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Supplementary Figure 1 

Kernel density plot showing the accuracy of reads from the four individual MinION runs used to generate the de novo assembly. 

The mean accuracy varies from 78.2% (run 3) to 82.2% (run 1). 
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Supplementary Figure 2 

Kernel density plot demonstrating the raw nanopore read accuracy and effect of two rounds of error correction on accuracy. 

The mauve area represents uncorrected sequencing reads, where the green area shows the improvement in accuracy after the first 
round of correction and the yellow shows improvement from the second round of correction. Further rounds of correction did not 
improve the accuracy further. 
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Supplementary Figure 3 

Spec file for Celera Assembler. 
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1 Supplementary Note

1.1 Signal-level Consensus Algorithm

The electrical current signal sampled by the MinION inherently contains more
information than the base-called reads. We sought to use this information when
computing the final consensus sequence of our assembly. In this section we
describe our consensus algorithm. We first give a brief overview of the algorithm.
We start with our initial draft assembly, G, and progressively modify it by
making small localized changes. We assess whether the modified sequence, G′,
increases the probability of the electrical current data for a set of reads. If the
probability of the signal data increases we accept G′ and iterate. To make these
calculations computationally feasible, this process is run over short segments of
the genome and seeded by reads aligned to G. At the core of this algorithm is
calculating the probability of the raw signal data emitted by the MinION given
a proposed consensus sequence. We first describe our probabilistic model of the
data, then describe how we use this model to compute the consensus sequence
for the assembly.

Signal-level MinION Data

The MinION continuously samples electrical current flow across the pore. When
DNA is detected in the pore, these current samples are turned into events by a
feature detection algorithm provided by the instrument’s software. The feature
detection algorithm is designed to find stepwise changes in the current signal
that indicate that the DNA sequence has moved through the pore. For each
event the feature detection algorithm records the mean of the current samples
(in picoamps), its standard deviation and the total duration of the event (in
seconds). Simulated idealized data to illustrate these concepts is shown in Figure
S1 and Table S1.

1
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We only use the mean current level in our model but remark that the dura-
tion and standard deviation are sources of information that should be considered
in future work. When we refer to individual events ei below we are referring
to the mean current level component of the event only. For the purpose of our
consensus algorithm, we consider a MinION read to be a sequence of events
(e1, e2, ..., en).
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Figure S1: Simulated ideal signal data to illustrate the data that is input into
our model. The black points are sampled current levels at a given time. The red
lines are the events detected by a feature detection algorithm, which partitions
the samples into discrete segments.

Modeling Events

The fundamental principle of nanopore-based sequencing is that the amount of
current flow through the pore depends on the sequence of DNA that resides in
the pore [3, 5]. The MinION model assumes that the current level measured
for each event is drawn from a Gaussian distribution with mean and variance
dependent on the 5-mer sequence that is in the pore when the samples are taken.
Oxford Nanopore provides the parameters for the Gaussians for all 5-mers in the
FAST5 files describing each read. We refer to this collection of parameters as
Θ. The probability of observing event ei given that 5-mer k is the true sequence
in the pore is P (ei|k,Θ) = P (ei|k, µk, σk) = N (µk, σ

2
k).
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Event mean current (pA) current std dev duration (s)
1 60.3 0.7 0.521
2 40.6 1.0 0.112
3 52.2 2.0 0.356
4 54.1 1.2 0.051
5 61.5 1.0 0.291
6 72.7 1.5 0.015
7 49.4 1.5 0.141
8 45.2 1.2 0.301

Table S1: Events detected from the idealized example shown in Figure S1.

A Probabilistic Model of MinION Events

We want to calculate the probability of observing an event sequence given a
known DNA sequence S, P (e1, e2, ..., en|S,Θ). To do this, we represent the
known DNA sequence S as its constituent 5-mers, S = (s1, s2, ..., sm). The
simplest generative model of the data is where the sequencer moves stepwise
from 5-mer to 5-mer, and emits a single event from each 5-mer. This situation
is depicted in Figure S2.

Figure S2: A simple model where each 5-mer (grey circles) emits a single event
(blue circles).

In this situation, where there is a perfect one-to-one match between events
and 5-mers, calculating the probability of the data is straightforward if we as-
sume independence between events:

P (e1, e2, ..., en|s1, s2, ..., sn,Θ) =

n∏
i=1

P (ei|si, µsi , σsi) (1)

In reality however, we need to account for two types of event detection
errors: skipped 5-mers, where the system does not detect an event for a 5-mer
that transited the pore, and split events, where the signal for a single 5-mer is
emitted multiple times, presumably because of transient noise that exceeds the
event detection threshold.

In this situation, we no longer know which 5-mer emitted each event. To
provide motivation for our model we will describe an example from the more
complex generative process. Let S = (ACGTA, CGTAA, GTAAC, TAACT) be the 5-
mers of the known DNA sequence. The process starts at the first 5-mer of S,

3
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ACGTA, and emits an event drawn from N (µACGTA, σ
2
ACGTA). We then choose to

stay at ACGTA, move to the next 5-mer, CGTAA, or skip CGTAA and move directly
to GTAAC. Once a move has been made we can emit another event drawn from
the appropriate Gaussian and repeat until we reach the end of the sequence. We
can model this process using a hidden Markov model with the structure shown
in Figure S3.

Figure S3: A hidden Markov model allowing self-transitions and jumps over
states. This allows us to model split and skipped events.

We will treat the path through the model as the hidden state of the sys-
tem, π, where each entry is a pair πi = (i, sj) which denotes that at step i
the system emitted event i from 5-mer sj . We denote the transition probabili-
ties with P (πi|πi−1, S) and for convenience define an initial transition P (π1 =
(1, s1)|π0, S) = 1. We can then calculate the joint probability of a path and the
data:

P (π, e1, e2, ..., en|S,Θ) =

n∏
i=1

P (ei|πi, µsi , σsi)P (πi|πi−1, S) (2)

We can calculate the probability of the data given S by summing over all
possible paths using the Forward algorithm:

P (e1, e2, ..., en|S,Θ) =
∑
π

P (π, e1, e2, ..., en|S,Θ) (3)

The structure of the model and transition probabilities are implied by the
5-mer sequence S as described later.

Profile HMM of Events and 5-mer in the Pore

The model drawn above only allows single 5-mers to be skipped. We could add
transitions between more distant 5-mers to allow longer jumps but this increases
the computational cost to compute P (e1, e2, ..., en|S,Θ) [2]. To allow a similar
description of the data in a more computationally convienent structure we can
convert this model into a standard Profile HMM. The Profile HMM we use is
shown in Figure S4.

The Profile HMM expands the state space to include explicit states for extra
events emitted by any 5-mer (E states) and silent states that allow 5-mers to

4
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be visited without observing an event (K states). This model has a repeating
block structure with 3 states for every 5-mer in S. Each state in a block is
indexed by the block’s corresponding 5-mer.

A path π through this model consists of states that emit events (incrementing
the event index, states M and E) and states that move from 5-mer to 5-mer
(incrementing the 5-mer index, states M and K). Each entry in the path π
is again represented as a pair πk = (i,X) where i is the index of the last
event emitted by the path and X ∈ {Ms1 , Es1 ,Ks1 , ...,Msm , Esm ,Ksm}. When
describing transition probabilities we will use the notation t(Msj−1

→Msj ) to
mean P (πk = (i,Msj )|πk−1 = (i− 1,Msj−1

)) and so on.
To calculate the probability P (e1, e2, ..., en|S,Θ) we again use the Forward

algorithm which fills in a dynamic programming matrix of size 3mn to sum over
all paths through the model. We refer the reader to section 5.4 of Durbin et al.
[2] for the recursive definition of the dynamic programming matrix for a Profile
HMM.

Figure S4: The state structure of the Profile Hidden Markov Model we use to
calculate the probability of a sequence of events given a known sequence.

Transition Probabilities

The transition probabilities of the model are crucial to capturing the behaviour
of the pore. Most importantly, we must accurately model the probability
of not observing a signal for a particular 5-mer. If the signals for two ad-
jacent 5-mers, si−1 and si, are similar the feature detection algorithm may
not register a change in current. To make this explicit, consider the situation
where the sequenced DNA is GAAAAAAC. There is no chance to register the
AAAAA → AAAAA transition as the current signals for these 5-mers are identical
by definition. Therefore the probability of an event sequence generated by S
given two candidate sequences S1 = GAAAAAAC and S2 = GAAAAAC, which only
differ by the undetectable length of the poly-A run, should be very similar,
P (e1, e2, ..., en|S1,Θ) ≈ P (e1, e2, ..., en|S2,Θ).

We model this by making the transition probability to K states a function
of the absolute difference between expected current for the adjacent 5-mers

5
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t(Msi−1 → Ksi) = t(Ksi−1 → Ksi) = f(|µsi−1 − µsi |). We use a lookup table
for f that was calculated from a sample of reads matched to an earlier draft
assembly. The lookup table stores probabilities in bins of 0.5 pA.

While the majority of skipped 5-mers are due to signal similarity, we also
observe skips of 5-mers whose signal differs substantially from the preceding
5-mer. These occurrences are presumably due to events that were too short to
reliably detect and hence discarded by the feature detection algorithm.

The probability of transitioning to an E state is independent of the 5-mer.
Similar to the f table, we learned the probability of emitting an additional event
pme from a sample of reads. We calculate t(Msi−1

→ Esi−1
) using pme and the

probability of not transitioning to the K state:

t(Msi−1 → Esi−1) = pme(1− t(Msi−1 → Ksi))

We also estimated the probability of staying in the E state, pee, from the
same sample of reads and set t(Esi−1 → Esi−1) = pee. Later we describe
how these transition probabilities are trained to capture the characteristics of
individual MinION reads. The complete set of transition probabilities for our
model is as follows:

t(Msi−1
→ Ksi) = f(|µsi−1

− µsi |)
t(Msi−1

→ Esi−1
) = pme(1− t(Msi−1

→ Ksi))

t(Msi−1
→Msi) = 1− t(Msi−1

→ Ksi)− t(Msi−1
→ Esi−1

)

t(Esi−1
→ Esi−1

) = pee

t(Esi−1
→Msi) = 1− t(Esi−1

→ Esi−1
)

t(Ksi−1
→ Ksi) = f(|µsi−1

− µsi |)
t(Ksi−1

→Msi) = 1− t(Ksi−1
→ Ksi)

Emission Distributions

To complete the model we need emission distributions for each state. The
emission distribution for the M state are the Gaussians described above. The
emission distribution for the E states are nearly the same however we noted
higher variance for the duplicated events so we scale the standard deviation by
a factor of v = 1.75. As described above, no events are emitted from the K
states.

P (ei|πk = (i,Msj )) = N (µsj , σ
2
sj ) (4)

P (ei|πk = (i, Esj )) = N (µsj , (vσsj )2) (5)

This completes the description of our HMM.
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A1 A2

(2D read 1, template, 1872) (2D read 1, template, 1896)
(2D read 1, complement, 7076) (2D read 1, complement, 7063)
(2D read 2, template, 3011) (2D read 1, template, 3040)

(2D read 2, complement, 12072) (2D read 1, complement, 12051)

Table S2: An example of the first two reads for the first two anchors shown in
Figure S5.

1.2 Computing the Consensus Sequence

Our consensus pipeline begins by mapping the uncorrected 2D MinION reads
to the draft assembly, G. To do this we use bwa mem with option -x ont2d [4].
After the read mapping step, we segment the genome into 10 kilobase segments
which overlap by 200bp. For each 10kb segment we extract the subsequence
of each read that maps to the segment. The 10kb segment of the the draft
genome, and the reads aligned to the segment, are the input into our consensus
algorithm.

We select an anchor every 50bp of the draft assembly’s sequence for the
segment. These anchor points define a mapping between bases in the draft as-
sembly and the current signal events for each strand (template and complement)
of the aligned 2D MinION reads. Later, when evaluating the probability of the
data in our HMM we treat each strand of a 2D read independently. An anchor
Ai is a set of tuples specifying a MinION read identifier, a strand identifier
and the index of the nearest event for the base aligned to the draft assembly.
We use the anchor positions to extract subsequences of the draft assembly, the
2D MinION reads and their template and complement events to input into the
HMM. An example is in Figure S5 and Table S2.

draft_assembly  A-ACCCATAGCAAT--TTAGGCG-CAGTAAATCCGGGCATCATC--AGGTTGC-CGGT-AATCACC--GC

2d_read_1       -GACTGTCAGCAATAGTCAGGCG-CA-TATAACCTAG-ATTGCC--A---TGC-TG-T-AATAACC--GA

2d_read_2       A-ACCGACCTGAAT--CCTAG-G-CGGTTAATCCGGGCATCATC--AGGTTGC-CGGTCAATCACC-CGC

2d_read_3       A-ACCCATAGCA-T--TTAGGCGTAAGTCAATCCGGGCATCATCTAA---TGC-CG--CATTAGTCGCGC

2d_read_4       A-ACCCA--GCA-T--TTAGGCG-CAGTAAATCCGGGCATCATC--AGGTTGATCGGT-AA-GGCC--GT

Figure S5: Anchor positions store mappings between bases and MinION events
for every 2D read mapped to a segment. In this example, anchors are selected
every 20bp along the draft assembly row.

Training the HMM Transitions

Prior to computing the consenseus sequence of a segment, we adjust the transi-
tion probabilities for both strands of the MinION reads. We do this by aligning
the events for each read strand to the draft assembly sequence using the Viterbi

7
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algorithm, guided by the anchor positions. For each read, we count the number
of transitions between the states of the Profile HMM and update the f table,
pme and pee accordingly. As a read may not have have enough events to esti-
mate the f table across the full range of values we use pseudocounts from the
original f table to initialize this update.

Consensus Algorithm

The consensus algorithm recomputes the sequence of the draft assembly between
anchors Ai and Ai+2. After the new consensus sequence is computed, we update
the sequence of the assembly and the event-to-assembly mappings for Ai+1. This
update step uses the Viterbi algorithm to align events to the new consensus
sequence. The purpose of this pattern - jumping over an anchor and realigning
- is to progressively improve the quality of the event-to-assembly alignments
recorded in the anchors.

Let D = {(ei,1, ei+1,1, ..., ej,1), ..., (ei,r, ei+1,r, ..., ej,r)} be the set of event
subsequences for the r strands of the 2D MinION reads that are anchored at both
Ai and Ai+2. Our goal is to compute a consensus sequence C that maximizes
the probability of the data D. We do this by initializing C to the sequence of
the draft assembly between the two anchors. We then propose a set of candidate
sequences C which are derived from the current consensus C. We use our HMM
to select the sequence that maximizes the probability of the data:

C ′ = argmax
S∈C

P (D|S) (6)

where

P (D|S) =

r∏
k=1

P (ei,k, ei+1,k, ..., ej,k|S,Θ) (7)

The current consensus sequence is always included in the set of candidates.
If the current consensus sequence is selected by equation 6, the process stops.

The set of all possible candidate sequences between Ai and Ai+2 is too
large to test every possibility. Instead, we use two methods to propose small
sets of candidate sequences derived from the current consensus sequence C.
The first method makes edits to C based on sampling alternative substrings
from the reads. The second method, inspired by the Quiver algorithm [1],
generates all strings within edit distance of one of C. This pair of methods,
the first allowing large changes that must be observed by at least one read, the
second exhaustively trying all one base edits, balances between compute time
and thoroughly exploring the space of candidate consensus sequences.

The first method, which we call the block replacement algorithm, com-
putes the longest common subsequence of 5-mers between C and an aligned
2D read, R. This algorithm partitions C and R into contiguous regions where
they share matching 5-mers and regions where they do not. For each pair of
consecutive matching regions, we replace the sequence in C with the sequence
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in R and add this derived sequence to the set C. This algorithm generates a
new candidate sequence for each pair of matching regions between C and R and
is run for all 2D reads that are aligned between the anchors.

The second method, which we call the mutation algorithm, simply makes
all one base substitutions, one base insertions and one base deletions to C to
generate the candidate set C.

These algorithms are run iteratively. We initialize the current consensus C
to the draft genome sequence between the pair of anchors. We then generate
candidate set C using the block replacement algorithm. We select the best
sequence C ′ using equation 6. If C ′ is not C, we set C ← C ′ and repeat
the process. Once no more improvements to the consensus sequence are made,
we run this procedure again except using the mutation algorithm to generate
C. Once this procedure converges we update the assembly to contain the final
consensus sequence. We then update the event alignments for Ai+1 and move
on to the next pair of anchors. This process continues until the entire 10kbp
sequence has been processed. Once all 10kbp segments have been processed,
which occurs in parallel, we merge the segments together at the overlapping
200bp ends.

Culling Unlikely Candidate Sequences

While we restrict our candidate sequences to those that are close to the current
consensus C, we still generate many sequence that are unlikely to be the true
sequence of the genome between a pair of anchors. To avoid spending compu-
tation time fully evaluating equation 6 for these sequences we periodically cull
unlikely sequences from C. We do this by progressively evaluating equation 6
using subsets of k elements of the full data D. We will refer to these subsets as
Dk.

To retain a sequence S in C, we require that either k/5 event sequences in
Dk have greater probability given S than the current consensus sequence C or
that P (Dk|S)/P (Dk|C) > e−30. If both of these conditions fail, we remove S
from C.

These checks are performed after processing 5 event sequences, eg for sub-
sets D5,D10, .... The conservative threshold that we set on the ratio between
probabilities is to avoid culling the true sequence from C at the cost of retaining
some unlikely sequences.

Event Preprocessing

The events recorded for a read may differ from the reference pore model that
Oxford Nanopore has provided. To account for this the MinION’s software
calculates parameters to globally shift and scale the mean and variance of the
provided 5-mer model to better match the observed data. Additionally a cor-
rection is applied to the event signals to correct for a tendency of the signal to
drift over time. We apply these corrections, shifts and scales to the pore model
and events prior to input into our HMM.
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Read Filtering

During development we noticed that some MinION reads contained observations
that were outside of the expected range of signals. To discard these reads rather
than having the erroneous observations dominate the probability in equation 6,
we filtered the input events by computing the probability of the data given the
original draft reference sequence and discarding any strands whose log-scaled
probability divided by the number of events is greater than 3.5. Better quality
control of the input data is an area of future improvement.
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Supplementary Tables

Supplementary Table 1: Oxford Nanopore MinION datasets used in this study.

Description Pass 2D Mean length Accession
R7.3 chemistry, Metrichor 1.9, SQK-MAP-003 8451 6183 ERX708228
R7.3 chemistry, Metrichor 1.9, SQK-MAP-004 2855 5604 ERX708229
R7.3 chemistry, Metrichor 1.9, SQK-MAP-004 5639 3885 ERX708230
R7.3 chemistry, Metrichor 1.9, SQK-MAP-004 5325 8158 ERX708231
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Supplementary Table 2: Results from QUAST when comparing the draft
circular contig (”circular draft”) and the polished circular contig (”circu-
lar polished”) against the E. coli K12 MG1655 reference genome (accession
NC 000913.3).

Assembly circular draft circular polished
# contigs (≥ 0 bp) 1 1
# contigs (≥ 1000 bp) 1 1
Total length (≥ 0 bp) 4593166 4638068
Total length (≥ 1000 bp) 4593166 4638068
# contigs 1 1
Largest contig 4593166 4638068
Total length 4593166 4638068
Reference length 4641652 4641652
GC (%) 51.07 50.94
Reference GC (%) 50.79 50.79
N50 4593166 4638068
NG50 4593166 4638068
N75 4593166 4638068
NG75 4593166 4638068
L50 1 1
LG50 1 1
L75 1 1
LG75 1 1
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# misassemblies 2 2
# misassembled contigs 1 1
Misassembled contigs length 4593166 4638068
# local misassemblies 3 2
# unaligned contigs 0 + 0 part 0 + 0 part
Unaligned length 0 0
Genome fraction (%) 100.000 100.000
Duplication ratio 0.990 0.999
# N’s per 100 kbp 0.04 1.14
# mismatches per 100 kbp 80.27 25.90
# indels per 100 kbp 921.05 371.44
Largest alignment 2739620 2765784
NA50 2739620 2765784
NGA50 2739620 2765784
NA75 1852782 1871514
NGA75 1852782 1871514
LA50 1 1
LGA50 1 1
LA75 2 2
LGA75 2 2
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