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Supplementary Tables 
Table S1. Detailed data production information for each sample.  
 
See supplementary data set: TableS1_DataProductionSummary.xls  
 
Table S2. Genotyping validation of novel SNPs identified in this study.  
 

Minor 
allele 
count 

# of SNPs 
tested # validated # not 

validated 
Validation 

rate (%) 

1 74 67 7 91 
2 19 19 0 100 
3 9 9 0 100 
4 4 4 0 100 
5 5 5 0 100 
6 7 7 0 100 
7 1 1 0 100 

>=8 21 21 0 100 
Total 140 133 7 95 

 
 
Table S3. Sequenom iPex genotyping results and sequencing results of each sample 
individual at genotyped sites. Only Q20 bases were counted (format: “genotyping 
allele|sequencing allele”; ‘-‘ will be given if failure genotyping, missing data or 
genotype called with quality less than 20). 
 
See supplementary data set: Table S3_ArrayGenotypingResult.xls 
 
Table S4. Summary of annotated SNPs that are discovered by aggregating data from 
200 individuals. Note that the exome in this study refers to the full target region, 
which also contained a part of intronic and intergenic regions. CDS stands for coding 
sequences, UTR for untranslated regions.  
 

Exon 

intron/intergenic Total 
CDS 

UTR 
synonymous non-

synonymous 

25,275 27,806 5,967 62,822 121,870 
 
 
Table S5. Putative extrapolation estimation of SNP counts in each individual.  
 
See supplementary data set: Table S5_IndividualSNPsummary.xls 
 
Table S6. 20 genes with highest HK score for positive selection.  P and F indicate the 
number of fixed and polymorphic substitutions observed. We excluded SPTAN1, 
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BPTF, and TEX15, as their substitution patterns are suggestive of biased gene 
conversion. 
 
Gene 
Symbol Description F P F/P Score 
	   	   	   	   	   	  
KIR3DP1 killer-cell Ig-like receptor 82 10 8.20 >7 
LILRA1 leukocyte immunoglobulin-like receptor, 60 7 8.57 7 
TPTE transmembrane phosphatase with tensin homology 86 16 5.38 7 
KIR2DL1 killer cell immunoglobulin-like receptor, two 40 3 13.33 6.05 
VPS13D vacuolar protein sorting 13D isoform 1 39 4 9.75 5.19 
FLG filaggrin 99 28 3.54 5.03 
CES2 carboxylesterase 2 isoform 1 22 0 ∞ 4.95 
TPRX1 tetra-peptide repeat homeobox 22 0 ∞ 4.95 
HMCN1 hemicentin 1 62 15 4.13 4.12 
TRPM2 transient receptor potential cation channel, 32 4 8.00 3.92 
KIR2DL3 killer cell immunoglobulin-like receptor, two 34 5 6.80 3.76 
KIAA1199 KIAA1199 21 1 21.00 3.75 
SORBS2 sorbin and SH3 domain containing 2 isoform 2 24 2 12.00 3.62 
TTC26 tetratricopeptide repeat domain 26 isoform 1 16 0 ∞ 3.60 
SULT1C3 sulfotransferase family, cytosolic, 1C, member 33 5 6.60 3.59 
HERC2 hect domain and RLD 2 43 9 4.78 3.50 
SGTA small glutamine-rich tetratricopeptide 15 0 ∞ 3.37 
DYNC1H1 cytoplasmic dynein 1 heavy chain 1 47 11 4.27 3.37 
CBWD2 COBW domain-containing protein 2 19 1 19.00 3.33 
CSHL1 chorionic somatomammotropin hormone-like 1 22 2 11.00 3.24 
 
Table S7. GO categories showing an excess of fixed (F) compared to polymorphic 
(P) substitutions. The 10 terms with F+P>600 and the highest scores are shown.  The 
score is the –log10(p-value), calculated using the FUNC package with a correction for 
multiple testing (Supplementary Note). 
	  

 
 
Supplementary Figures 
 
 
Figure S1.  False negative rate varies with SNP frequencies in (a) target region and 
(b) target region where we calculate allele frequency (depth >600). (c) Number of 
newly discovered SNPs when sequentially adding sampled individuals. Blue for SNPs 
with MAF >0.02; red for all. A diminishing increment is observed for identification 

GO terms  F   P   F/P  Score 
     
 muscle contraction  449 239 1.88 2.20 
 positive regulation of macromolecule metabolic process  970 589 1.65 1.86 
 regulation of transcription, DNA-dependent  4836 3130 1.55 1.85 
 sodium ion transport  588 337 1.74 1.81 
 regulation of localization  879 539 1.63 1.66 
 cell migration  762 465 1.64 1.63 
 regulation of locomotion  384 222 1.73 1.57 
 defense response  1648 966 1.71 1.56 
 positive regulation of cellular metabolic process  1026 607 1.69 1.39 
 immune system process  2087 1318 1.58 1.31 
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of SNPs with MAF>0.02, whereas discovery of all SNPs does not show a saturation 
as a function of the number of sampled individuals. 
a 

 
b 

 
c 
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Figure S2. Site frequency spectra (SFS) for non-synonymous (Nsyn.) and 
synonymous (Syn.) SNPs were compared to the neutral expectation in A. The 
frequencies plotted in this panel are from reads with quality value >30. Panel B 
displays the SFS for 2 categories of non-synonymous SNPs with physicochemical 
distances between the two amino acid variants >95 or ≤95, respectively. 

 
 
Figure S3. Comparison of the gamma distributions of selective effects obtained from 
our data (black) and from previous estimates (red). Note the log scale on the x-axis. 
The black dotted lines represent the break points s=0.00001 (2Ns ~ 1), s=0.0001 (2Ns 
~ 10) and s=0.01 (2Ns ~1000) where N = 52907 and is the estimate of the effective 
population size in Europeans (ref. 10). 
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Supplementary Note 
 
 
Sample acquisition 

Genomic DNA was purified from blood leukocytes from 200 individuals of Danish 

nationality: 108 men (50.8 +/- 5.9 years (mean+/- SD) and Body Mass Index (BMI) 

24.5 +/- 1.9 kg/m2; and 92 women ( 53.7 +/- 4.3 years and BMI: 23.6 +/- 2.2 kg/m2) 

were recruited at random through the central person register in the northern part of the 

Copenhagen region. The study subjects were examined at the Research Centre for 

Prevention and Health, Glostrup Hospital, and Steno Diabetes Center, Gentofte, 

Denmark. All study participants provided written informed consent and the study was 

conducted in accordance with the Declaration of Helsinki and approved by the Ethics 

Committee of Copenhagen County, Denmark. 

 
Exon-capturing and sequencing 

Nature Genetics: doi: 10.1038/ng.680



6 

	  
 

 

Following the manufacturer protocol, genomic DNA of each individual was 

hybridized with NimbleGen 2.1M-probe sequence capture array1 to enrich the exonic 

DNA in each library. The array was able to capture 18,654 (92%) of the 20,091 genes 

that have been deposited in Consensus Coding Sequence Region (CCDS) database. 

We constructed a secondary library from the primary captured DNA, which enabled 

the Illumina Genome Analzyer (GA) II platform, as described2 with adaptations. In 

brief, we broke down the DNA sample input into fragments with several hundred 

base-pairs in length and ligated each fragment with PCR linkers. Single-stranded 

fragments were hybridized to NimbleGen 2.1M HD sequence capture array. 

Fragments that did not hybridize with array probes were washed out. The probe-

hybridized fragments were then eluted and subjected to ligation-mediated PCR (LM-

PCR). We defined the current library the “primary library”. DNA fragments in the 

primary library were concatenated by DNA ligase to 2k-3k fragments. We then 

sheared them to ~200 bp small molecules and ligated them with Illumina sequencing 

adaptors. The secondary library was subjected to Illumina Genome Analyzer (GA) 

sequencing. We performed GA sequencing for each sample independently to ensure 

each sample had at least 12-fold coverage. Raw image files were processed by 

Illumina Pipeline (version 1.3.4) for base-calling and to generate the reads set. 

SOAPaligner3,4 (v2.01) was used to align the sequencing reads to the NCBI human 

genome reference assembly (build 36.3) with parameters set to “-a -D -o -r 1 -t -c -f 

4”. Reads that aligned to the designed target region (TR) were collected for SNP 

identification and subsequent analysis. 

 
Genotype calling and SNP calling 

To take advantage of aggregating sequencing data from the whole population, we 

simultaneously check the genotype likelihoods at a site of all individuals. The 
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population-based integrative SNP ascertainment has significantly larger statistical 

power to detect SNP site than individual-based methods. For each genomic site, a 

heuristic value 

! 

Sk  was calculated for each alternative (different from reference) allele 

count k over all sample individuals as following: 
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where N is the total number of individuals (200 in our study), oi is the observed read 

bases in the i-th individual, and j is the number of alternative alleles in a diploid 

genome, i.e. j=0 denotes homozygote reference alleles, j=1 denotes heterozygotes and 

j=2 for alternative homozygotes. P(oi|j) is the likelihood of genotype j on each 

individual, which was calculated by SOAPsnp5 with parameter “-F 1” set. Note that 

the heuristic formula was not mathematically justified as typical maximum 

likelihoods estimation, which examines all cases. It assumed the 400 haploids from all 

individuals were independent and used k/2N to approximate the population minor 

allele frequency.  

Then, for all k=0,1,2,...,400, we picked the k with the largest Sk value as an 

approximate estimate of minor allele count. The true minor allele count k was defined 

as kmax. If kmax =0, this site was not considered a SNP. Otherwise (kmax >0), the site 

was considered a potential SNP. In total, approximately 530,000 SNPs were potential 

polymorphic. To evaluate the confidence of a SNP call, we used a PHRED scaled 

value ratio: 
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We used a Q20 threshold to filter unreliable SNP calls and the SNPs passing this 

cutoff were ascertained. Overall, by the heuristic formula, higher true alternative 

allele frequency and/or more sequencing reads resulted in larger value ratio favoring a 

SNP call, which is pertinent for polymorphism identification. In testing the method, 

we found that with such scale of sample individuals, it was more conservative to 

choose the highest-scored minor allele count than the true maximum likelihood 

estimate (biased to underestimation). Thus it was only used for confident SNP calls, 

but not for subsequent analysis.  

 The Q20 threshold filtered the potential SNP set down to approximately 170k. 

We then filtered the SNPs based on the following criteria: 1) The SNP should be 

observed in at least one individual in a way that the number of reads containing 

mutant alleles was larger than the reads containing reference alleles; 2) The SNPs 

should not be significantly enriched in heterozygous state. Use of both criteria were to 

avoid possible reproducible errors in the exome capturing process. We checked 

whether the SNPs followed Hardy-Weinberg law and found only 1.9% SNPs had H-

W statistics <0.01, which indicated the SNP calling was accurate after using these 

filtering thresholds, and, thus, provided a solid basis for subsequent population 

analysis. 

We then assigned the SNP alleles back to each individual by independent SNP calling 

using SOAPsnp, with the prior probability set to fit the population allele frequency. 

The parameter was set to “-i -d -o -r 0.00005 -e 0.0001 -M -t -u -L -s -2 -T”, where 

option “-s” input the SNPs ascertained from population SNP calling. Thus, we also 

obtained the genotype calls for each individual. 
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Evaluation of SNP detection power 

To assess the accuracy of SNP calls on the sample population, we randomly selected 

140 novel SNPs for genotyping validation by Sequenom iPlex platform. Per each 

genotyping test, the signal was analyzed by the manufacturer’s software to obtain an 

evaluation of genotyping quality. Per each site, if no fewer than 90% of the 

individuals had their genotyping quality at “A” (most confident) level, we took the 

site as having an overall high quality and used it in comparison.  

Of all tested sites, 133 were true positives. As novel SNPs composed 44% of 

all identified SNPs, we estimated that the overall false positive rate was about (140-

133)/140*44%=2%. The SNPs projected for subsequent analysis had MAF>0.02, and 

thus were of high quality. 

 We also used SNPs that had been genotyped in the HapMap CEU population 

to evaluate the false negative rate at each minor allele frequency (Fig. S1a), and we 

estimated that 5.1% of SNPs with a minor allele frequency (in HapMap CEU 

population) >0.02 were not observed in our study. In regions with a minimum total 

depth (summed from 200 individuals) of over 600-fold, the rate was estimated to 

2.1% (Fig. S1b). This finding indicates that the estimated false negative rate could be 

attributed to regions that tend to have a lower sequencing depth. A diminishing 

increment for discovering SNPs with minor allele frequency >0.02 was observed, 

which suggests that we have successfully identified most of the SNPs with minor 

allele frequency >0.02 (Fig. S1c). Then we estimated exonic SNP counts for each 

individual samples was about 13,210 ~ 31,025 (Table S5). 

 

Evidence that our estimator is unbiased: 

It is enough to show that E(pi) = 0 (if the individual is homozygote for major allele), 

E(pi) = 1 (if the individual is homozygote for the minor allele) or E(pi) =.5 (if the 

individual is heterozygote). Without loss of generality, assume that we have two 

alleles A (minor allele) and T (major allele). Assuming niT is fixed, we have to show 
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that the expectation of pi from (1A) reduces to finding the expectation of the number 

of reads showing an A, E(ni) . Consider the following cases: 

 

Case 1: Individual is homozygous for major allele T 

Let ni  be the number of reads that are A’s . Notice that E(pi) = 0 if and only if E(ni) = 

eniT . Therefore we need to show that E(ni) = eniT  . 

 

Pf: Let the indicator variable Ii = 1 if read i is an A, and 0 otherwise. Therefore, 

we can write

! 

ni = I1 + ...+ IniT . Taking expectations, 

! 

E(ni) = E(I1)+ ...+ E(IniT ), where  

E(Ii ) = P(Ii = 1) = Probability that read i is an A. Since the individual is homozygous 

for allele T, the only way to get a read that is an A is if we have an error. The 

probability that we have an error, P(T→A) = e. 

Thus, 

 

! 

E(ni) = E(Ii) + ...+ E(IniT ) = P(I1 =1) + ....+ P(IniT =1) = eniT  

 

Case 2: Individual is homozygous for major allele A 

Let ni  be the number of reads that are A’s . Notice that E(pi) = 1 if and only if  

E(ni) =  niT - eniT . Therefore we need to show that E(ni) = niT - eniT  . 

 

Pf: Let the indicator variable Ii = 1 if read i is an A, and 0 otherwise. Therefore, we 

can write 

! 

ni = I1 + ...+ IniT . Taking expectations, and 

! 

E(ni) = E(I1)+ ...+ E(IniT ), where 

E(Ii ) = P(Ii = 1) = Probability that read i is an A. Since the individual is homozygous 

for allele A, the only way not to get a read that is an A is if there was an error. The 

probability that there was an error, P(A→T) = e, so P(Ii = 1) =1-e.  Thus 
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! 

E(ni) = E(I1) + ...+ E(IniT ) = P(I1 =1) + ...+ P(IniT =1) = niT (1" e) = niT " eniT  

 

 Case 3: Individual is heterozygous A/T 

Let ni  be the number of reads that are A’s . Notice that E(pi) = .5 if and only if  

E(ni) =  (.5)niT  . Therefore we need to show that E(ni) = (.5)niT . 

 

Pf: Let the indicator variable Ii = 1 if read i is an A, and 0 otherwise. Therefore we 

can write

! 

ni = I1 + ...+ IniT . Taking expectations, 

! 

E(ni) = E(I1)+ ...+ E(IniT ), and  

E(Ii ) = P(Ii = 1) = Probability that read i is an A. Since the individual is heterozygous 

for allele A, then   

P(Ii = 1) = .5 + .5 P(T→A) - .5 P(A→T) = .5 + .5 e – .5 e = .5, 

Therefore, 

! 

E(ni) = E(I1) + ...+ E(IniT ) = P(I1 =1) + ...+ P(IniT =1) =
1
2
niT  

 

Selection tests 

Multiple studies have focused on detecting genes affected by positive selection6-10. 

We scanned our large dataset for candidate genes by examining whether the 

proportion of fixed substitutions observed in a given gene significantly deviated from 

the genome-wide expectation. This test has recently been shown to have a high 

statistical power to detect positive selection, but it has not yet been applied genome-

wide in the human genome11. For each gene, we tested the longest coding mRNA 

variant for signature of selection using a Hudson-Kreitman-Aguadé test (HKA). We 

counted the number of human specific fixed substitutions in gene i, Fi, as all positions 

where the macaque and chimpanzee had a common variant not shared with human 
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and the major human allele had a frequency >99%. We counted the number of 

polymorphic positions in gene i, Pi, where the derived allele had frequency >= 2%. 

For both the population genetic and the comparative data, we only included data in 

regions where there were at least 600 reads and comparative data available from both 

the chimpanzee and the macaque. Our implementation of the HKA test evaluated 

whether the number of fixed differences observed per gene, given the total number of 

fixed and polymorphic sites observed, was higher or lower than expected given the 

genome wide proportion of fixed differences,

! 

p =

Fi
i
"
Fi + Pi( )

i
"

using a binomial null 

model. For gene i we report a score measuring the relative evidence for an excess of 

fixed differences in gene i as -log(Prob(X > Fi)) where X is distributed 

Binomial[Pi+Fi, p]. A high value of this score was indicative of an excess of fixed 

differences.  The motivation for reporting a log scaled score rather than a p-value was 

that the p-value could not be interpreted literally, as the true conditional distribution 

of Fi depends on local recombination rate and the population demography.  Our 

approach was, therefore, an outlier approach that cannot be used to determine the total 

amount of positive selection in the human genome, but will be useful in ranking genes 

according to evidence for an excess of substitutions compared to polymorphisms. Our 

major objective was not to determine the amount that positive selection has affected 

the human genome, but rather to identify the best candidates for positive selection and 

compare these to results obtained using previous methods.  

Among four candidates that had the strongest excess of fixed versus 

polymorphic substitutions, we found three genes involved in immune modulation 

(KIR3DP1, LILRA1 and KIR2DL) (Table S6), which is consistent with previous 

studies that showed that some immunity genes evolve extremely rapidly. Other 
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interesting genes identified included CES2, which is involved in cocaine and heroin 

metabolism, and FLG, which harbors variants associated with Ichthyosis Vulgaris 

(Table S6).  

We used a similar approach based on tail probabilities of the binomial 

distribution to assess whether the substitutions observed in a given gene had a pattern 

likely driven by gene conversion and/or deamination of methylated cytosine at CpG 

sites.   In this application of the binomial test, the p-values could be interpreted 

literally as they were based on comparing different classes of mutations rather than 

polymorphsims versus fixed mutations. Although gene conversion appeared to have a 

very limited effect on allele frequencies genome-wide, we did note that it could 

produce strong local signals that mimicked positive selection12. Among the top 20 

genes with an HK signal for positive selection (excess of fixed differences), we 

discarded 3 genes (SPTAN1,  BPTF  and  TEX15) with substitutions that were likely 

due to gene conversion.  

	  

GO ontology analysis 

We studied GO category enrichment using the binomial test available in the FUNC 

package, which includes a correction for multiple tests13. We used the refinement 

algorithm from the same package to limit redundancy among enriched terms. To 

avoid categories with very few sites (and/or genes) contributing to a signal, we only 

presented the results obtained for GO categories with at least 600 polymorphic and 

fixed differences. Among the GO categories presented, we found no evidence for 

biases relating to gene conversion or cytosine substitutions at CpG sites. Most of the 

tests we performed compared a gene (or a GO category) with a genome-wide genic 

pattern and did not provide an absolute measure of selective constraints. Therefore, 
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we presented the data using an outlier approach where genes or GO categories were 

sorted according to their respective score (score = -log10(test Pvalue)). 

GO term analyses detected positive selection for genes related to defense and 

immune responses (Table S7), supporting the idea that environmental changes can 

cause rapid evolution in the genes that interact with the environment (e.g. Ref. 6). 

Interestingly, we also found positive selection on genes involved in muscle 

contraction and in the regulation of metabolic processes, which we theorize might be 

related to evolutionary changes in the human diet. 

 

 
 
 
 
References 
 
 
1 Albert, T. J. et al. Direct selection of human genomic loci by microarray 

hybridization. Nat Methods 4, 903-905 (2007). 
2 Bentley, D. R. Whole-genome re-sequencing. Curr Opin Genet Dev 16, 545-

552 (2006). 
3 Wang, J. et al. The diploid genome sequence of an Asian individual. Nature 

456, 60-65, doi:nature07484 [pii] 
10.1038/nature07484 (2008). 
4 Li, R. et al. SOAP2: an improved ultrafast tool for short read alignment. 

Bioinformatics (2009). 
5 Li, R. et al. SNP detection for massively parallel whole-genome resequencing. 

Genome Res 19, 1124-1132 (2009). 
6 Nielsen, R. et al. Darwinian and demographic forces affecting human protein 

coding genes. Genome Res 19, 838-849, doi:gr.088336.108 [pii] 
10.1101/gr.088336.108 (2009). 
7 Sabeti, P. C. et al. Detecting recent positive selection in the human genome 

from haplotype structure. Nature 419, 832-837, doi:10.1038/nature01140 
nature01140 [pii] (2002). 
8 Voight, B. F., Kudaravalli, S., Wen, X. & Pritchard, J. K. A map of recent 

positive selection in the human genome. PLoS Biol 4, e72, doi:05-PLBI-RA-
1239R2 [pii] 

10.1371/journal.pbio.0040072 (2006). 
9 Carlson, C. S. et al. Genomic regions exhibiting positive selection identified 

from dense genotype data. Genome Res 15, 1553-1565, doi:15/11/1553 [pii] 
10.1101/gr.4326505 (2005). 

Nature Genetics: doi: 10.1038/ng.680



1
5 

	  
 

 

10 Williamson, S. H. et al. Localizing recent adaptive evolution in the human 
genome. PLoS Genet 3, e90, doi:06-PLGE-RA-0365R2 [pii] 

10.1371/journal.pgen.0030090 (2007). 
11 Zhai, W., Nielsen, R. & Slatkin, M. An investigation of the statistical power of 

neutrality tests based on comparative and population genetic data. Mol Biol 
Evol 26, 273-283 (2009). 

12 Galtier, N. & Duret, L. Adaptation or biased gene conversion? Extending the 
null hypothesis of molecular evolution. Trends Genet 23, 273-277, doi:S0168-
9525(07)00113-8 [pii] 

10.1016/j.tig.2007.03.011 (2007). 
13 Prufer, K. et al. FUNC: a package for detecting significant associations 

between gene sets and ontological annotations. BMC Bioinformatics 8, 41, 
doi:1471-2105-8-41 [pii] 

10.1186/1471-2105-8-41 (2007).	  
	  
 

Nature Genetics: doi: 10.1038/ng.680




