKAMLSGPGQFAENETNEVNFREIPSHVLSKVCMYFTYKVRYTNSSTEIPEFPIAPEIALELLMAANFLDC 44 SGTIRAMLSGPGQFAENEANEVHFREIPSHVLQKVCMYFTYKVRYTNSSTEIPEFPIAPEIALELLMAANFLDC 44 SGTIKAMLSGPGQFAENEANEVNFREIPSHVLEKVCMYFTYKVRYTNSSTEIPEFPIAPEIALELLMAANFLDC

Amino-acid sequence alignments for Elongin C (TCEB1) from different species
Completely conserved amino acids among all species are indicated in blue; mutational hot spots are shown in red.

Supplementary Figure 11

Compromised binding of mutant Elongin C (TCEB1) to VHL and other BC-box proteins

 (a) Western blotting for indicated components of the VHL complex in total cell lysates (left panels), and precipitated with anti-HA (Elongin C) (middle panels) and anti-FLAG (VHL) in lysates from 293T cells transduced with the indicated mock, wild-type or mutant 3xHA-tagged Elongin C, Elongin B and 3xFLAG-tagged VHL. (b-e) Western blot analyses of BC-box proteins in total cell lysates (left panels) and precipitated with anti-HA (Elongin C) or anti-FLAG (BC-box protein) (right panels) in lysates from 293T cells transduced with either mock, wild-type, mutant 3xHAtagged Elongin C, Elongin B and 3xFLAG-tagged Elongin A (b), SOCS3 (c), FEM1B (d) and LRR1 (e).
Supplementary Figure 12

a
TCEB1 mutation(+)

ccRCC-35

ccRCC-48
b
VHL methylation(+)

ccRCC-17

ccRCC-42

ccRCC-54

C

HIF1 α expression in IHC

Increased HIF expression was confirmed in TCEB1 mutated tumors (a) as well as a tumor with VHL promoter methylation (b), but not in a tumor without VHL/TCEB1 alterations (c).

Supplementary Figure 13

a

CD : Cys-rich domain
DSBH: Double stranded β helix 2OG Fe(II) dependent dioxygenase domain
b

C

Significantly mutated genes/pathways in 106 exome cases
(a) TET2 mutations in ccRCC. Type and position of TET2 mutations are indicated. (b) Significantly mutated pathways are shown in red circles based on the significance level (q values) as indicated by the color gradient. (B):Biocarta (K):KEGG (R):Reactome (ST):Signaling Transduction KE (c) Somatic mutations observed in the apparatus for mRNA processing.

Supplementary Figure 14

KEAP1 mutation

NRF2 mutation

ccRCC-82

CUL3 mutation

ccRCC-18

Histologies of tumors having KEAP1/NRF2/CUL3 mutations.
All cases were confirmed as clear cell RCC with no papillary components on HE staining.

Supplementary Figure 15

a

b

- CN decreased
- CN unchanged
- CN increased
- LOH with unchanged CN

Copy number profiles of $\mathbf{2 4 0}$ ccRCC specimens

(a) Genomic copy number determined by SNP array analysis are shown by a color gradient based on CNAG output for 240 ccRCC specimens. Regions showing copy neutral LOH are overlayed in light green. Samples were clustered based on major copy number lesions, including hyperploidy, $3 p$ loss, $5 q$ gain, $14 q$ LOH, $9 p$ LOH and other abnormalities. (b) Genomic copy numbers inferred by HMM based analysis of 42 hyperploid samples are shown by the indicated colors. (c) The copy number plots for hyperploid cases (b) were transformed by calculating relative copy numbers to the base line copy number ($=3$), in which the copy number status was either increased ($C N>3$, pink), decreased ($\mathrm{CN}<3$, blue), or unchanged ($\mathrm{CN}=3$, gray). This relative copy number profile was an essentially identical to that for diploid samples (a), characterized by losses of $3 p, 4 q, 6 q, 9 p, 9 q$, $14 q$ and gains of $5 q$ and $7 q$, suggesting that these hyperploid tumors were most likely progressed from diploid tumors as a relatively late event.

Supplementary Figure 16

Higher allele frequencies of mutations in the $3 p$ target genes in cases with 3p UPD. 8 out of 25 cases with 3p UPD had mutations in either VHL, PBRM1 or SETD2, which were analyzed by enough depths (>50x) with whole exome sequencing for accurate estimation of allele frequency and also had one or more mutations in copy number 2 n regions. Allele frequencies of $3 p$ target in $3 p$ UPD were higher than those of other mutations within $2 n$ regions in all 3p UPD cases.

Supplementary Figure 17

NONO-TFE3 fusion transcript

NONO-TFE3 fusion transcript was found in single case (a), in which copy number alterations characteristic to ccRCC such as $3 p$ LOH and $5 q$ gain were lacked (b). The junction sequence of fusion transcript was showed with IGV viewer (c) and confirmed with sanger sequencing (d). (e) The tumor was positive for TFE3 in IHC (lower panel) but hardly distinguishable from other ccRCC cases on HE staining (upper panel).

Supplementary Figure 18

b

ccA and ccB clusters identified from the expression profiles of 101 ccRCC samples
K-means clustering for 101 ccRCC specimens based on the expression of genes showing 2 major gene expression clusters: ccA and ccB (a). These were discriminated by the expression of genes involved in angiogenesis (b) and cell cycle progression (c). Mutation status of VHL, PBRM1, BAP1 and SETD2 is indicated in the top panels.

Supplementary Figure 19

BAP1 mutant vs BAP1 WT
PRC2 targets

PBRM1 mutant vs PBRM1 WT Hypoxia signature

Different expression signatures between BAP1- and PBRM1-mutated tumors.

Gene set enrichment analysis showed BAP1-mutated tumors showed significantly downregulated expression of the PRC2 target genes, whereas PBRM1-mutated tumors were enriched for an up-regulated expression of gene set of hipoxia signature.

Supplementary Figure 20

Difference of methylation level among high/intimidate/low methylation clusters
(a) Median methylation levels (β values) are plotted for Low and High (red circles) and Low and Intermediate (black circles) methylation clusters for CpG island probes selected for unsupervised clustering analysis in Infinium 450K arrays. (b) Distribution of median methylation values (β values) are plotted within each methylation cluster (High, Intermediate and Low).

Supplementary Figure 21

PRC2 targets

EZH2 expression

BAP1 expression

PRC2 targets

Association between methylation of PRC2 target genes and BAP1 mutation/expression and EZH2 expression
Gene set enrichment analysis showed BAP1 mutation, decreased BAP1 expression and increased EZH2 expression were significantly associated with increased methylation of PRC2 target genes.

Supplementary Figure 22

Histologies of tumors having no VHL or TCEB1 alterations.
All cases were confirmed as clear cell RCC on HE staining .

Supplementary Table 5 Multivariate analysis of prognosis for 240 ccRCC cases

Factors	No. of cases	Overall survival		Desease free survival	
		Relative risk	P value	Relative risk	P value
PBRM1			0.075		0.115
WT	142				
mut	98	1.82 (0.940-3.55)		1.56 (0.896-2.73)	
$B A P 1$			0.020		0.078
WT	215				
mut	25	3.11 (1.22-6.97)		2.13 (0.912-4.41)	
SETD2			0.266		0.001
WT	214				
mut	26	1.69 (0.637-3.78)		3.24 (1.66-5.93)	

Supplementary Table 6. Clinicopathological characteristics of VHL - and TCEB1 -mutated tumors

Factors	Categories	VHL-mut	TCEB1-mut	\boldsymbol{P} value
age		$61.3(27-91)$	$62.5(42-77)$	0.815
sex	M	$168(76.4 \%)$	$8(100 \%)$	0.218
	F	$52(23.6 \%)$	0	
tumor diameter		$4.2(3-6.125)$	$3(1.2-4.025)$	0.0680
pT	1 a	$116(52.7 \%)$	$5(62.5 \%)$	0.744
	1 b	$55(25.0 \%)$	$2(25.0 \%)$	
	2	$18(8.2 \%)$	0	
	3	$29(13.2 \%)$	$1(12.5 \%)$	
N	4	$2(0.9 \%)$	0	
	0	$211(95.9 \%)$	$8(100 \%)$	0.230
	1	$5(2.3 \%)$	0	
M	2	$4(1.8 \%)$	0	
	0	$196(89.1 \%)$	$8(100 \%)$	1.00
metastasis duaring	1	$24(10.9 \%)$	0	
	+	$170(77.3 \%)$	$8(100 \%)$	0.377
Fuhrman grade	-	$50(22.7 \%)$	0	
	1	$38(17.4 \%)$	$2(25.0 \%)$	0.314
	2	$130(59.6 \%)$	$6(75.0 \%)$	
	3	$45(20.6 \%)$	0	
outcome	4	$5(2.3 \%)$	22	0
Nature Genetics: doi:10.103dive	$185(84.1 \%)$	$8(100 \%)$	0.277	
	dead 2699	$35(15.9 \%)$	0	

Supplementary Table 7b. List of siRNA used for knocking down of TCEB1 TCEB1
 5'-CUAUCGAAAGUAUGCAUGUTT-3
 Non-targeting negative control 5'-UCUUAAUCGCGGUAUAAGGC-3'

Supplementary Table 7c. List of primers used for quantitative RT PCR

	Forward primer	Reverse primer
endogenous TCEB1	GGCTGCGGGACTGACGAGAAAC	GACCTGGGCCACTCAACATGGC
GAPDH	ACTGGCATGGCCTTCCGTGT	ATGCCAGCCCCAGCGTCAAA

Supplementary Table 8. Results of immunostainig of HIF1 α and HIF2 α

sample ID	HIF1a	HIF2 ${ }^{\text {a }}$	VHL	TCEB1
ccRCC-1	1+	1+	mutation	-
ccRCC-2	-	-	-	-
ccRCC-3	3+	2+	mutation	-
ccRCC-4	2+	2+	methylation	-
ccRCC-5	-	1+	mutation	-
ccRCC-6	$1+$	1+	mutation	-
ccRCC-7	2+	$3+$	mutation	-
ccRCC-8	$1+$	$3+$	methylation	-
ccRCC-9	$1+$	-	mutation	-
ccRCC-10	-	1+	mutation	-
ccRCC-11	$1+$	2+	mutation	-
ccRCC-12	$1+$	1+	mutation	-
ccRCC-13	2+	2+	mutation	-
ccRCC-14	1+	-	mutation	-
ccRCC-15	$3+$	-	mutation	-
ccRCC-16	1+	2+	mutation	-
ccRCC-17	3+	$3+$	methylation	-
ccRCC-18	$2+$	2+	mutation	-
ccRCC-19	3+	-	mutation	-
ccRCC-20	$2+$	-	mutation	-
ccRCC-21	2+	1+	methylation	-
ccRCC-22	-	$1+$	mutation	-
ccRCC-23	1+	1+	methylation	-
ccRCC-24	2+	-	mutation	-
ccRCC-25	1+	1+	methylation	-
ccRCC-26	-	-	mutation	
ccRCC-27	2+	2+		mutation
ccRCC-28	1+	+	mutation	mutation
ccRCC-29	$2+$	1+	mutation	-
ccRCC-30	-	-	mutation	-
ccRCC-31	1+	-	-	-
ccRCC-32	$2+$	2+	methylation	-
ccRCC-33	2+	1+	mutation	-
ccRCC-34	1+	1+	mutation	-
ccRCC-35	$2+$	$2+$		mutation
ccRCC-36	$2+$	1+	mutation	-
ccRCC-37	$3+$	$2+$	m	-
ccRCC-38	2+	$3+$	methylation	-
ccRCC-39	+		mutation	-
ccRCC-40	1+	1+	mutation	-
ccRCC-41	-	1+		-
ccRCC-42	$3+$	1+	-	mutation
ccRCC-43	1+	-	methylation	
ccRCC-44	3+	1+	methylation	-
ccRCC-45		1+	methylation	-
ccRCC-46	-	1+	mutation	-
ccRCC-47	$2+$	1+	mutation	-
ccRCC-48	2+			mutation
ccRCC-49	-	-	mutation	
ccRCC-50	2+	1+	mutation	-
ccRCC-51		1+	mutation	-
ccRCC-52	2+	2+	mutation	-
ccRCC-53	2+	$3+$	methylation	-
ccRCC-54	1+	,	-	mutation
ccRCC-55	$2+$	1+	mutation	
ccRCC-56	$2+$	1+	mutation	-
ccRCC-57	$2+$		-	-
ccRCC-58	1+	$1+$	mutation	-

ccRCC-59	1+	-	mutation	-
ccRCC-60	2+	2+	-	-
ccRCC-61	2+	2+	mutation	-
ccRCC-62	$3+$	-	mutation	-
ccRCC-63	2+	1+	mutation	-
ccRCC-64	-	1+	mutation	-
ccRCC-65	-	-	mutation	-
ccRCC-66	$3+$	2+	mutation	-
ccRCC-67	$3+$	-	mutation	-
ccRCC-68	1+	1+	mutation	-
ccRCC-69	2+	1+	mutation	-
ccRCC-70	$3+$	1+	methylation	-
ccRCC-71	3+	-	mutation	-
ccRCC-72	2+	1+	mutation	-
ccRCC-73	3+	$3+$	mutation	-
ccRCC-74	2+	1+	methylation	-
ccRCC-75	1+	1+	mutation	-
ccRCC-76	2+	1+	methylation	-
ccRCC-77	3+	1+	mutation	-
ccRCC-78	1+	-	mutation	-
ccRCC-79	2+	1+	-	-
ccRCC-80	2+	1+	mutation	-
ccRCC-81	1+	-	-	-
ccRCC-82	3+	1+	mutation	-
ccRCC-83	1+	-	mutation	-
ccRCC-84	1+	1+	methylation	-
ccRCC-85	3+	1+	mutation	-
ccRCC-86	2+	-	methylation	-
ccRCC-87	2+	1+	mutation	-
ccRCC-88	3+	1+	mutation	-
ccRCC-89	2+	-	methylation	-
ccRCC-90	2+	1+	methylation	-
ccRCC-91	-	1+	mutation	-
ccRCC-92	2+	1+	methylation	-
ccRCC-93	1+	1+	mutation	-
ccRCC-94		1+	mutation	-
ccRCC-95	$3+$	2+	mutation	-
ccRCC-96	$3+$	1+	methylation	-
ccRCC-97	1+	1+	mutation	-
ccRCC-98	-	-	-	-
ccRCC-99	2+	2+	mutation	-
ccRCC-100	1+	1+	mutation	-
ccRCC-101	1+	-	mutation	-
ccRCC-102	3+	1+	mutation	-
ccRCC-103	$3+$	2+	mutation	-
ccRCC-104	1+	1+	methylation	-
ccRCC-105	1+	1+	mutation	-
ccRCC-106	2+	$1+$	mutation	-

SupplementaryTable 9. Significantly enriched mutational pathways

Gene set	Number of bases in gene set	Number of mutation	P value	q value
pathways in cancer (K)	647781	131	< 1E-16	< 1E-16
VEGF pathway (B)	52089	48	8.79.E-17	3.87.E-14
HIF pathway (B)	25881	43	1.28.E-16	3.76.E-14
renal cell carcinoma (K)	117204	65	1.33.E-16	2.93.E-14
ubiquitin mediated proteolysis (K)	280992	73	4.85.E-15	8.53.E-13
CTCF pathway (B)	38646	20	8.61.E-10	1.26.E-07
prostate cancer (K)	161541	40	2.23.E-08	2.81.E-06
IGF1mTOR pathway (B)	36615	17	7.05.E-08	7.75.E-06
glioma (K)	114846	31	1.30.E-07	1.28.E-05
small cell lung cancer (K)	208560	44	3.74.E-07	3.29.E-05
mTOR signaling pathway (K)	96279	27	3.94.E-07	3.15.E-05
CD28 dependent PI3K AKT signaling (R)	36003	15	1.51.E-06	1.11.E-04
PI3K AKT signalling (R)	74460	22	1.96.E-06	1.33.E-04
gene expression (R)	671376	99	2.22.E-06	1.39.E-04
bcellsurvival pathway (B)	33207	14	2.91.E-06	1.71.E-04
CD28 co stimulation (R)	49233	16	1.50.E-05	8.24.E-04
p53hypoxia pathway (B)	50592	16	2.07.E-05	1.07.E-03
mTOR pathway (B)	52908	16	3.50.E-05	1.71.E-03
metabolism of proteins (R)	245715	43	4.31.E-05	2.00.E-03
influenza life cycle (R)	176829	34	4.49.E-05	1.98.E-03
formation and maturation of mRNA transcript (R)	225633	40	5.93.E-05	2.48.E-03
processing of capped intron containing pre mRNA (R)	249408	43	5.97.E-05	2.39.E-03
TRKA signalling from the plasma membrane (R)	211965	38	7.11.E-05	2.72.E-03
integrin signaling pathway (ST)	181737	34	7.52.E-05	2.76.E-03
PTEN pathway (SA)	29622	11	9.87.E-05	3.48.E-03
late phase of HIV life cycle (R)	178863	33	1.22.E-04	4.12.E-03
lysine degradation (K)	106773	23	1.48.E-04	4.82.E-03
regulation of gene expression in beta cells (R)	67380	17	1.76.E-04	5.53.E-03
ARF pathway (B)	32121	11	1.97.E-04	5.98.E-03
FAS signaling pathway (ST)	116727	24	2.12.E-04	6.21.E-03
p53 signaling pathway (K)	102570	22	2.15.E-04	6.11.E-03
melanoma (K)	96036	21	2.30.E-04	6.32.E-03
EIF4 pathway (B)	50982	14	2.76.E-04	7.36.E-03
insulin signaling pathway (K)	260913	42	2.95.E-04	7.64.E-03
elongation and processing of capped transcripts (R)	198138	34	3.55.E-04	8.91.E-03

[^0]
Supplementary Table 15. List of antibodies for immunoblot analysis

	Target	Host	Company	Catalog Number	Dilution
Primary antibody	Elongin C	Mouse	BD Bioscience	610761	1:1000
	Elongin B	Rabbit	previously described		1:500
	HIF-1a	Mouse	BD Bioscience	610958	1:1000
	CUL2	Rabbit	Invitrogen	511800	1:500
	VHL	Mouse	BD Bioscience	556347	1:500
	Actin	Goat	Santa Cruz Biotechnology	sc-1616	1:4000
	HA	Rabbit	Covance	PRB-101C	1:4000
	HA	Mouse	Covance	MMS-101P	1:4000
	Flag	Rabbit	Sigma-Aldrich	F425	1:4000
	Flag	Mouse	Wako Pure Chemical Industries	018-22381	1:4000
Secondary HRP-conjugated antibody	Anti-mouse IgG	Sheep	GE Healthcare Life Science	NA931	1:8000
	Anti-rabbit lgG	Donkey	GE Healthcare Life Science	NA934	1:8000
	Anti-goat lgG	Goat	Santa Cruz Biotechnology	sc-2033	1:8000

Supplementary Note.

Tumor samples with matched normal tissue or blood were obtained at the time of surgery from the University of Tokyo. All patients provided informed consent as a part of the ethics committee of the Graduate School of Medicine, the University of Tokyo. Collected phonotypic data elements were deidentified.

[^0]: (B) : Biocarta
 (K) : KEGG
 (R) : Reactome
 (SA) : SigmaAldrich (S
 (ST) : Signaling Transduction KE

