

Supporting Online Material for

Global prevalence of symbiotic bacterial methane oxidation in peat moss ecosystems

Nardy Kip, Julia F. van Winden, Yao Pan, Levente Bodrossy, Gert-Jan Reichart, Alfons J.P. Smolders, Mike S.M. Jetten, Jaap S. Sinninghe Damsté & Huub J.M. Op den Camp

This PDF file includes:

Supplementary Materials and Methods Supplementary Tables S1 and S2 Supplementary Figures S1, S2 and S3

Supplementary Materials and Methods

Sample collection

Intact *Sphagnum* mosses were collected from nine different peat lands around the world (Supplementary Table S1). Whole and alive, chlorophyll containing mosses were used. When possible, mosses from pool, lawn and hummock were sampled.

Methane oxidizing activity tests

Intact *Sphagnum* mosses were thoroughly washed 3 times with sterile demineralised water, and incubated in 120 ml serum bottles, sealed with airtight, butyl rubber stoppers. To each bottle 1 ml pure methane was added and methane concentrations were monitored daily. Incubation was performed at 4, 10, 15 and 20°C in the dark. When available, peat bog water was tested for methane oxidation. Methane was measured on a HP 5890 gas chromatograph equipped with a flame ionization detector and a Porapak Q column (100/120 mesh). Acetylene addition, irreversibly stopping methane oxidation, was performed with samples from the Mariapeel and Hatertse Vennen.

Methane emission measurements

9 Peat cores (diameter: 15 cm, length 40 cm) were taken from very wet *Sphagnum cuspidatum* dominated hollows from two different peatlands (Tuspeel (51°19'92"N; 5°88'29"E) en Haaksbergerveen (52°13'01"N; 6°77'27"E), The Netherlands). Approximately the upper 10 cm of the cores consisted of living *Sphagnum* moss. The peat cores were filled with water till the top and methane emissions were measured at 18 °C. After a month of pre-incubation at ambient light levels and 18 °C, methane emission rates were measured by means of a funnel (diameter 12.5 cm) closed with a rubber stopper, which was placed upside-down onto the water surface of the column. Accumulation of CH₄ under the funnel was measured every 2 h over a period of 12 h by

carefully taking air samples with syringes. As CH₄ concentration showed a linear increase, methane emission could be calculated by simple linear regression. Afterwards the upper 6 cm of the living parts of the *Sphagnum* mosses were carefully cut away and two days later methane emissions were measured again.

¹³CH₄ and ¹³CO₂ incorporation into lipids

Submerged labelling experiments were performed as described previously³ on *S. cuspidatum* from the UK, *S. magellanicum* from Argentina and *S. magellanicum* from Canada. Briefly, intact *Sphagnum* mosses were thoroughly washed and incubated in 250 ml serum bottles, submerged in 150 ml medium resembling bog water, after which 99% ¹³C-labelled methane was added to a final concentration of 200 μ M. In parallel ¹³CO₂ experiments were performed with the Canadian mosses in the same way as described above, with non labelled methane and the addition of 4.2 mg of labelled sodium bicarbonate. Phosphoric acid was used to adjust the pH to 4.5 in all experiments. The bottles were shaken at 150 rpm at ambient conditions, and sacrificed for lipid analyses at two points in time. Control experiments, where *Sphagnum*, was incubated in air, were performed as described in the previous section, except with 99% ¹³C labelled methane. Measurements of CO₂ and CH₄ were performed on a GC/MS (5975C, Agilent technologies).

Total lipid extracts of freeze-dried *Sphagnum* species were obtained with an Accelerated Solvent Extractor (Dionex), using a mixture of dichloromethane (DCM):methanol (MeOH) (9:1, v/v). An aliquot of the total extract was methylated with borontrifluoride-methanol (BF₃/MeOH) at 60 °C for 20 min, after which it was separated into three increasingly polar fractions over an activated Al₂O₃ column using hexane:DCM (9:1 v/v), DCM and DCM:MeOH (1:1 v/v), respectively. The DCM:MeOH (1:1 v/v) fraction was subsequently silylated with a 1:1 mixture of bis(trimethylsilyl)trifluoroacetamide (BSTFA) (1% TMS) and pyridine at 60 °C for 20 min. An aliquot of the total extract was treated with H₅IO₆ and NaBH₄, as described by Rohmer et al. (1984)¹⁰, to cleave the C-C bonds of vicinal polyols, and subsequently silylated.

Fractions were analyzed on a gas chromatograph (HP 6890) equipped with a flame ionization detector (FID) set at constant pressure (100 kPa). A fused silica column (30 m x 0.32 mm i.d., film thickness 0.1 μ m) coated with CP SiI-5CB was used with helium as a carrier gas. Extracts were injected on-column at 70 °C. The temperature increased with 20 °C/min to 130 °C and 4 °C/min to 320 °C, followed by an isothermal hold for 20 min. Components were identified using a gas chromatograph–mass spectrometer (Thermo Trace GC Ultra).

Compound specific δ^{13} C values were determined by Isotope-Ratio-Monitoring Gas Chromatography Mass Spectrometry (GC-IRMS, ThermoFinnigan Delta-Plus XP). Carbon isotopic values are reported in the delta notation relative to the VPDB standard. The δ^{13} C values of the alcohols were corrected for the attached TMS groups derived from BSTFA, which were determined offline.

The extent of methane-derived CO_2 incorporation was estimated by comparing label uptake in phytosterol (measured value minus the natural isotope abundance) to the enrichment the ¹³CO₂ treated sample, through time. The isotope ratios of the gases were monitored through time. The experiment in which *Sphagnum* was incubated with ¹³CH₄ showed gradual build up of ¹³CO₂, up to 16%, in the headspace. This was

corrected for using the effect calculated based on the parallel ¹³CO₂ labelling experiment. Differences in label in CO₂ and CH₄, changes therein over time, and differences in duration of experiments, were accounted for. The calculation was as follows, where Δ^{13} C stands for the enrichment in ¹³C in plant sterol relative to the natural isotopic abundance, in atomic percentages (corrected for % ¹³C in the substrate and duration of the experiment): $\Delta^{13}C_{CH4} + \Delta^{13}C_{CO2} = 100\%$. The $\Delta^{13}C_{CH4}$ was obtained when the measured $\Delta^{13}C_{CH4}$ was subtracted by the amount of ¹³C incorporated as a result of build up of labeled CO₂ in the headspace derived from methanotrophic respiration: $\Delta^{13}C_{CH4} \exp / {}^{13}CO_2 \exp {}^{*} \Delta^{13}C_{CO2}$. The % ${}^{13}C$ in CO₂ and in CH₄ was 24% and 51%, respectively, which was accounted for. Also the duration of the ${}^{13}CO_2$ incubation was 7 days compared to the ${}^{13}CH4$ incubation of 9 days for which was corrected as well.

¹³CH₄ incorporation into chlorophyll

Analyses of methane-derived ¹³C incorporation into chlorophyll-*a* was performed with *S. cuspidatum* collected from the Mariapeel, the Netherlands. *Sphagnum* mosses were washed with demineralised water and incubated in 250 ml serum bottles. In each bottle, seven *S. cuspidatum* plants were incubated. Subsequently, 130 µmol of 99% ¹³C-labelled methane was added after which the bottles were incubated in the light. In the control treatment the same amount of ¹²C-labelled methane was added. After two weeks chlorophyll-*a* was extracted and purified using thin layer chromatography (TLC, on silicagel-60 Merck). Chlorophyll-a spots were scraped from the silicagel and eluted with ethanol. Isotope fractions of chlorophyll-*a* molecules were analysed with a Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) mass-spectrometer (type Bruker Biflex III, reflection mode) with alfa-cyano-5-hydroxy-cinnamic acid (CCA) as the matrix.

gDNA isolation

Sphagnum mosses were washed with sterile demineralised water and stored at -20°C. Frozen mosses were grinded to powder in a mortar with liquid nitrogen, of which 5 ml were transferred to a 50 ml tube. PBS buffer was added and SDS and NaCl were added to a final concentration of 2% and 1M, respectively. One volume of phenol : chloroform : isoamylalcohol (25:24:1) was added and incubated at 65°C for 2 h. After centrifugation for 20 min at 4000 rpm, the water phase was transferred into a new vial and combined with 1 volume chloroform: isoamylalcohol (24:1), after which it was mixed and centrifuged for 20 min at 4000 rpm. From the aqueous phase was, genomic DNA precipitated after adding 0.1 volume 3 M NaAc (pH 4.8) and 2 volumes of ethanol (100%). After incubation for 30 min at -20°C, the mixture was centrifuged for 20 min at 4000 rpm. The pellet was washed with 70% EtOH and dissolved in 0.5 ml MQ. The gDNA was purified by incubating the DNA with RNase for 15 min 37°C. Humic acids were removed by adding 500 µl Sephaglass bead suspension of the FlexiPrep Kit (Pharmacia P-L Biochemicals Inc.) and incubated for 1 min. Glass beads with bound DNA were washed twice with buffer and finally with 70% ethanol. The pellet was dried and DNA was dissolved in MQ, gDNA was stored at 4°C.

Microarray

*pmo*A based microarray was performed as described previously⁸, except the *pmo*A based PCR. Genomic DNA extracted from *Sphagnum* mosses was used as template in a touchdown PCR with the *pmo*A primer set a189/T7-A682. The PCR programme: 94°C for 5 min, 11 cycles of 1 min 94°C, 1 min 62°C with decrease of 1°C every cycle, 1 min 72°C, followed by 25 cycles of 1 min 94°C, 1 min 52°C, 1 min 72, followed by 10 min 72°C. This PCR product was diluted 100 times and used for a nested *pmo*A touchdown PCR with the A189/T7-mb661 following programme: 94 °C for 5 min, 11 cycles of 1 min 94°C, 1 min 72°C, 1 min 72°C, followed by 10 min 94°C, 1 min 62°C with decrease of 1°C every cycles of 1 min 94°C, 1 min 62°C for 5 min, 11 cycles of 1 min 94°C, 1 min 62°C for 5 min, 11 cycles of 1 min 94°C, 1 min 62°C with decrease of 1°C every cycle, 1 min 72°C, followed by 14 cycles of 1 min 94°C, 1 min 52°C, 1 min 72, followed by 10 min 72°C.

mmoX PCR

The *mmoX* based PCRs were performed using the primer sets mmoX1-mmoX2 (touchdown PCR 70-60 $^{\circ}$ C)²⁸, f882-r1403²⁹and A-B³⁰, also called f166-r1401 and the combinations f882-B and A-r1403 (all touchdown PCR 63-53 $^{\circ}$ C). The same PCR program as described for the first PCR for the microarray has been used.

Supplementary Table S1 | Overview of sampling locations of collected *Sphagnum* mosses.

Country	Sample site	Coordinates	Sampling time	Sample name
Netherlands	Mariapeel	51° 24' 90"N; 5° 54' 90"E	December 2006, January 2007, May 2008	Mariapeel (MP)
	Hatertse Vennen	51° 47' 4"N; 5° 48' 2"E	May 2007, May 2008	Hatertse Vennen (HV)
UK	Bodmin moor	50° 27' 59"N; 4° 43' 32"W	January 2008	England
Russia	Northern Siberia	70° 37'N; 147° 53'E	July 2008	Northern Siberia
	Western siberia	60° 53' 26"N; 68° 41' 20"E	July 2008	Western Siberia
Canada	La mer bleue	45° 22'N; 75° 30'W	October 2008	Canada
Germany	Hespermoor	52° 25' 60"N; 7° 10' 60"E	September 2008	Germany
Sweden	Abisko, Stordalen	68° 20'N, 19° 00'E	October 2008	Sweden
Argentina	Av peat	54° 48′S 68° 18′W	December 2007, February 2008, April 2008	Tierra del fuego

Supplementary Table S2 | Probes used for microarray analysis. Column numbers correspond to the order in which the probes are arranged on the microarray analysis shown in Figure 3.

Number	Name	Intended specificity
1	MbA557	Methylobacter
2	MbA486	Methylobacter
3	Mb460	Methylobacter
4	Mb_LW12-211	Methylobacter
5	Mb_SL#3-300	Methylobacter
6	Mb_SL299	soda lake Methylobacter isolates and clones
7	Mb_SL#1-418	soda lake Methylobacter isolates and clones
	MmbB284	Mmb. Buryatense - same region as Jpn284, but 3 MM vs. that one
8		Methylobacter and Japanese strain related
9	Jpn284	clone Jpn 07061
10	BB51-302	Methylobacter
11	Mb267	Methylobacter
12	Mb292	Methylobacter
13	Mb282	Methylobacter
14	Mb_URC278	Methylobacter
15	511-436	Methylobacter
16	LP10-424	Methylobacter LP 10 group
17	LF1a-456	Methylobacter LF 1a group
18	Mb_C11-403	Methylobacter
19	Mb380	M.bacter broad group A universal?
20	Mb271	Methylobacter
21	S14m2-270	Marine type Ia cluster, S14m#2
22	S14m2-406	Marine type Ia cluster, S14m#2
23	PS80-291	clone PS-80
24	MS1-440	Marine type Ia cluster, Marine sediment #1
25	Mm_pel467	Methylomicrobium pelagicum
26	Kuro18-205	Marine type Ia cluster, Kuro18
27	DS1-401	Deep sea cluster #1
28	Mm531	Methylomonas
29	Mm_M430	Methylomonas
30	Mm_RS311	Mm.methanica, RS clade(10-286)
31	Mm_ES294	Methylomonas
32	Mm_ES543	Methylomonas
33	Mm_ES546	Methylomonas
34	Mm_MV421	Methylomonas
35	Mm451	Methylomonas
36	Mm275	Methylomonas
37	Alp7-441	Alpine soil Methylomonas, Alp#7 (10-282)
38	peat_1_3-287	Mehtylomonas-related peat clones
39	Est514	Methylomicrobium-related clones
40	Mmb259	Methylomicrobium album + Landfill M.microbia
41	Mmb303	Methylomicrobium album
42	Mmb304	Methylomicrobium album + Landfill M.microbia and related

43	LW14-639	Methylomicrobium LW14 group
44	Mmb RS2-443	Methylomicrobium, Mmb RS2
45	Mmb562	Mmb. album and Methylosarcina
46	Mm229	Deep-branching M.monas (?) group (WHmb3 related group)
47	MsQ290	M.sarcina quisquilliarum related
48	MsQ295	M.sarcina quisquilliarum
49	LP20-644	Methylomicrobium-related clones
50	LP20-607	LP20 group (Type Ia, deep branching-Mmb?)
51	Ia193	Type I a (M.bacter-M.monas-M.microbium)
52	Ia575	Type I a (M.bacter-M.monas-M.microbium-M.sarcina)
53	Bsed516	Marine sediment #2, Bsed
54	SWI1-375	Marine sediment #2, SW#1
55	SWI1-377	Marine sediment #2, SW#1
56	Nc_oce426	Nitrosococcus oceani
57	DS2-287	Deep sea #2, subgroup (N.coccus and Deep sea Type Ia 10-298)
58	AIMS1-442	Deep sea #2, AIMS#1
59	DS2-220	Deep sea #2, subgroup
60	DS2-626	Deep sea #2, subgroup
61	USCG-225	Upland soil cluster Gamma
62	USCG-225b	Upland soil cluster Gamma
63	JR2-409	JR cluster #2 (California upland grassland soil)
64	JR2-468	JR cluster #2 (California upland grassland soil)
65	JR3-505	JR cluster #3 (California upland grassland soil)
66	JR3-593	JR cluster #3 (California upland grassland soil)
67	501-375	Methylococcus- related marine and freshwater sediment clones
68	501-286	Methylococcus- related marine and freshwater sediment clones
69	USC3-305	Upland soil cluster #3
70	Mc396	Methylococcus
71	MclT272	Methylocaldum tepidum
72	MclG281	Methylocaldum gracile
73	MclS402	Methylocaldum szegediense
74	MclS394	Methylocaldum szegediense and related
75	MclS400	Methylocaldum szegediense and related
76	MclE302	Methylocaldum E10
77	Mcl404	Mc.capsulatus-Mcl.tepidum-Mcl. Gracile-Mcl.Szeg and related
78	Mcl408	Methylocaldum
	fw1-286	fw-1 group: <i>M.coccus-M.caldum</i> related marine and freshwater sediment
79		clones
	fw1-639	fw-1 group: M.coccus-M.caldum related marine and freshwater sediment
80		clones
04	fw1-641	fw-1 group: <i>M.coccus-M.caldum</i> related marine and freshwater sediment
81	UITV1 267	
82	$J\Pi I I I -207$	JTI-11#1
83	JKC4-432	Japanese file cluster #4
84	05C220	Finnish organic soil clones and related
85	USC300	Finnish organic son clones and related
86	JKC3-333	Japanese Kice Cluster #5
87	LK380	IW-1 group + Lake Konstanz sediment cluster
88	KSM1-419	KSM#1

DOI: 10.1038/NGE0939

SUPPLEMENTARY INFORMATION

89	JHTY2-562	<i>JH-TY</i> #2
90	JHTY2-578	<i>JH-TY</i> #2
91	JRC2-447	Japanese Rice Cluster #2
92	LW21-374	LW21 group
93	LW21-391	LW21 group
94	M90-574	<i>M.coccus-M.caldum</i> related marine and freshwater sediment clones
95	M90-253	M.coccus-M.caldum related marine and freshwater sediment clones
96	Mth413	Methylothermus
97	Mha-500	Methylohalobius - M.thermus and related ?
98	DS3-446	Deep sea cluster #3
99	PmoC640	PmoC
100	PmoC308	РтоС
101	Ib453	Type I b (<i>M.thermus-M.coccus-M.caldum</i> and related)
102	Ib559	Type I b (<i>M.thermus-M.coccus-M.caldum</i> and related)
103	McvB304	<i>M.cvstis B (parvus/echinoides/strain M)</i>
104	Mcv255	M.cvstis B (parvus/echinoides/strain M)
105	Mcv459	Methylocvstis
106	Mcv264	Methylocystis
107	Mcv270	Methylocystis
108	Mcv413	Methylocystis
109	Mcv522	Methlocystis A + peat clones
110	Mcv233	Methylocystis
111	McvM309	<i>M.cvstis strain M and related</i>
112	Peat264	peat clones
113	MsS314	Methylosinus sporium
114	MsS475	Methylosinus sporium
115	Msi263	Methylosinus sporium + 1 Msi.trichosporium subclaster
116	Msi423	Methylosinus
117	MsT214	Methylosinus trichosporium OB3b and rel.
118	Msi520	Methylosinus trichosporium
119	Msi269	Methylosinus trichosporium
120	Msi294	Methylosinus
	ARC2-518	Deep branching type II clade ARC2 - Methylosinus trichosporium 15-084
121		group?
122	Msi232	M.sinus+ most M.cystis -considered as additional type II probe
123	II509	Type II
124	II630	Type II
125	Alp8-468	<i>Type II novel pmoA, Alpine cluster Alp#8</i>
126	xb6-539	Novel pmoA copy of type II and related environmental clones
127	LP21-190	Novel pmoA copy of type II and related environmental clones
128	LP21-260	Novel pmoA copy of type II and related environmental clones
129	NMcy1-247	Novel <i>pmoA</i> copy of <i>M.cystis</i> #1 (?)
130	NMsi1-469	Novel <i>pmoA</i> copy of <i>M.sinus</i>
131	NMcy2-262	Novel <i>pmoA</i> copy of <i>M.cystis</i> #2 (?)
132	LP21-436	Mcy + Msi novel pmoA #1 groups
133	NMsiT-271	Novel pmoA copy of M.sinus trichpsporium (?)
134	LP21-232	Novel pmoA copy of type II and related environmental clones
135	RA14-299	RA14 related clones
136	RA14-594	RA14 related clones

137	RA14-591	RA14 related clones
138	Wsh1-566	Watershed + flodded upland cluster 1
139	Wsh2-491	Watershed + flodded upland cluster 2
140	Wsh2-450	Watershed + flodded upland cluster 2
141	B2rel251	Methylocapsa-related clones
142	B2-400	Methylocapsa
143	B2-261	Methylocapsa
144	B2all343	Methylocapsa and related clones
145	B2all341	Methylocapsa and related clones
146	pmoAMO3-400	clone pmoA-MO3
147	pmoAMO3-486	MO3 group
148	pmoAMO3-511	MO3 group
149	Ver330	Verrucomicrobia, all pmoA1+pmoA2
150	Ver307	Verrucomicrobia, all pmoA2
151	Ver285	Verrucomicrobia, Ma.fum pmoA2+Ma.kam. pmoA2
152	Ma_F1-594	Ma.fum. pmoA1
153	Ma_I1-312	Ma.inf. pmoA1
154	Ma_I1-401	Ma.inf. pmoA1
155	Ma_F3-638	Ma.fum. pmoA3
156	Ma_F3-542	Ma.fum. pmoA3
157	ESR-579	ESR (Eastern Snake River) cluster
158	M84P22-514	environmental clones of uncertain identity
159	TUSC409	Tropical Upland Soil Cluster #2
160	TUSC502	Tropical Upland Soil Cluster #2
161	mtrof173	Universal
162	mtrof362-I	Methanotrophs
163	mtrof661	Methanotrophs
164	mtrof662-I	Methanotrophs
165	mtrof656	Methanotrophs

Supplementary Figure S1 | Methane oxidation rates at different temperatures.

Schematic representation of the three different tested vegetation types, all *Sphagnum magellanicum*, with the average methane oxidation rates (in μ mol/gDW/day) found in Tierra del Fuego at two different temperatures. Values are means of at least 6 incubations ± S.D.

Supplementary Figure S2 | Comparison of methane emission from peat cores before and after removal of the Sphagnum layer. Emissions were determined from 9 different cores. Emission with Sphagnum was plotted against the emission after removal. The dotted line indicates the trend when no changes in methane oxidation rates would have occurred.

Supplementary Figure S3 | ¹³C enrichment of chlorophyll-a extracted from *S. cuspidatum*. MALDI-TOF spectra of chlorophyll-a extracted from *S. cuspidatum* (Mariapeel, The Netherlands) incubated with 99% ¹³C-labelled methane (top), compared to natural ¹³C abundance in *Sphagnum* (middle) and spinach (bottom). The spectra show the relative abundance of chlorophyll-*a* with a mono-isotopic mass (100% ¹²C) and chlorophyll-a containing one ¹³C, two ¹³C, three ¹³C etc.

mono-isotopic mass (100% consecutively.