nature | methods

Virtual terminator nucleotides for next-generation DNA sequencing

Jayson Bowers, Judith Mitchell, Eric Beer, Philip R Buzby, Marie Causey, J William Efcavitch, Mirna Jarosz, Edyta Krzymanska-Olejnik, Li Kung, Doron Lipson, Geoffrey M Lowman, Subramanian Marappan, Peter McInerney, Adam Platt, Atanu Roy, Suhaib M Siddiqi, Kathleen Steinmann \& John F Thompson

Supplementary figures and text:

Supplementary Figure 1	Cy5-12ss-dNTP analogs
Supplementary Figure 2	Scheme 1 for nucleotide analog synthesis
Supplementary Figure 3	Scheme 2 for nucleotide analog synthesis
Supplementary Figure 4	Error rate
Supplementary Table 1	Nucleotide analogs
Supplementary Table 2	Misincorporation rates for two analogs
Supplementary Table 3	Termination ability of analogs to prevent second base incorporation
Supplementary Note	Experimental procedures

25, R = C5-propargylamino-2'-deoxyuridine-5'-triphosphate
26, R = C5-propargylamino-2'-deoxycytidine-5'-triphosphate

27, R = C7-propargylamino-2'-deoxy-7-deazaguanosine-5'-triphosphate
28, R = C7-propargylamino-2'-deoxy-7-deazaadenosine-5'-triphosphate

Supplementary Figure 2. Scheme 1 for nucleotide analog synthesis

(Compounds 17-24, 29, 30, \& 32)

1) $\mathrm{NHS} / \mathrm{DCC} / \mathrm{DMF}$
2) $\mathrm{NH}_{2} \mathrm{R}$
3) POCl_{3}, proton sponge
(for 3, 5, 6, 8, \& 9)

Linker $=\left(\mathrm{C}_{6} \mathrm{H}_{10}\right) \mathrm{CONH}$
3, $\mathrm{R}=\mathrm{N} 3$-ethylamino-2'-deoxyuridine-5'-monophosphate
4, $R=$ N3-ethylamino-2'-deoxyuridine
5, R = C5-propargylamino-2'-deoxycytidine-3',5'-bisphosphate
6, R = C5-propargylamino-2'-deoxycytidine-5'-monophosphate
7, $R=5$ '-amino-5'-deoxythymidine

See Table 1 for R and R_{1} substituents

$\mathrm{R}_{1}=\mathrm{dNTP}$

Linker $=\left(\mathrm{C}_{6} \mathrm{H}_{10}\right) \mathrm{CONH}$
10, $\mathrm{R}=\mathrm{N} 3$-ethylamino-2'-deoxyuridine-5'-monophosphate
11, $R=$ N3-ethylamino-2'-deoxyuridine
12, R = C5-propargylamino-2'-deoxycytidine-3',5'-bisphosphate

13, R = C5-propargylamino-2'-deoxycytidine-5'-monophosphate

14, $\mathrm{R}=5$ - -amino-5'-deoxythymidine

No linker

15, R = C5-aminoallyl-2'-deoxyuridine-5'-monophosphate
Linker $=\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right)_{3} \mathrm{CH}_{2} \mathrm{CONH}$
16, R = C5-aminoallyl-2'-deoxycytidine-5'-monophosphate

Supplementary Figure 3. Scheme 2 for nucleotide analog synthesis

(Compound 31)

Supplementary Figure 4: Error Rate

The error rate as a function of read length is shown for all reads for which two pass sequences were obtained. This is essentially invariant due to the random nature of the errors. The error rate reduction achieved with multiple pass sequencing is determined by the square of the single pass error rate.

Supplementary Table 1. Nucleotide analogs

Compound
21
30

Supplementary Table 2 Misincorporation rates for two analogs

The incorportation rates for the standard Cy5-12ss-dNTPs analog are compared to one of the analogous Virtual Terminator nucleotides for all possible pairings. The specificity of incorporation for the proper base pair versus the possible mispairs is shown (with specificity defined as the rate of incorporation of the correct nucleotide divided by the rate of misincorporation). In all cases, analogs showed similar fidelity (correct incorporation rate divided by the misincorporation rate) to that of the Cy5-12ss-dUTP analog. Similar fidelity results were observed for other analogs (data not shown).

25 (12ss-dUTP)		$\mathbf{1 7}\left(\mathbf{U}^{*} \mathrm{pU}\right)$			
DNA	Rate	Specificity	DNA	Rate	Specificity
TA	0.42	-	TA	0.14	-
TG	$2.6 \mathrm{e}-3$	162	TG	$8.5 \mathrm{e}-4$	164
TT	$2.5 \mathrm{e}-3$	168	TT	$1.5 \mathrm{e}-4$	933
TC	$9.9 \mathrm{e}-5$	4242	TC	$8.9 \mathrm{e}-5$	1573

Supplementary Table 3 Termination ability of analogs to prevent second base incorporation

The rate of incorporation is shown for both the first and second base in a homopolymer run. For most reactions, nucleotides were at 100 nM . However, some k 1 and k 2 rates were slow so concentrations for those analogs were increased to 250 nM (marked by superscript "a"). Compound structures are shown in Supplementary Table 1 and Supplementary Figure 1. The "type" column is a shorthand nomenclature which indicates the incorporated nucleotide connected via the tether (*) to the inhibitory component. Different tethers with some analogs are signified by a different number of asterisks.

Analog	Type	$\mathbf{k}_{1}\left(s^{-1}\right)$	$\mathbf{k}_{2}\left(\mathrm{~s}^{-1}\right)$	$\mathbf{k}_{1} / \mathbf{k}_{\underline{2}}$
17	U*pU	0.015	$6.0 e^{-5}$	250
18	U*U	0.05	$5.6 \mathrm{e}^{-3}$	8.9
19	G*pCp	$0.06^{\text {a }}$	$2.5 \mathrm{e}^{-5}$	2115
20	A*pCp	$0.03^{\text {a }}$	$<1 e^{-6}$	$>3 \mathrm{e}^{4}$
21	U*pCp	$0.02^{\text {a }}$	$<1 \mathrm{e}^{-6}$	$>2 \mathrm{e}^{4}$
22	C*pCp	$0.03^{\text {a }}$	$<1 \mathrm{e}^{-6}$	$>3 e^{4}$
23	$C^{*} \mathrm{pC}$	0.04	$3.0 e^{-4}$	117
24	C*T	0.08	$1.6 \mathrm{e}^{-2}$	5
25	12ss-dUTP	0.064	$3.8 e^{-2}$	1.7
26	12ss-dCTP	0.098	$3.6 \mathrm{e}^{-2}$	2.7
27	12ss-dGTP	0.078	$4.3 \mathrm{e}^{-3}$	18.1
28	12ss-dATP	0.12	$1.2 \mathrm{e}^{-2}$	10
29	A*pU	0.02	$4.8 e^{-5}$	396
30	$\mathrm{U}^{* *} \mathrm{pU}$	0.02	$6.4 e^{-5}$	359
31	$\mathrm{G}^{* * *} \mathrm{pU}$	0.04	$1.7 \mathrm{e}^{-5}$	2118
32	$C^{* * * * p C}$	$0.03{ }^{\text {a }}$	$1.3 \mathrm{e}^{-4}$	246

Supplementary Note

Experimental Procedures

Compound 33

Fmoc-Cys(StBu)-OH (2.0 g, $4.63 \mathrm{mmol}, 1$ equiv) was dissolved in MeCN (10mL). DCC ($1.2 \mathrm{~g}, 5.81 \mathrm{mmol}, 1.26$ equiv) was added, followed by NHS ($0.70 \mathrm{~g}, 6.08$ mmol, 1.31 equiv) and the reaction was stirred at RT for an hour. White precipitate (DCU) began forming within five minutes. The reaction mixture was transferred to eppendorf tubes and centrifuged to remove the white precipitate. The supernatant was then used in subsequent reactions without further purification: LCMS(ES-) m/z calcd for ($\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$ 527, found 527, $\mathrm{R}_{\mathrm{f}}=0.83\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Compound 1

6-Aminohexanoic acid ($0.60 \mathrm{~g}, 4.57 \mathrm{mmol}, 1$ equiv) was dissolved in $1: 1 \mathrm{H}_{2} \mathrm{O}$: DMF (6 mL total). DIPEA (0.016 mL) was added to keep the $\mathrm{pH} \sim 8$. NHS ester 33 (4.63 mmol in 10 mL MeCN, 1.01 equiv) was added to the reaction mixture in 1 mL
aliquots over $\sim 10 \mathrm{~min}$. DIPEA (0.02 mL) was added after each aliquot to keep the reaction basic. After the first aliquot of $\mathbf{3 3}$ was added, the reaction became cloudy, and addition of extra $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$ was needed to clear up the solution. The reaction was stirred at RT for two hours, then quenched with $20 \mathrm{~mL} 10 \% \mathrm{HCl}$ (aq). The aqueous phase was extracted $2 \times 50 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to yield a brown oil. Purification by flash column chromatography (100\% $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to 5% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded the desired acid as a white foam ($2.14 \mathrm{~g}, 87 \%$): LCMS(ES) m / z calcd for $(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$ 543, found 543, $\mathrm{R}_{\mathrm{f}}=0.41$ (10\% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Compound 34

Acid 1 ($0.99 \mathrm{~g}, 1.82 \mathrm{mmol}, 1$ equiv) was dissolved in MeCN (10 mL). DCC (0.46 g, $2.23 \mathrm{mmol}, 1.23$ equiv) was added, followed by NHS ($0.28 \mathrm{~g}, 2.43 \mathrm{mmol}, 1.34$ equiv) and the reaction was stirred at RT for an hour. White precipitate (DCU) began forming within five minutes. The reaction mixture was transferred to eppendorf tubes and centrifuged to remove the white precipitate. The supernatant was then used in subsequent reactions without further purification: LCMS(ES-) m/z calcd for ($\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}_{2} 640$, found 640, $\mathrm{R}_{\mathrm{f}}=0.62\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Compound 35

2'-Deoxyuridine ($0.40 \mathrm{~g}, 1.75 \mathrm{mmol}, 1$ equiv) and 2-(boc-amino)ethyl bromide ($0.59 \mathrm{~g}, 2.63 \mathrm{mmol}, 1.50$ equiv) were dissolved in $1: 1 \mathrm{DMF}$:acetone (3.4 mL total). $\mathrm{K}_{2} \mathrm{CO}_{3}(0.41 \mathrm{~g}, 2.97 \mathrm{mmol}, 1.69$ equiv) and tetrabutylammonium iodide (0.07 g , $0.19 \mathrm{mmol}, 0.11$ equiv) were added, and the reaction was heated at $60{ }^{\circ} \mathrm{C}$ under an Ar atmosphere for 12 hours. After cooling to RT, the reaction was diluted with EtOAc (50 mL) and washed with brine $(2 \times 50 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to yield the desired carbamate, which was used without further purification ($0.50 \mathrm{~g}, 77 \%$): LCMS(ES-) m / z calcd for $(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{7} 370$, found $370, \mathrm{R}_{\mathrm{f}}=0.19\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Compound 4

Carbamate 35 ($0.31 \mathrm{~g}, 0.83 \mathrm{mmol}, 1$ equiv) was dissolved in $\mathrm{THF}(3 \mathrm{~mL}) . \mathrm{HCl}(1.7$ $\mathrm{mL}, 6.8 \mathrm{mmol}, 4.0 \mathrm{M}$ in dioxane, 8.2 equiv) was added, causing formation of white precipitate within five min. After stirring at RT for 4 hours, the reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and DIPEA ($3.5 \mathrm{~mL}, 20.1 \mathrm{mmol}, 24.2$ equiv) was added slowly to neutralize the excess acid and liberate the amine. The reaction was then warmed to RT and a solution of NHS ester 34 ($0.54 \mathrm{~g}, 0.84 \mathrm{mmol}, 1.01$ equiv) in MeCN (5 mL) was added. After stirring for two hours, the reaction was diluted with EtOAc (50 mL) and washed with brine $(2 \times 50 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Purification by flash column chromatography (2% to $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded alcohol 4 as a white foam ($0.45 \mathrm{~g}, 67 \%$): LCMS(ES-) m / z calcd for $(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{39} \mathrm{H}_{51} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{~S}_{2} 797$, found 797, R_{f} $=0.22\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Compound 36

Proton sponge and alcohol 4 were dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ under vacuum overnight prior to use. A solution of alcohol $4(0.25 \mathrm{~g}, 0.31 \mathrm{mmol}, 1$ equiv) and proton sponge (0.10 g, $0.47 \mathrm{mmol}, 1.52$ equiv) in trimethyl phosphate (1 mL) was stirred over $4 \AA$ molecular sieves at $0{ }^{\circ} \mathrm{C}$ for 30 minutes. Neat $\mathrm{POCl}_{3}(0.045 \mathrm{~mL}, 0.48 \mathrm{mmol}, 1.55$
equiv) was added dropwise over 15 minutes to the colorless solution (see note 1). The reaction became purple immediately after the first drop of POCl_{3} was added. After two hours the reaction was quenched with 0.05 M TEAB buffer (7 mL), which caused formation of a milky precipitate and loss of the purple color. MeCN (2 mL) was added to improve the solubility, and the reaction was warmed to RT. After stirring for 2-3 hours the reaction cleared up. The solution was then concentrated under reduced pressure to yield crude monophosphate 3.

Next the residue was treated with 20% piperidine/MeCN (5 mL) for 30 minutes to remove the Fmoc protecting group. The solvent was removed under reduced pressure, and the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(\sim 10 \mathrm{~mL})$, causing formation of copious white precipitate (proton sponge and dibenzylfulvene). The mixture was transferred to eppendorf tubes and centrifuged to remove the precipitate. The supernatant was then HPLC purified (Phenomenex C18 preparative column, $250 \times$ 15.00 mm 10 micron, gradient: 100\% A for 5 min, then $3 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1 M TEAB, buffer $B \mathrm{MeOH}, 10 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield amine 36 as a white foam ($35 \mu \mathrm{~mol}, 11 \%, \varepsilon_{289}=$ 13000): LCMS(ES-) m/z calcd for $[(\mathrm{M}-2 \mathrm{H}) / 2]^{-} \mathrm{C}_{24} \mathrm{H}_{42} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{PS}_{2} 654$, found 654.

Notes: 1. Monophosphate formation should be monitored by LCMS ($0.5 \mu \mathrm{~L}$ aliquot plus $40 \mu \mathrm{~L}$ water). Initially 1.2 equivalents of POCl_{3} are added, and more is added slowly until $<10 \%$ starting material remains.

Compound 37

Cy5 Mono NHS Ester ($1.05 \mathrm{~mL}, 0.069 \mathrm{mmol}, 0.066 \mathrm{M}$ in anhydrous DMF, 1.73 equiv) was added to a solution of amine $\mathbf{3 6}$ ($0.026 \mathrm{~g}, 0.040 \mathrm{mmol}$, 1 equiv) in $\mathrm{H}_{2} \mathrm{O}$ (5 mL) in an aluminum foil covered flask. After disappearance of the starting amine as determined by LCMS or HPLC, the reaction was lyophilized to yield pU-N3-Cy5-SS-tBu as a bright blue solid which was used without purification or quantification for the subsequent reaction: LCMS(ES-) m/z calcd for $[(M-2 H) / 2]^{-}$ $\mathrm{C}_{57} \mathrm{H}_{81} \mathrm{~N}_{7} \mathrm{O}_{17} \mathrm{PS}_{4}{ }^{+} 646$, found 646.

Compound 10

A solution of disulfide 37 ($0.051 \mathrm{~g}, 0.040 \mathrm{mmol}, 1$ equiv) in $\mathrm{H}_{2} \mathrm{O}$ was treated with TCEP ($2.75 \mathrm{~mL}, 1.37 \mathrm{mmol}, 0.5 \mathrm{M}$ in $\mathrm{H}_{2} \mathrm{O}, 34$ equiv) in an aluminum foil covered flask. After 30 minutes the crude reaction was HPLC purified (Phenomenex C18
preparative column, $250 \times 15.00 \mathrm{~mm} 10$ micron, gradient: 100% A for 5 min , then 1\% B/min, buffer A 0.1M TEAB, buffer B MeCN, $10 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired thiol were pooled and used immediately for the subsequent displacement reaction without removing the solvent (18 $\mu \mathrm{mol}, 45 \%, \varepsilon_{649}=$ 250000): LCMS(ES-) m/z calcd for $[(\mathrm{M}-2 \mathrm{H}) / 2]^{-} \mathrm{C}_{53} \mathrm{H}_{73} \mathrm{~N}_{7} \mathrm{O}_{17} \mathrm{PS}_{3}{ }^{+} 602$, found 602.

Compound 38

SPDP ($0.39 \mathrm{mg}, 1.25 \mu \mathrm{~mol}, 1.25$ equiv) in anhydrous DMF (0.025 mL), was added to a solution of dUTP-AP3* ($0.52 \mathrm{mg}, 1.0 \mu \mathrm{~mol}, 1$ equiv) in $\mathrm{H}_{2} \mathrm{O}(0.090 \mathrm{~mL})$ buffered to $\mathrm{pH} \sim 8.5$ with $1 \mathrm{M} \mathrm{NaHCO}_{3}(0.010 \mathrm{~mL})$ and allowed to stand at RT. After disappearance of the starting dNTP (monitored by HPLC or LCMS, generally ~ 20 min), the crude reaction mixture was HPLC purified (Phenomenex C18 preparative column, $250 \times 10.00 \mathrm{~mm} 10$ micron, gradient: 100% A for 5 min , then $1 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1M TEAB, buffer B MeCN, $5 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield the product as a white foam (0.80 $\left.\mu \mathrm{mol}, 80 \%, \varepsilon_{289}=13000\right): \operatorname{LCMS}(\mathrm{ES}-) \mathrm{m} / \mathrm{z}$ calcd for $(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{15} \mathrm{P}_{3} \mathrm{~S}_{2} 717$, found 717 .

Compound 17

HPLC fractions containing thiol $\mathbf{1 0}$ ($0.52 \mathrm{mg}, 0.43 \mu \mathrm{~mol}, 1$ equiv) were mixed with difulfide 38 ($0.57 \mathrm{mg}, 0.80 \mu \mathrm{~mol}, 1.9$ equiv) in $\mathrm{MeCN}(0.25 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{~mL})$ in an aluminum foil covered flask. After 15 minutes the reaction was partially concentrated under reduced pressure to remove MeCN, then HPLC purified (Phenomenex C18 preparative column, $250 \times 10.00 \mathrm{~mm} 10$ micron, gradient: 100% A for 5 min , then $1 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1 M TEAB, buffer B MeCN, $5 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield compound 17 as a bright blue solid ($0.12 \mu \mathrm{~mol}, 27 \%, \varepsilon_{649}=250000$): LCMS(ES-) m / z calcd for $[(\mathrm{M}-2 \mathrm{H}) / 2]^{-} \mathrm{C}_{68} \mathrm{H}_{93} \mathrm{~N}_{10} \mathrm{O}_{32} \mathrm{P}_{4} \mathrm{~S}_{4}{ }^{+} 905$, found 905.

Compound 39

Compound 4 ($0.015 \mathrm{~g}, 0.019 \mathrm{mmol}$) was treated with a solution of 20% piperidine (5 mL) in MeCN for ~ 30 minutes. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (10\% $\mathrm{MeOH} / \mathrm{DCM}$) to yield amine 39 ($0.004 \mathrm{~g}, 37 \%$): $\mathrm{R}_{\mathrm{f}}=0.10$ ($10 \% \mathrm{MeOH} / \mathrm{DCM}$).

Compound 40

Cy5 Mono NHS Ester ($0.13 \mathrm{~mL}, 0.009 \mathrm{mmol}, 0.066 \mathrm{M}$ in anhydrous DMF, 2.2 equiv) was added to a solution of amine 39 ($2.30 \mathrm{mg}, 0.004 \mathrm{mmol}, 1$ equiv) in $1 \mathrm{M} \mathrm{K}_{2} \mathrm{HPO}_{4}$ (0.5 mL) in an aluminum foil covered flask. After disappearance of the starting amine as determined by LCMS, the crude reaction was HPLC purified (Phenomenex C18 preparative column, $250 \times 21.20 \mathrm{~mm} 10$ micron, gradient: 100% A for 5 min , then $1 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.05 M TEAB, buffer B MeCN, $10 \mathrm{~mL} / \mathrm{min}$ flow). Fractions
containing the desired were pooled and lyophilized to yield compound 40 as a bright blue solid ($2.8 \mu \mathrm{~mol}, 70 \%, \varepsilon_{289}=250000$): LCMS(ES-) m/z calcd for [(M$2 \mathrm{H}) / 2]^{-} \mathrm{C}_{57} \mathrm{H}_{80} \mathrm{~N}_{7} \mathrm{O}_{14} \mathrm{~S}_{4}{ }^{+} 606$, found 606.

Compound 11

A solution of disulfide 40 ($2.43 \mathrm{mg}, 0.002 \mathrm{mmol}, 1$ equiv) in $20 \% \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (1 mL) was treated with TCEP ($0.15 \mathrm{~mL}, 0.075 \mathrm{mmol}, 0.5 \mathrm{M}$ in $\mathrm{H}_{2} \mathrm{O}, 37$ equiv) in an aluminum foil covered flask. After 30 minutes the crude reaction was HPLC purified (Phenomenex C18 preparative column, $250 \times 21.20 \mathrm{~mm} 10$ micron, gradient: 100% A for 5 min , then $1 \% \mathrm{~B} / \mathrm{min}$, buffer $A \operatorname{0.05M}$ TEAB, buffer B MeCN, 10 $\mathrm{mL} / \mathrm{min}$ flow). Fractions containing the desired thiol $\mathbf{1 1}$ were pooled and used immediately for the subsequent displacement reaction without removing the solvent (1.0 $\left.\mu \mathrm{mol}, 50 \%, \varepsilon_{649}=250000\right): \quad$ LCMS(ES-) m / z calcd for $[(\mathrm{M}-2 \mathrm{H}) / 2]^{-}$ $\mathrm{C}_{53} \mathrm{H}_{72} \mathrm{~N}_{7} \mathrm{O}_{14} \mathrm{~S}_{3}{ }^{+} 562$, found 562.

Compound 18

HPLC fractions containing thiol $11(1.13 \mathrm{mg}, 1.0 \mu \mathrm{~mol}, 1$ equiv) were mixed with disulfide 38 ($0.001 \mathrm{~g}, 1.4 \mu \mathrm{~mol}, 1.4$ equiv) in $\mathrm{MeCN}(0.25 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{~mL})$ in an aluminum foil covered flask. After 15 minutes the reaction was partially concentrated under reduced pressure to remove MeCN, then HPLC purified (Phenomenex C18 preparative column, $250 \times 10.00 \mathrm{~mm} 10$ micron, gradient: 100% A for 5 min , then $1 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1 M TEAB , buffer B MeCN, $5 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield compound 18 as a bright blue solid ($0.80 \mu \mathrm{~mol}, 80 \%, \varepsilon_{649}=250000$): LCMS(ES-) m / z calcd for $[(\mathrm{M}-2 \mathrm{H}) / 2]^{-} \mathrm{C}_{68} \mathrm{H}_{92} \mathrm{~N}_{10} \mathrm{O}_{29} \mathrm{P}_{3} \mathrm{~S}_{4}{ }^{+} 865$, found 865.

Compound 41

A solution of NHS ester 34 ($0.57 \mathrm{~g}, 0.89 \mathrm{mmol}, 1.08$ equiv) in MeCN (5 mL) was added to 2'-deoxycytosine-AP3 ($0.23 \mathrm{~g}, 0.82 \mathrm{mmol}, 1$ equiv), followed by DIPEA ($0.96 \mathrm{~g}, 7.4 \mathrm{mmol}, 9.0$ equiv). After stirring at room temperature for one hour, the reaction was diluted with EtOAc (30 mL) and washed with brine $(2 \times 30 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Purification by flash column chromatography ($20 \% \mathrm{MeOH} / \mathrm{EtOAc}$) afforded 41 as a white foam ($0.62 \mathrm{~g}, 94 \%$): LCMS(ES-) m / z calcd for (M-H) ${ }^{-}$ $\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{~S}_{2} 805$, found 805, $\mathrm{R}_{\mathrm{f}}=0.73$ ($50 \% \mathrm{MeOH} / \mathrm{EtOAc}$).

Compound 42

Alcohol 41 was dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ under vacuum overnight prior to use. A solution of alcohol 41 ($0.40 \mathrm{~g}, 0.50 \mathrm{mmol}, 1$ equiv) and proton sponge ($0.25 \mathrm{~g}, 1.17 \mathrm{mmol}$, 2.3 equiv) in trimethyl phosphate (1.4 mL) was stirred over $4 \AA$ molecular sieves at $0{ }^{\circ} \mathrm{C}$ for 30 minutes. Neat $\mathrm{POCl}_{3}(0.30 \mathrm{~mL}, 3.21 \mathrm{mmol}, 6.4$ equiv) was added dropwise over 15 minutes. After four hours the reaction was quenched with 0.05 M

TEAB buffer (10 mL) and stirred at RT for three hours. The solution was then concentrated under reduced pressure to yield crude bisphosphate 5.

Next the residue was treated with 20% piperidine/MeCN (8 mL) for 50 minutes to remove the Fmoc protecting group. The solvent was removed under reduced pressure, and the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(\sim 10 \mathrm{~mL})$, causing precipitation of dibenzylfulvene. The mixture was transferred to eppendorf tubes and centrifuged to remove the precipitate. The supernatant was then HPLC purified (Phenomenex C18 preparative column, $250 \times 21.20 \mathrm{~mm} 10$ micron, gradient: 100% A for 5 min , then $2 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1 M TEAB, buffer $\mathrm{B} \mathrm{MeOH}, 15 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield amine 42 as a white foam $\left(30 \mu \mathrm{~mol}, 6 \%, \varepsilon_{294}=9300\right): \quad$ LCMS(ES-) m / z calcd for (M-H) ${ }^{-}$ $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{~S}_{2} 743$, found 743 .

Compound 43

Cy5 Mono NHS Ester ($0.20 \mathrm{~mL}, 0.013 \mathrm{mmol}, 0.066 \mathrm{M}$ in anhydrous DMF, 1.3 equiv) and $1 \mathrm{M} \mathrm{K}_{2} \mathrm{HPO}_{4}(0.18 \mathrm{~mL})$ were added to a solution of amine 42 ($7.44 \mathrm{mg}, 0.010$ mmol, 1 equiv) in $\mathrm{H}_{2} \mathrm{O}(0.66 \mathrm{~mL})$ in an aluminum foil covered flask. After disappearance of the starting amine as determined by HPLC, the reaction was HPLC purified (Phenomenex C18 preparative column, $250 \times 21.20 \mathrm{~mm} 10$ micron, gradient: 100% A for 5 min , then $2 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.05 M TEAB, buffer B MeCN, $10 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield compound 43 as a blue solid ($4.18 \mu \mathrm{~mol}, 42 \%, \varepsilon_{650}=250000$): LCMS(ES-) m / z calcd for $[(\mathrm{M}-2 \mathrm{H}) / 2]^{-} \mathrm{C}_{58} \mathrm{H}_{81} \mathrm{~N}_{8} \mathrm{O}_{19} \mathrm{P}_{2} \mathrm{~S}_{4}{ }^{+}$690, found 690.

Compound 12

A solution of disulfide 43 ($5.53 \mathrm{mg}, 4.0 \mu \mathrm{~mol}, 1$ equiv) in $\mathrm{H}_{2} \mathrm{O}$ was treated with TCEP ($0.45 \mathrm{~mL}, 0.23 \mathrm{mmol}, 0.5 \mathrm{M}$ in $\mathrm{H}_{2} \mathrm{O}, 56$ equiv) and $1 \mathrm{M}_{2} \mathrm{HPO}_{4}(0.4 \mathrm{~mL})$ in an aluminum foil covered flask. After 30 minutes the crude reaction was HPLC purified (Phenomenex C18 preparative column, $250 \times 21.20 \mathrm{~mm} 10$ micron, gradient:

100\% A for 5 min , then $3 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.05M TEAB, buffer B MeCN, 10 $\mathrm{mL} / \mathrm{min}$ flow). Fractions containing the desired thiol 12 were pooled and used immediately for the subsequent displacement reaction without removing the solvent: LCMS(ES-) m/z calcd for $[(\mathrm{M}-2 \mathrm{H}) / 2]^{-} \mathrm{C}_{54} \mathrm{H}_{73} \mathrm{~N}_{8} \mathrm{O}_{19} \mathrm{P}_{2} \mathrm{~S}_{3}{ }^{+} 646$, found 646.

Compound 44

SPDP ($0.60 \mathrm{~mL}, 0.05 \mathrm{M}$ in anhydrous DMF, 1.77 equiv) was added to a solution of dGTP-AP3* ($0.095 \mathrm{~g}, 0.017 \mathrm{mmol}, 1$ equiv) in $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ buffered to $\mathrm{pH} \sim 8.5$ with $\mathrm{K}_{2} \mathrm{HPO}_{4}(0.17 \mathrm{~mL})$ and allowed to stand at RT. After disappearance of dGTPAP3 (monitored by HPLC or LCMS, generally $\sim 20 \mathrm{~min}$), the crude reaction mixture was HPLC purified (Phenomenex C18 preparative column, $250 \times 15.00 \mathrm{~mm} 10$ micron, gradient: 100% A for 5 min , then $1 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1 M TEAB, buffer B MeCN, $10 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing compound 44 were pooled and used for subsequent reactions without removing the solvent: LCMS(ES-) m/z calcd for (M-H) ${ }^{-} \mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{6} \mathrm{O}_{14} \mathrm{P}_{3} \mathrm{~S}_{2} 755$, found 755.

Compound 19

HPLC fractions containing thiol 12 ($\sim 2.0 \mu \mathrm{~mol}, 1.4$ equiv) were mixed with disulfide 44 ($1.06 \mathrm{mg}, 1.40 \mu \mathrm{~mol}, 1$ equiv) in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ in an aluminum foil covered flask. After disappearance of SPDP-dGTP as determined by HPLC the reaction was lyophilized, then HPLC purified (Phenomenex C18 preparative column, 250×10.00 mm 10 micron, gradient: 100% A for 3 min , then $1 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.05 M TEAB, buffer B MeCN, $5 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield compound 19 as a bright blue solid ($0.18 \mu \mathrm{~mol}$, $\left.13 \%, \varepsilon_{649}=250000\right): \operatorname{LCMS}(E S-) \mathrm{m} / \mathrm{z}$ calcd for $[(\mathrm{M}-2 \mathrm{H}) / 2]^{-} \mathrm{C}_{71} \mathrm{H}_{95} \mathrm{~N}_{13} \mathrm{O}_{33} \mathrm{P}_{5} \mathrm{~S}_{4}{ }^{+}$ 970 , found 970.

Compound 45

SPDP ($0.50 \mathrm{~mL}, 0.1 \mathrm{M}$ in anhydrous DMF, 1.25 equiv) was added to a solution of dATP-AP3* ($0.022 \mathrm{~g}, 0.04 \mathrm{mmol}, 1$ equiv) in $\mathrm{H}_{2} \mathrm{O}(1.35 \mathrm{~mL})$ buffered to $\mathrm{pH} \sim 8.5$ with $\mathrm{K}_{2} \mathrm{HPO}_{4}(0.15 \mathrm{~mL})$ and allowed to stand at RT. After disappearance of dATPAP3 (monitored by HPLC or LCMS, generally $\sim 20 \mathrm{~min}$), the crude reaction mixture was HPLC purified (Phenomenex C18 preparative column, $250 \times 15.00 \mathrm{~mm} 10$ micron, gradient: 100% A for 5 min , then $1 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1 M TEAB, buffer B MeCN, $10 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing compound 45 were pooled and used for subsequent reactions without removing the solvent: LCMS(ES-) m / z calcd for (M-H) ${ }^{-} \mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{6} \mathrm{O}_{13} \mathrm{P}_{3} \mathrm{~S}_{2} 739$, found 739 .

Compound 20

HPLC fractions containing thiol 12 ($\sim 1.0 \mu \mathrm{~mol}, 1.0$ equiv) were mixed with disulfide 45 ($1.06 \mathrm{mg}, 1.50 \mu \mathrm{~mol}, 1.5$ equiv) in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ in an aluminum foil covered flask. After disappearance of SPDP-dATP as determined by HPLC the reaction was lyophilized, then HPLC purified (Phenomenex C18 preparative column, 250×10.00 mm 10 micron, gradient: 100% A for 3 min , then $1 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.05 M TEAB, buffer B MeCN, $5 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield compound 20 as a bright blue solid ($0.33 \mu \mathrm{~mol}$, $\left.33 \%, \varepsilon_{649}=250000\right):$ LCMS(ES-) m / z calcd for $[(\mathrm{M}-2 \mathrm{H}) / 2]^{-} \mathrm{C}_{71} \mathrm{H}_{95} \mathrm{~N}_{13} \mathrm{O}_{32} \mathrm{P}_{5} \mathrm{~S}_{4}{ }^{+}$ 961, found 961.

Compound 21

HPLC fractions containing thiol $12(\sim 0.67 \mu \mathrm{~mol}, 1.7$ equiv) were mixed with disulfide 38 ($0.29 \mathrm{mg}, 0.40 \mu \mathrm{~mol}$, 1 equiv) in $\mathrm{H}_{2} \mathrm{O}(0.20 \mathrm{~mL})$ in an aluminum foil covered flask. After disappearance of SPDP-dUTP as determined by HPLC the reaction was lyophilized, then HPLC purified (Phenomenex C18 preparative column, $250 \times 10.00 \mathrm{~mm} 10$ micron, gradient: $100 \% \mathrm{~A}$ for 3 min , then $1 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.05 M TEAB, buffer B MeCN, $5 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield compound 21 as a bright blue solid ($0.15 \mu \mathrm{~mol}$, $\left.37 \%, \varepsilon_{649}=250000\right):$ LCMS(ES-) m / z calcd for $[(\mathrm{M}-2 \mathrm{H}) / 2]^{-} \mathrm{C}_{69} \mathrm{H}_{93} \mathrm{~N}_{11} \mathrm{O}_{34} \mathrm{P}_{5} \mathrm{~S}_{4}{ }^{+}$ 950, found 950.

Compound 46

SPDP ($0.0016 \mathrm{~g}, 0.005 \mathrm{mmol}, 1.7$ equiv, 0.05 M in anhydrous DMF) was added to a solution of dCTP-AP3* ($0.0015 \mathrm{~g}, 0.0028 \mathrm{mmol}, 1$ equiv) in $\mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{~mL})$ buffered to $\mathrm{pH} \sim 8.5$ with $\mathrm{K}_{2} \mathrm{HPO}_{4}(0.06 \mathrm{~mL})$ and allowed to stand at RT. After disappearance of the starting dNTP (monitored by HPLC or LCMS, generally ~ 20 \min), the crude reaction mixture was HPLC purified (Phenomenex C18 semipreparative column, $250 \times 10.00 \mathrm{~mm} 10$ micron, gradient: 100% A for 5 min , then 2\% B/min, buffer A 0.1M TEAB, buffer B MeCN, $5 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing compound 46 were pooled and lyophilized to yield the product as a white foam ($0.0014 \mathrm{~g}, 0.0019 \mathrm{mmol}, 68 \%$): LCMS(ES-) m/z calcd for (M-H) ${ }^{-}$ $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{14} \mathrm{P}_{3} \mathrm{~S}_{2} 716$, found 716 .

Compound 22

HPLC fractions containing thiol $12(\sim 0.52 \mu \mathrm{~mol}, 1$ equiv) were mixed with disulfide 46 ($0.29 \mathrm{mg}, 1.6 \mu \mathrm{~mol}, 3.1$ equiv) in $\mathrm{H}_{2} \mathrm{O}(0.30 \mathrm{~mL})$ in an aluminum foil covered flask. After disappearance of $\mathbf{1 2}$ as determined by HPLC the reaction was lyophilized, then HPLC purified (Phenomenex C18 preparative column, 250×21.20 mm 10 micron, gradient: 100% A for 5 min , then $1 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.05 M TEAB, buffer B MeCN, $10 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield compound 22 as a bright blue solid ($0.10 \mu \mathrm{~mol}$, $\left.19 \%, \varepsilon_{649}=250000\right): \operatorname{LCMS}(E S-) \mathrm{m} / \mathrm{z}$ calcd for $[(\mathrm{M}-2 \mathrm{H}) / 2]^{-} \mathrm{C}_{69} \mathrm{H}_{93} \mathrm{~N}_{11} \mathrm{O}_{34} \mathrm{P}_{5} \mathrm{~S}_{4}{ }^{+}$ 950, found 950.

Compound 47

Alcohol 41 was dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ under vacuum overnight prior to use. A solution of alcohol 41 ($0.25 \mathrm{~g}, 0.31 \mathrm{mmol}, 1$ equiv) in trimethyl phosphate (0.7 mL) was stirred over $4 \AA$ molecular sieves at $0{ }^{\circ} \mathrm{C}$ for 30 minutes. Neat $\mathrm{POCl}_{3}(0.037 \mathrm{~mL}$, $0.40 \mathrm{mmol}, 1.3$ equiv) was added dropwise over 15 minutes to the colorless solution (see note 1). After two hours the reaction was quenched with 0.05 M TEAB buffer (20 mL), then warmed to RT and stirred for 2-3 hours. The solution was then concentrated under reduced pressure to yield crude monophosphate 6.

Next the residue was treated with 20% piperidine/MeCN (5 mL) for 30 minutes to remove the Fmoc protecting group. The solvent was removed under reduced pressure, and the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(\sim 5 \mathrm{~mL})$, causing precipitation of dibenzylfulvene. The mixture was transferred to eppendorf tubes and centrifuged to remove the precipitate. The supernatant was then HPLC purified (Phenomenex C18 preparative column, $250 \times 21.20 \mathrm{~mm} 10$ micron, gradient: 100% A for 5 min , then $2 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1 M TEAB, buffer B MeCN, $15 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing amine 47 were pooled and lyophilized to yield the product as a white
foam ($5.3 \mu \mathrm{~mol}, 2 \%, \varepsilon_{294}=9300$): LCMS(ES-) m / z calcd for $(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{25} \mathrm{H}_{41} \mathrm{~N}_{6} \mathrm{O}_{9} \mathrm{PS}_{2}$ 664, found 664.

Notes: 1. Monophosphate formation should be monitored by LCMS ($0.5 \mu \mathrm{~L}$ aliquot plus $40 \mu \mathrm{~L}$ water). Initially 1.2 equivalents of POCl_{3} are added, and more is added slowly until $<10 \%$ starting material remains.

Compound 13

Cy5 Mono NHS Ester ($0.10 \mathrm{~mL}, 0.066 \mathrm{mmol}, 0.066 \mathrm{M}$ in anhydrous DMF, 1.24 equiv) and $1 \mathrm{M}_{2} \mathrm{HPO}_{4}(0.05 \mathrm{~mL})$ were added to a solution of amine 47 (3.5 mg , $5.32 \mu \mathrm{~mol}$, 1 equiv) in $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ in an aluminum foil covered flask. After disappearance of the starting amine as determined by HPLC, the crude disulfide 48 was treated with TCEP ($0.27 \mathrm{~mL}, 0.13 \mathrm{mmol}, 0.5 \mathrm{M}$ in $\mathrm{H}_{2} \mathrm{O}, 24$ equiv). After 30 minutes the crude reaction was HPLC purified (Phenomenex C18 preparative column, $250 \times 21.20 \mathrm{~mm} 10$ micron, gradient: 100% A for 5 min , then $2 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1 M TEAB, buffer B MeCN, $15 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing thiol $\mathbf{1 3}$ were pooled and used immediately for the subsequent displacement reaction
without removing the solvent: LCMS(ES-) m / z calcd for $[(M-2 H) / 2]^{-}$ $\mathrm{C}_{54} \mathrm{H}_{72} \mathrm{~N}_{8} \mathrm{O}_{16} \mathrm{PS}_{3}{ }^{+} 607$, found 607.

Compound 23

HPLC fractions containing thiol $13(\sim 4.86 \mathrm{mg}, 4.0 \mu \mathrm{~mol}, 1$ equiv) were mixed with disulfide 46 ($0.002 \mathrm{~g}, 2.8 \mu \mathrm{~mol}, 0.70$ equiv) in $\mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{~mL})$ in an aluminum foil covered flask. After 30 minutes the reaction was partially concentrated under reduced pressure to remove MeCN, then HPLC purified (Phenomenex C18 preparative column, $250 \times 21.20 \mathrm{~mm} 10$ micron, gradient: 100% A for 5 min , then $1 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1 M TEAB, buffer B MeCN, $10 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield compound 23 as a bright blue solid ($0.93 \mu \mathrm{~mol}, 23 \%, \varepsilon_{649}=250000$): LCMS(ES-) m/z calcd for [(M2H)/2] ${ }^{-} \mathrm{C}_{69} \mathrm{H}_{93} \mathrm{~N}_{12} \mathrm{O}_{30} \mathrm{P}_{4} \mathrm{~S}_{4}{ }^{+} 909$, found 909.

Compound 7

A solution of NHS ester 34 ($0.058 \mathrm{~g}, 0.091 \mathrm{mmol}, 1.0$ equiv) in DMF (0.5 mL) was added to a solution of 5'-amino-5'-deoxythymidine ($0.025 \mathrm{~g}, 0.091 \mathrm{mmol}, 1$ equiv) in $0.1 \mathrm{~N} \mathrm{NaHCO}_{3}(0.3 \mathrm{~mL})$ and DMF (0.3 mL). After stirring at room temperature for one hour, the reaction was acidified and extracted with DCM ($3 \times 10 \mathrm{~mL}$). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Purification by flash column chromatography (5\% MeOH/DCM) afforded compound 7 ($0.03 \mathrm{~g}, 43 \%)$: $\mathrm{R}_{\mathrm{f}}=0.43(10 \% \mathrm{MeOH} / \mathrm{DCM})$.

Compound 49

Compound 7 ($0.030 \mathrm{~g}, 0.039 \mathrm{mmol}$) was treated with a solution of 20% piperidine in DMF for ~ 20 minutes. The solvent was removed under reduced pressure, and the
residue was purified by flash column chromatography ($5 \% \mathrm{MeOH} / \mathrm{DCM}$) to yield amine 49 ($0.020 \mathrm{~g}, 92 \%$): $\mathrm{R}_{\mathrm{f}}=0.12$ ($10 \% \mathrm{MeOH} / \mathrm{DCM}$).

Compound 14

Cy5 Mono NHS Ester ($0.35 \mathrm{~mL}, 0.006 \mathrm{mmol}, 0.016 \mathrm{M}$ in anhydrous DMF, 1.1 equiv) was added to a solution of amine 49 ($2.73 \mathrm{mg}, 0.005 \mathrm{mmol}, 1$ equiv) in 0.1 N $\mathrm{NaHCO}_{3}(0.30 \mathrm{~mL})$ in an aluminum foil covered flask. After disappearance of the starting amine as determined by HPLC, the crude disulfide 50 was treated with dithiothreitol ($10 \mathrm{~mL}, 0.50 \mathrm{mmol}, 0.05 \mathrm{M}$ in $0.1 \mathrm{~N} \mathrm{NaHCO}_{3}$). After 60 minutes the crude reaction was HPLC purified (Phenomenex C18 preparative column, $250 \times$ 10.0 mm 10 micron, gradient: 100% A for 5 min , then $1 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.05 M TEAB, buffer B MeCN, $5 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield compound 14 as a bright blue solid ($2.25 \mu \mathrm{~mol}$, $\left.45 \%, \varepsilon_{649}=250000\right)$.

Compound 24

A solution of thiol 14 ($\sim 1.5 \mu \mathrm{~mol}, 1$ equiv) in $50 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}(0.60 \mathrm{~mL})$ was added to disulfide 46 ($0.8 \mu \mathrm{~mol}, 0.53$ equiv) in $50 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}(0.50 \mathrm{~mL})$ and $1 \mathrm{M} \mathrm{K}_{2} \mathrm{HPO}_{4}$ $(0.10 \mathrm{~mL})$ in an aluminum foil covered flask. After disappearance of SPDP-dCTP as determined by HPLC the reaction was HPLC purified (Phenomenex C18 preparative column, $250 \times 10.00 \mathrm{~mm} 10$ micron, gradient: 100% A for 5 min , then $1 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.05 M TEAB, buffer B MeCN, $5 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield compound 24 as a bright blue solid ($0.57 \mu \mathrm{~mol}, 70 \%, \varepsilon_{649}=250000$).

Compound 29

HPLC fractions containing thiol $\mathbf{1 0}$ ($0.022 \mathrm{~g}, 0.018 \mathrm{mmol}, 1$ equiv) were mixed with hplc fractions containing difulfide $45(0.015 \mathrm{~g}, 0.020 \mathrm{mmol}, 1.11$ equiv) in an aluminum foil covered flask. After 15 minutes the reaction was partially concentrated under reduced pressure to remove MeCN , then HPLC purified (Phenomenex C18 preparative column, $250 \times 15.00 \mathrm{~mm} 10$ micron, gradient: 100\% A for 3 min , then $1 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1M TEAB, buffer B MeCN, $10 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield compound 29 as a bright blue solid (10.3 $\mu \mathrm{mol}, 57 \%, \varepsilon_{649}=250000$): LCMS(ES-) m / z calcd for $[(\mathrm{M}-2 \mathrm{H}) / 2]^{-} \mathrm{C}_{70} \mathrm{H}_{95} \mathrm{~N}_{12} \mathrm{O}_{30} \mathrm{P}_{4} \mathrm{~S}_{4}{ }^{+} 917$, found 917.

Compound 51

Proton sponge and 5-aminoallyl-2'-deoxyuridine-5'-OH were dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ under vacuum overnight prior to use. A solution of 5-aminoallyl-2'-deoxyuridine-5'-OH $(0.03 \mathrm{~g}, 0.071 \mathrm{mmol}, 1$ equiv) and proton sponge ($0.018 \mathrm{~g}, 0.084 \mathrm{mmol}, 1.18$ equiv) in trimethyl phosphate (0.2 mL) was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes. Neat $\mathrm{POCl}_{3}(0.024 \mathrm{~mL}, 0.26 \mathrm{mmol}, 3.6$ equiv) was added dropwise over ten minutes to the colorless solution. After 1.5 hours the reaction was quenched with 0.05 M TEAB buffer (5 mL) and the reaction was warmed to RT. After stirring for one hour, $\mathrm{NH}_{4} \mathrm{OH}$ (5 mL) was added to remove the protecting groups. The solution was lyophilized after two hours to yield crude monophosphate 51, which was then HPLC purified (Waters Delta 600 pump and 2487 Dual λ Absorbance Detector, Phenomenex C18 preparative column, $250 \times 21.20 \mathrm{~mm} 10$ micron, gradient: 100\% A for 5 min , then $1 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1 M TEAB, buffer B MeOH, $10 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield 51 as a white foam (43 $\mu \mathrm{mol}, 60 \%, \varepsilon_{294}=9300$): LCMS(ES-) m / z calcd for $(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{P}$ 362 , found 362.

Compound 52.

A solution of NHS ester $\mathbf{3 3}$ ($10 \mu \mathrm{~mol}, 1.11$ equiv) in MeCN (0.5 mL) was added to a solution of monophosphate 51 ($9 \mu \mathrm{~mol}$, 1 equiv) in $\mathrm{H}_{2} \mathrm{O}(0.42 \mathrm{~mL})$ buffered to pH ~ 8.5 with $1 \mathrm{M} \mathrm{K}_{2} \mathrm{HPO}_{4}(0.08 \mathrm{~mL})$. After 30 minutes, the solution containing crude amide 8 was treated with piperidine (0.2 mL) to remove the Fmoc protecting group. The solvent was removed under reduced pressure after an hour, and the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(\sim 2 \mathrm{~mL})$, causing formation of a white precipitate (dibenzylfulvene). The mixture was transferred to eppendorf tubes and centrifuged to remove the precipitate. The supernatant was then HPLC purified (Waters Delta 600 pump and 2487 Dual λ Absorbance Detector, Phenomenex C18 preparative column, $250 \times 21.20 \mathrm{~mm} 10$ micron, gradient: 100% A for 5 min , then 1.5% $\mathrm{B} / \mathrm{min}$, buffer A 0.1 M TEAB, buffer B MeCN, $10 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield amine 52 as a white foam (1.8 $\left.\mu \mathrm{mol}, 20 \%, \varepsilon_{294}=9300\right): \operatorname{LCMS}(E S-) \mathrm{m} / \mathrm{z}$ calcd for $(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{19} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{PS}_{2}$ 553, found 553 .

Compound 53.

Cy5 Mono NHS Ester ($1.05 \mathrm{~mL}, 0.069 \mu \mathrm{~mol}, 0.066 \mathrm{mM}$ in anhydrous DMF, 1.73 equiv) was added to a solution of amine 52 ($40 \mu \mathrm{~mol}, 1$ equiv) in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. After one hour the crude reaction was HPLC purified (Waters Delta 600 pump and 2487 Dual λ Absorbance Detector, Phenomenex C18 preparative column, 250 x 21.20 mm 10 micron, gradient: 100\% A for 5 min, then $2 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1 M TEAB, buffer B MeCN, $10 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield amide 53 as a bright blue solid ($32 \mu \mathrm{~mol}, 80 \%$, ε_{649} $=250000):$ LCMS(ES-) m / z calcd for $[(\mathrm{M}-2 \mathrm{H}) / 2]^{-} \mathrm{C}_{52} \mathrm{H}_{70} \mathrm{~N}_{6} \mathrm{O}_{16} \mathrm{PS}_{4}{ }^{+} 595$, found 595.

Compound 15.

A solution of amide 53 ($32 \mu \mathrm{~mol}, 1$ equiv) in $\mathrm{H}_{2} \mathrm{O}$ was treated with DTT (2.75 mL , 1.37 mmol, 0.5 M in $\mathrm{H}_{2} \mathrm{O}, 34$ equiv). After 30 minutes the crude reaction was HPLC purified (Waters Delta 600 pump and 2487 Dual λ Absorbance Detector, Phenomenex C18 preparative column, $250 \times 21.20 \mathrm{~mm} 10$ micron, gradient: 100\% A for 5 min , then $1 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1 M TEAB, buffer B MeCN, $10 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing thiol 15 were pooled and used immediately for the subsequent displacement reaction without removing the solvent (18 $\mu \mathrm{mol}, 56 \%, \varepsilon_{649}=$ 250000): LCMS(ES-) m/z calcd for [(M-2H)/2] $\mathrm{C}_{48} \mathrm{H}_{62} \mathrm{~N}_{6} \mathrm{O}_{16} \mathrm{PS}_{3}{ }^{+} 551$, found 551.

Compound 30.

HPLC fractions containing thiol 15 (17 $\mu \mathrm{mol}, 1$ equiv) were mixed with HPLC fractions containing SPDP-dUTP 38 ($24 \mu \mathrm{~mol}, 1.4$ equiv). After 15 minutes the reaction was partially concentrated under reduced pressure to remove MeCN , then HPLC purified (Waters Delta 600 pump and 2487 Dual λ Absorbance Detector, Phenomenex C18 preparative column, $250 \times 15.00 \mathrm{~mm} 10$ micron, gradient: 100% A for 3 min , then $1 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1 M TEAB, buffer B MeCN, $10 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield compound $\mathbf{3 0}$
as a bright blue solid (10 $\mu \mathrm{mol}, 59 \%, \varepsilon_{649}=250000$): LCMS(ES-) m / z calcd for $[(\mathrm{M}-2 \mathrm{H}) / 2]^{-} \mathrm{C}_{63} \mathrm{H}_{82} \mathrm{~N}_{9} \mathrm{O}_{31} \mathrm{P}_{4} \mathrm{~S}_{4}{ }^{+} 855$, found 855.

Compound 54

Proton sponge and 5-aminoallyl-2'-deoxycytidine-5'-OH were dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ under vacuum overnight prior to use. A solution of 5-aminoallyl-2'-deoxycytidine-5'-OH ($0.03 \mathrm{~g}, 0.071 \mathrm{mmol}, 1$ equiv) and proton sponge ($0.018 \mathrm{~g}, 0.084 \mathrm{mmol}, 1.18$ equiv) in trimethyl phosphate (0.2 mL) was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes. Neat $\mathrm{POCl}_{3}(0.024 \mathrm{~mL}, 0.26 \mathrm{mmol}, 3.6$ equiv) was added dropwise over ten minutes to the colorless solution (see note 1). After 1.5 hours the reaction was quenched with 0.05 M TEAB buffer (5 mL) and the reaction was warmed to RT. After stirring for one hour, $\mathrm{NH}_{4} \mathrm{OH}(5 \mathrm{~mL}$) was added to remove the protecting groups. The solution was lyophilized after two hours to yield crude monophosphate, which was then HPLC purified (Waters Delta 600 pump and 2487 Dual λ Absorbance Detector, Phenomenex C18 preparative column, $250 \times 21.20 \mathrm{~mm} 10$ micron, gradient: 100\% A for 5 min , then $1 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1 M TEAB, buffer B MeOH, $10 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield 54 as a white
foam (43 $\mu \mathrm{mol}, 60 \%, \varepsilon_{290}=5041$): LCMS(ES-) m/z calcd for $(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{P}$ 361, found 361.

Notes: 1. Monophosphate formation should be monitored by LCMS ($0.5 \mu \mathrm{~L}$ aliquot plus $40 \mu \mathrm{~L}$ water). Initially 1.2 equivalents of POCl_{3} are added, and more is added slowly until $<10 \%$ starting material remains.

Compound 55

Boc-mini-PEG-3 ($0.46 \mathrm{~g}, 1.50 \mathrm{mmol}, 1$ equiv) was stirred with $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$:TFA (4 mL total) at RT for 30 min . The solvent was removed under reduced pressure, then co-evaporated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 4 \mathrm{~mL})$ and $\mathrm{MeCN}(2 \times 4 \mathrm{~mL})$ to afford amine 55, which was used without further purification or characterization.

Compound 56

A solution of NHS ester 33 ($0.53 \mathrm{~g}, 1.0 \mathrm{mmol}, 1.59$ equiv) in MeCN (4 mL) was added to a solution of amine 55 ($0.13 \mathrm{~g}, 0.63 \mathrm{mmol}, 1$ equiv) in $\mathrm{MeCN}(2 \mathrm{~mL})$ and $0.1 \mathrm{M} \mathrm{NaHCO} 3(1.2 \mathrm{~mL})$. The reaction pH was corrected to 7.5 by addition of neat

DIPEA (0.070 mL) in small aliquots. After disappearance of the starting amine by TLC (ninhydrin was used to visualize the amine), the MeCN was removed under reduced pressure. The reaction was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 25 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to yield 0.42 g of crude material. Purification by flash column chromatography (100\% $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $50 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded acid 56 as a white solid (0.245 g , 62\%): LCMS(ES-) m/z calcd for (M-H) ${ }^{-} \mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}$ 619, found 619.

Compound 57

Acid 56 ($0.15 \mathrm{~g}, 0.24 \mathrm{mmol}, 1$ equiv) was dissolved in $\mathrm{MeCN}(1.3 \mathrm{~mL})$. DCC (0.06 g, $0.29 \mathrm{mmol}, 1.21$ equiv) was added, followed by NHS ($0.036 \mathrm{~g}, 0.31 \mathrm{mmol}, 1.29$ equiv) and the reaction was stirred at RT for an hour. White precipitate (DCU) began forming within five minutes. The reaction mixture was transferred to eppendorf tubes and centrifuged to remove the white precipitate. The supernatant was then used in subsequent reactions without further purification.

Compound 58

A solution of NHS ester 57 ($0.0072 \mathrm{~g}, 0.010 \mathrm{mmol}, 1.11$ equiv) in $\mathrm{MeCN}(0.5 \mathrm{~mL})$ was added to a solution of monophosphate 54 ($0.0032 \mathrm{~g}, 0.009 \mathrm{mmol}, 1$ equiv) in $\mathrm{H}_{2} \mathrm{O}(0.42 \mathrm{~mL})$ buffered to $\mathrm{pH} \sim 8.5$ with $1 \mathrm{M} \mathrm{K}_{2} \mathrm{HPO}_{4}(0.08 \mathrm{~mL})$. After 30 minutes, the solution containing crude amide 9 was treated with piperidine (0.2 mL) to remove the Fmoc protecting group. The solvent was removed under reduced pressure after an hour, and the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(\sim 2 \mathrm{~mL})$, causing formation of a white precipitate (dibenzylfulvene). The mixture was transferred to eppendorf tubes and centrifuged to remove the precipitate. The supernatant was then HPLC purified (Waters Delta 600 pump and 2487 Dual λ Absorbance Detector, Phenomenex C18 preparative column, $250 \times 21.20 \mathrm{~mm} 10$ micron, gradient: 100% A for 5 min , then $1.5 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1 M TEAB, buffer B MeCN, $10 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield amine 58 as a white foam ($1.8 \mu \mathrm{~mol}, 20 \%, \varepsilon_{294}=9300$): LCMS(ES-) m / z calcd for $(\mathrm{M}-\mathrm{H})^{-}$ $\mathrm{C}_{27} \mathrm{H}_{47} \mathrm{~N}_{6} \mathrm{O}_{12} \mathrm{PS}_{2} 741$, found 741 .

Compound 59

Cy5 Mono NHS Ester ($0.0028 \mathrm{~g}, 0.055 \mathrm{~mL}, 0.0036 \mathrm{mmol}, 0.066 \mathrm{mM}$ in anhydrous DMF, 4.0 equiv) was added to a solution of amine 58 ($0.67 \mathrm{mg}, 0.9 \mu \mathrm{~mol}, 1$ equiv) in $\mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{~mL})$ buffered to pH 8.5 with $1 \mathrm{M}_{2} \mathrm{HPO}_{4}(0.03 \mathrm{~mL})$ in an aluminum foil covered flask. After disappearance of the starting amine as determined by LCMS or HPLC, the crude reaction mixture was used without purification or quantification for the subsequent reaction. LCMS(ES-) m/z calcd for $[(\mathrm{M}-2 \mathrm{H}) / 2]^{-} \mathrm{C}_{60} \mathrm{H}_{86} \mathrm{~N}_{8} \mathrm{O}_{19} \mathrm{PS}_{4}{ }^{+}$ 689, found 689.

Compound 16

A solution of crude amide 59 ($0.0012 \mathrm{~g}, 0.9 \mu \mathrm{~mol}, 1$ equiv) in $\mathrm{H}_{2} \mathrm{O} / \mathrm{DMF}$ (5/1, 0.335 mL) was treated with TCEP ($0.10 \mathrm{~mL}, 0.050 \mathrm{mmol}, 0.5 \mathrm{M}$ in $\mathrm{H}_{2} \mathrm{O}, 56$ equiv) in an aluminum foil covered flask. After 20 minutes the crude reaction was HPLC purified (Waters Delta 600 pump and 2487 Dual λ Absorbance Detector, Phenomenex C18
semi-preparative column, $250 \times 10.00 \mathrm{~mm} 10$ micron, gradient: 100% A for 5 min , then $1 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1 M TEAB, buffer B MeCN, $5 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing thiol 16 were pooled and used immediately for the subsequent displacement reaction without removing the solvent or quantifying. LCMS(ES-) m/z calcd for $[(\mathrm{M}-2 \mathrm{H}) / 2]^{-} \mathrm{C}_{56} \mathrm{H}_{78} \mathrm{~N}_{8} \mathrm{O}_{19} \mathrm{PS}_{3}{ }^{+} 645$, found 645.

Compound 32

HPLC fractions containing thiol 16 ($1.2 \mathrm{mg}, 0.9 \mu \mathrm{~mol}, 1$ equiv) were mixed with HPLC fractions containing disulfide 46 ($0.86 \mathrm{mg}, 0.0012 \mathrm{mmol}, 1.33$ equiv) in an aluminum foil covered flask. After 15 minutes the reaction was partially concentrated under reduced pressure to remove MeCN, then HPLC purified (Waters Delta 600 pump and 2487 Dual λ Absorbance Detector, Phenomenex C18 semipreparative column, $250 \times 10.00 \mathrm{~mm} 10$ micron, gradient: 100% A for 3 min , then $1 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1M TEAB, buffer $B \mathrm{MeCN}, 5 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield compound $\mathbf{3 2}$ as a bright blue solid ($0.49 \mu \mathrm{~mol}, 54 \%, \varepsilon_{649}=250000$). LCMS(ES-) m/z calcd for $[(M-$ $2 \mathrm{H}) / 2]^{-} \mathrm{C}_{71} \mathrm{H}_{99} \mathrm{~N}_{12} \mathrm{O}_{33} \mathrm{P}_{4} \mathrm{~S}_{4}{ }^{+} 948$, found 948.

Compound 60

5-Iodo-2'-Deoxyuridine ($0.25 \mathrm{~g}, 0.71 \mathrm{mmol}, 1$ equiv) and 2-(boc-amino)ethyl bromide ($0.23 \mathrm{~g}, 1.03 \mathrm{mmol}, 1.44$ equiv) were dissolved in 1:1 DMF:acetone (1.4 mL total). $\mathrm{K}_{2} \mathrm{CO}_{3}(0.16 \mathrm{~g}, 1.16 \mathrm{mmol}, 1.63$ equiv) and tetrabutylammonium iodide ($0.03 \mathrm{~g}, 0.081 \mathrm{mmol}, 0.11$ equiv) were added, and the reaction was heated at 55 ${ }^{\circ} \mathrm{C}$ under an Ar atmosphere for 3 hours. After cooling to RT , the reaction was diluted with EtOAc (20 mL) and washed with brine ($2 \times 20 \mathrm{~mL}$). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to yield carbamate 60 as a pale yellow foam that was used without further purification ($0.35 \mathrm{~g}, 99 \%$).

Compound 61

2, 2, 2-trifluoro-N-prop-2-ynyl-acetamide ($0.35 \mathrm{~g}, 2.32 \mathrm{mmol}, 3.0$ equiv), NEt_{3} ($0.33 \mathrm{~g}, 3.23 \mathrm{mmol}, 4.25$ equiv), and $\mathrm{Cul}(0.070 \mathrm{~g}, 0.37 \mathrm{mmol}, 0.50$ equiv) were added to a solution of iodide $\mathbf{6 0}$ ($0.38 \mathrm{~g}, 0.76 \mathrm{mmol}, 1$ equiv) in anhydrous DMF (3 mL) under an Ar atmosphere. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.16 \mathrm{~g}, 0.14 \mathrm{mmol}, 0.18$ equiv) was then added to the clear yellow solution, immediately causing the solution to become dark brown. After stirring the reaction at RT in the dark for 12 hrs , most of the DMF was removed under reduced pressure. The crude material was then purified by flash column chromatography ($1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford compound 61 as a brown solid (0.22 g, 55\%) .

Compound 62

Proton sponge and alcohol 61 were dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ under vacuum overnight prior to use. A solution of alcohol $61(0.070 \mathrm{~g}, 0.13 \mathrm{mmol}, 1$ equiv) and proton sponge ($0.050 \mathrm{~g}, 0.33 \mathrm{mmol}, 2.5$ equiv) in trimethyl phosphate $(0.65 \mathrm{~mL})$ was stirred at 0 ${ }^{\circ} \mathrm{C}$ under an Ar atmosphere for 15 minutes. Neat $\mathrm{POCl}_{3}(0.032 \mathrm{~mL}, 0.34 \mathrm{mmol}, 2.6$ equiv) was added dropwise over 15 minutes (see note 1). After one hour the reaction was quenched with 0.05 M TEAB buffer (5 mL), then warmed to RT and stirred for one hour. The crude reaction mixture was then transferred to eppendorf
tubes and centrifuged to remove the precipitate (proton sponge). The supernatant was then HPLC purified (Phenomenex C18 preparative column, $250 \times 15.00 \mathrm{~mm} 10$ micron, gradient: 100% A for 5 min , then $2 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1 M TEAB, buffer B MeCN, $10 \mathrm{~mL} / \mathrm{min}$ flow). Next the fractions containing the desired monophosphate were pooled and partially concentrated, then treated with $\mathrm{NH}_{4} \mathrm{OH}(6 \mathrm{~mL})$ for one hour to remove the TFA group. After removing the solvent, the material was again HPLC purified (Phenomenex C18 preparative column, $250 \times 15.00 \mathrm{~mm} 10$ micron, gradient: 100% A for 5 min , then $1 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1 M TEAB, buffer B MeCN, $10 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield amine 62 as a white foam (11 $\mu \mathrm{mol}, 8 \%, \varepsilon_{289}=13000$): LCMS(ES-) m/z calcd for $[(\mathrm{M}-2 \mathrm{H}) / 2]^{-} \mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{P} 503$, found 503.

Notes: 1. Monophosphate formation should be monitored by LCMS ($0.5 \mu \mathrm{~L}$ aliquot plus $40 \mu \mathrm{~L}$ water). Initially 1.2 equivalents of POCl_{3} are added, and more is added slowly until $<10 \%$ starting material remains.

Compound 63

Cy5 Mono NHS Ester ($0.24 \mathrm{~mL}, 0.016 \mathrm{mmol}, 0.066 \mathrm{M}$ in anhydrous DMF, 1.45 equiv) and $1 \mathrm{M}_{2} \mathrm{HPO}_{4}(0.20 \mathrm{~mL})$ were added to a solution of amine $62(5.5 \mathrm{mg}, 11$ $\mu \mathrm{mol}, 1$ equiv) in $\mathrm{H}_{2} \mathrm{O}$ (4 mL). After disappearance of the starting amine as determined by LCMS, the crude reaction was HPLC purified (Phenomenex C18 preparative column, $250 \times 15.0 \mathrm{~mm} 10 \mathrm{mic}$ 解, gradient: 100% A for 3 min , then $2 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1 M TEAB, buffer B MeCN, $10 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield compound 63 as a bright blue solid $\left(9.7 \mu \mathrm{~mol}, 88 \%, \varepsilon_{649}=250000\right)$: LCMS(ES-) m / z calcd for $[(\mathrm{M}-$ $2 \mathrm{H}) / 2]^{-} \mathrm{C}_{52} \mathrm{H}_{68} \mathrm{~N}_{6} \mathrm{O}_{17} \mathrm{PS}_{2}{ }^{+} 570$, found 570 .

Compound 64

$\mathrm{HCl}(0.80 \mathrm{~mL}, 3.2 \mathrm{mmol}, 4.0 \mathrm{M}$ in dioxane) was added to a solution of carbamate 63 ($4.5 \mu \mathrm{~mol}$, 1 equiv) in $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$, and the reaction was stirred at RT until the starting material had disappeared as determined by LCMS ($\sim 3 \mathrm{hrs}$). The reaction was then cooled to $0{ }^{\circ} \mathrm{C}$ and DIPEA ($1 \mathrm{~mL}, 5.74 \mathrm{mmol}$) was added slowly to neutralize the excess acid and liberate the amine. The reaction was next warmed to RT and a solution of 8 -benzoylsulfanyl-octanoic acid NHS ester ($0.020 \mathrm{~g}, 0.053$
mmol, 12 equiv) in DMF (0.40 mL) was added. After disappearance of the free amine as determined by LCMS, the crude reaction was HPLC purified (Phenomenex C18 preparative column, $250 \times 15.0 \mathrm{~mm} 10$ micron, gradient: 100\% A for 3 min , then $2 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1 M TEAB, buffer B MeCN, $10 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield compound 64 (3.35 $\left.\mu \mathrm{mol}, 74 \%, \varepsilon_{649}=250000\right):$ LCMS(ES-) m / z calcd for $[(\mathrm{M}-2 \mathrm{H}) / 2]^{-} \mathrm{C}_{62} \mathrm{H}_{78} \mathrm{~N}_{6} \mathrm{O}_{17} \mathrm{PS}_{3}{ }^{+}$ 651, found 651.

Compound 65

A solution of thiobenzoate $64(1.45 \mu \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ was treated with 1 M $\mathrm{NH}_{2} \mathrm{OH}(2.0 \mathrm{~mL}, \mathrm{pH} \sim 7)$. The reaction was stirred at RT for one hr, then immediately HPLC purified (Waters Delta 600 pump and 2487 Dual λ Absorbance Detector, Phenomenex C18 preparative column, $250 \times 15.0 \mathrm{~mm} 10$ micron, gradient: 100% A for 3 min , then $2 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1 M TEAB, buffer B MeCN, $10 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired thiol 65 were used immediately for subsequent reactions without quantifying or concentrating. LCMS(ES-) m/z calcd for $[(\mathrm{M}-2 \mathrm{H}) / 2]^{-} \mathrm{C}_{55} \mathrm{H}_{74} \mathrm{~N}_{6} \mathrm{O}_{16} \mathrm{PS}_{3}{ }^{+} 599$, found 599.

Compound 31

HPLC fractions containing thiol 65 ($1 \mu \mathrm{~mol}, 1$ equiv) were mixed with HPLC fractions containing disulfide 44 ($1.2 \mu \mathrm{~mol}, 1.2$ equiv). After 15 minutes the reaction was partially concentrated under reduced pressure to remove MeCN , then HPLC purified (Waters Delta 600 pump and 2487 Dual λ Absorbance Detector, Phenomenex C18 preparative column, $250 \times 15.00 \mathrm{~mm} 10$ micron, gradient: 100% A for 3 min , then $1 \% \mathrm{~B} / \mathrm{min}$, buffer A 0.1 M TEAB, buffer B MeCN, $10 \mathrm{~mL} / \mathrm{min}$ flow). Fractions containing the desired were pooled and lyophilized to yield compound 31 as a bright blue solid ($0.7 \mu \mathrm{~mol}, 70 \%, \varepsilon_{649}=250000$): LCMS(ES-) m / z calcd for $[(\mathrm{M}-2 \mathrm{H}) / 2]^{-} \mathrm{C}_{72} \mathrm{H}_{96} \mathrm{~N}_{11} \mathrm{O}_{30} \mathrm{P}_{4} \mathrm{~S}_{4}{ }^{+} 922$, found 922.

* dNTP-AP3's were prepared according to: F.W. Hobbs, Jr. and A.J. Cocuzza, Alkynylamino-nucleotides. US Patent 5047519, 1991 with the following modifications: a) Pyrophosphate and tributylamine were added to the reaction mixture rather than vice versa.; b) After pyrophosphate addition the reaction was quenched within 15 min.; c) Sephadex chromatography was replaced by preparative HPLC.

