Correction notice

Universal computing by DNA origami robots in a living animal

Yaniv Amir, Eldad Ben-Ishay, Daniel Levner, Shmulik Ittah, Almogit Abu-Horowitz and Ido Bachelet
Nature Nanotechnology http://dx.doi.org/10.1038/nnano.2014.58 (2014)
In the version of the Supplementary Information originally published online, Supplementary Note 6 was missing. This error has been corrected in this file 17 April 2014.

Universal computing by DNA origami robots in a living animal

Supplementary Table 1: Truth tables and effector complexes

Supplementary Note 1: Robot design and folding

Supplementary Fig. 1: Design interface screenshot
Supplementary Fig. 2: Sequence of M13mp18 DNA scaffold
Supplementary Fig. 3: Robot staple sequences
Supplementary Fig. 4: Agarose-gel analysis of folding conditions
Supplementary Fig. 5: Nanorobot excess staples purification
Supplementary Fig. 6: Agarose-gel analysis and TEM photos of different folding durations
Supplementary Fig. 7: AFM image of folded robots

Supplementary Note 2: Robot collision programming

Supplementary Fig. 8: Collision between E and P
Supplementary Fig. 9: Collision between E and N
Supplementary Fig. 10: Structural basis for differential keying of E and F robots
Supplementary Fig. 11: Modeling the robot collision system in visual DSD (vDSD)
Supplementary Fig. 12: Simulated kinetics of the EP complex
Supplementary Fig. 13: Simulated kinetics of the EN complex
Supplementary Fig. 14: Verification of EPN system in equimolar (top) vs. actual (bottom) stoichiometry

Supplementary Note 3: Ex-vivo prototyping of robots

Supplementary Fig. 15: Ex-vivo prototyping of the E (AND) architecture
Supplementary Fig. 16: Ex-vivo prototyping of EP1, EP2, and EP1P2 (OR) architectures
Supplementary Fig. 17: Slanting pattern indicating EP complexes
Supplementary Fig. 18: Ex-vivo prototyping of the EP1P2N (XOR) architecture
Supplementary Fig. 19: Ex-vivo prototyping of the $\mathrm{E}_{\text {open }} \mathrm{N}$ (NAND) architecture

Supplementary Note 4: Animal model techniques and analysis

Supplementary Fig. 20: Video caps before and after injection to the insect
Supplementary Fig. 21: DNA in cockroach hemolymph
Supplementary Fig. 22: Nuclease activity in hemolymph
Supplementary Fig. 23: Robot quantification in hemolymph
Supplementary Fig. 24: Cockroach survival following robot injection
Supplementary Fig. 25: Distribution of robots in the cockroach following injection

Supplementary Note 5: Statistical mechanics of robots in the hemocoel

Supplementary Fig. 26: Correlation function data
Supplementary Fig. 27: Simulated diffusion of robots without mixing
Supplementary Fig. 28: Calculating the hemolymph volume from computerized tomography X-ray scan

Supplementary Note 6: Scaling of complexity and error

Supplementary Fig. 29: Scaling up half-adders to create n-bit ripple carry adders
Supplementary Fig. 30: Scaling, complexity, and capacity in the half adder based systemFig.
Supplementary Fig. 31: Expected vs. measured error propagation in a scaled robot system

Supplementary Table 1: Truth tables and effector complexes

Supplementary Note 1: Robot design and folding:

Supplementary Fig. 1: Design interface screenshot (produced by caDNAno ${ }^{15}$ (http://cadnano.org/)). The robot caDNAno file (.json format) is available to download as a supplementary file.

Supplementary Fig. 2: Sequence of M13mp18 DNA scaffold:

M13mp18 DNA ${ }^{16}$ was purchased from New England Biolabs (NEB \#N4040), scaffold is a 7249 bp circular single-strand DNA molecule
>M13mp18_p7249
AATGCTACTACTATTAGTAGAATTGATGCCACCTTTTCAGCTCGCGCCCCAAATGAAAATATAGCTAAACAGGTTATTG ACCATTTGCGAAATGTATCTAATGGTCAAACTAAATCTACTCGTTCGCAGAATTGGGAATCAACTGTTATATGGAATGA AACTTCCAGACACCGTACTTTAGTTGCATATTTAAAACATGTTGAGCTACAGCATTATATTCAGCAATTAAGCTCTAAG CCATCCGCAAAAATGACCTCTTATCAAAAGGAGCAATTAAAGGTACTCTCTAATCCTGACCTGTTGGAGTTTGCTTCCG GTCTGGTTCGCTTTGAAGCTCGAATTAAAACGCGATATTTGAAGTCTTTCGGGCTTCCTCTTAATCTTTTTGATGCAATC CGCTTTGCTTCTGACTATAATAGTCAGGGTAAAGACCTGATTTTTGATTTATGGTCATTCTCGTTTTCTGAACTGTTTAAA GCATTTGAGGGGGATTCAATGAATATTTATGACGATTCCGCAGTATTGGACGCTATCCAGTCTAAACATTTTACTATTAC CCCCTCTGGCAAAACTTCTTTTGCAAAAGCCTCTCGCTATTTTGGTTTTTATCGTCGTCTGGTAAACGAGGGTTATGATA GTGTTGCTCTTACTATGCCTCGTAATTCCTTTTGGCGTTATGTATCTGCATTAGTTGAATGTGGTATTCCTAAATCTCAAC TGATGAATCTTTCTACCTGTAATAATGTTGTTCCGTTAGTTCGTTTTATTAACGTAGATTTTTCTTCCCAACGTCCTGACT GGTATAATGAGCCAGTTCTTAAAATCGCATAAGGTAATTCACAATGATTAAAGTTGAAATTAAACCATCTCAAGCCCAA TTTACTACTCGTTCTGGTGTTTCTCGTCAGGGCAAGCCTTATTCACTGAATGAGCAGCTTTGTTACGTTGATTTGGGTAA TGAATATCCGGTTCTTGTCAAGATTACTCTTGATGAAGGTCAGCCAGCCTATGCGCCTGGTCTGTACACCGTTCATCTGT ССТСТTTCAAAGTTGGTCAGTTCGGTTCCCTTATGATTGACCGTCTGCGCCTCGTTCCGGCTAAGTAACATGGAGCAGGT CGCGGATTTCGACACAATTTATCAGGCGATGATACAAATCTCCGTTGTACTTTGTTTCGCGCTTGGTATAATCGCTGGGG GTCAAAGATGAGTGTTTTAGTGTATTCTTTTGCCTCTTTCGTTTTAGGTTGGTGCCTTCGTAGTGGCATTACGTATTTTAC CCGTTTAATGGAAACTTCCTCATGAAAAAGTCTTTAGTCCTCAAAGCCTCTGTAGCCGTTGCTACCCTCGTTCCGATGCT GTCTTTCGCTGCTGAGGGTGACGATCCCGCAAAAGCGGCCTTTAACTCCCTGCAAGCCTCAGCGACCGAATATATCGGT TATGCGTGGGCGATGGTTGTTGTCATTGTCGGCGCAACTATCGGTATCAAGCTGTTTAAGAAATTCACCTCGAAAGCAA GCTGATAAACCGATACAATTAAAGGCTCCTTTTGGAGCCTTTTTTTTGGAGATTTTCAACGTGAAAAAATTATTATTCGC AATTCCTTTAGTTGTTCCTTTCTATTCTCACTCCGCTGAAACTGTTGAAAGTTGTTTAGCAAAATCCCATACAGAAAATT САТTTACTAACGTCTGGAAAGACGACAAAACTTTAGATCGTTACGCTAACTATGAGGGCTGTCTGTGGAATGCTACAGG CGTTGTAGTTTGTACTGGTGACGAAACTCAGTGTTACGGTACATGGGTTCCTATTGGGCTTGCTATCCCTGAAAATGAG GGTGGTGGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGTTCTGAGGGTGGCGGTACTAAACCTCCTGAGTACGGTGAT ACACCTATTCCGGGCTATACTTATATCAACCCTCTCGACGGCACTTATCCGCCTGGTACTGAGCAAAACCCCGCTAATC CTAATCCTTCTCTTGAGGAGTCTCAGCCTCTTAATACTTTCATGTTTCAGAATAATAGGTTCCGAAATAGGCAGGGGGC ATTAACTGTTTATACGGGCACTGTTACTCAAGGCACTGACCCCGTTAAAACTTATTACCAGTACACTCCTGTATCATCAA AAGCCATGTATGACGCTTACTGGAACGGTAAATTCAGAGACTGCGCTTTCCATTCTGGCTTTAATGAGGATTTATTTGTT TGTGAATATCAAGGCCAATCGTCTGACCTGCCTCAACCTCCTGTCAATGCTGGCGGCGGCTCTGGTGGTGGTTCTGGTG GCGGCTCTGAGGGTGGTGGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGCTCTGAGGGAGGCGGTTCCGGTGGTGGCT CTGGTTCCGGTGATTTTGATTATGAAAAGATGGCAAACGCTAATAAGGGGGCTATGACCGAAAATGCCGATGAAAACG CGCTACAGTCTGACGCTAAAGGCAAACTTGATTCTGTCGCTACTGATTACGGTGCTGCTATCGATGGTTTCATTGGTGAC GTTTCCGGCCTTGCTAATGGTAATGGTGCTACTGGTGATTTTGCTGGCTCTAATTCCCAAATGGCTCAAGTCGGTGACGG TGATAATTCACCTTTAATGAATAATTTCCGTCAATATTTACCTTCCCTCCCTCAATCGGTTGAATGTCGCCCTTTTGTCTT TGGCGCTGGTAAACCATATGAATTTTCTATTGATTGTGACAAAATAAACTTATTCCGTGGTGTCTTTGCGTTTCTTTTAT ATGTTGCCACCTTTATGTATGTATTTTCTACGTTTGCTAACATACTGCGTAATAAGGAGTCTTAATCATGCCAGTTCTTTT GGGTATTCCGTTATTATTGCGTTTCCTCGGTTTCCTTCTGGTAACTTTGTTCGGCTATCTGCTTACTTTTCTTAAAAAGGG CTTCGGTAAGATAGCTATTGCTATTTCATTGTTTCTTGCTCTTATTATTGGGCTTAACTCAATTCTTGTGGGTTATCTCTC TGATATTAGCGCTCAATTACCCTCTGACTTTGTTCAGGGTGTTCAGTTAATTCTCCCGTCTAATGCGCTTCCCTGTTTTTA TGTTATTCTCTCTGTAAAGGCTGCTATTTTCATTTTTGACGTTAAACAAAAAATCGTTTCTTATTTGGATTGGGATAAAT AATATGGCTGTTTATTTTGTAACTGGCAAATTAGGCTCTGGAAAGACGCTCGTTAGCGTTGGTAAGATTCAGGATAAAA TTGTAGCTGGGTGCAAAATAGCAACTAATCTTGATTTAAGGCTTCAAAACCTCCCGCAAGTCGGGAGGTTCGCTAAAAC GCCTCGCGTTCTTAGAATACCGGATAAGCCTTCTATATCTGATTTGCTTGCTATTGGGCGCGGTAATGATTCCTACGATG AAAATAAAAACGGCTTGCTTGTTCTCGATGAGTGCGGTACTTGGTTTAATACCCGTTCTTGGAATGATAAGGAAAGACA GCCGATTATTGATTGGTTTCTACATGCTCGTAAATTAGGATGGGATATTATTTTTCTTGTTCAGGACTTATCTATTGTTGA TAAACAGGCGCGTTCTGCATTAGCTGAACATGTTGTTTATTGTCGTCGTCTGGACAGAATTACTTTACCTTTTGTCGGTA CTTTATATTCTCTTATTACTGGCTCGAAAATGCCTCTGCCTAAATTACATGTTGGCGTTGTTAAATATGGCGATTCTCAA TTAAGCCCTACTGTTGAGCGTTGGCTTTATACTGGTAAGAATTTGTATAACGCATATGATACTAAACAGGCTTTTTCTAG TAATTATGATTCCGGTGTTTATTCTTATTTAACGCCTTATTTATCACACGGTCGGTATTTCAAACCATTAAATTTAGGTCA GAAGATGAAATTAACTAAAATATATTTGAAAAAGTTTTCTCGCGTTCTTTGTCTTGCGATTGGATTTGCATCAGCATTTA CATATAGTTATATAACCCAACCTAAGCCGGAGGTTAAAAAGGTAGTCTCTCAGACCTATGATTTTGATAAATTCACTAT TGACTCTTCTCAGCGTCTTAATCTAAGCTATCGCTATGTTTTCAAGGATTCTAAGGGAAAATTAATTAATAGCGACGATT TACAGAAGCAAGGTTATTCACTCACATATATTGATTTATGTACTGTTTCCATTAAAAAAGGTAATTCAAATGAAATTGTT AAATGTAATTAATTTTGTTTTCTTGATGTTTGTTTCATCATCTTCTTTTGCTCAGGTAATTGAAATGAATAATTCGCCTCT GCGCGATTTTGTAACTTGGTATTCAAAGCAATCAGGCGAATCCGTTATTGTTTCTCCCGATGTAAAAGGTACTGTTACTG TATATTCATCTGACGTTAAACCTGAAAATCTACGCAATTTCTTTATTTCTGTTTTACGTGCAAATAATTTTGATATGGTA GGTTCTAACCCTTCCATTATTCAGAAGTATAATCCAAACAATCAGGATTATATTGATGAATTGCCATCATCTGATAATCA GGAATATGATGATAATTCCGCTCCTTCTGGTGGTTTCTTTGTTCCGCAAAATGATAATGTTACTCAAACTTTTAAAATTA ATAACGTTCGGGCAAAGGATTTAATACGAGTTGTCGAATTGTTTGTAAAGTCTAATACTTCTAAATCCTCAAATGTATT ATCTATTGACGGCTCTAATCTATTAGTTGTTAGTGCTCCTAAAGATATTTTAGATAACCTTCCTCAATTCCTTTCAACTGT TGATTTGCCAACTGACCAGATATTGATTGAGGGTTTGATATTTGAGGTTCAGCAAGGTGATGCTTTAGATTTTTCATTTG

CTGCTGGCTCTCAGCGTGGCACTGTTGCAGGCGGTGTTAATACTGACCGCCTCACCTCTGTTTTATCTTCTGCTGGTGGT TCGTTCGGTATTTTTAATGGCGATGTTTTAGGGCTATCAGTTCGCGCATTAAAGACTAATAGCCATTCAAAAATATTGTC TGTGCCACGTATTCTTACGCTTTCAGGTCAGAAGGGTTCTATCTCTGTTGGCCAGAATGTCCCTTTTATTACTGGTCGTG TGACTGGTGAATCTGCCAATGTAAATAATCCATTTCAGACGATTGAGCGTCAAAATGTAGGTATTTCCATGAGCGTTTT TCCTGTTGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTGAGTTCTTCTACTCAGGCAA GTGATGTTATTACTAATCAAAGAAGTATTGCTACAACGGTTAATTTGCGTGATGGACAGACTCTTTTACTCGGTGGCCTC ACTGATTATAAAAACACTTCTCAGGATTCTGGCGTACCGTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTC CCGCTCTGATTCTAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATT AAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTC TTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGT GCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTT TTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCG GGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGAACCACCATCAAACAGGATTTTCGCCTGCTGGGGCAAACC AGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAA AGAAAAACCACCCTGGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGA CAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGC TTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGAC CATGATTACGAATTCGAGCTCGGTACCCGGGGATCCTCTAGAGTCGACCTGCAGGCATGCAAGCTTGGCACTGGCCGTC GTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCT GGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTTTGCCT GGTTTCCGGCACCAGAAGCGGTGCCGGAAAGCTGGCTGGAGTGCGATCTTCCTGAGGCCGATACTGTCGTCGTCCCCTC AAACTGGCAGATGCACGGTTACGATGCGCCCATCTACACCAACGTGACCTATCCCATTACGGTCAATCCGCCGTTTGTT CCCACGGAGAATCCGACGGGTTGTTACTCGCTCACATTTAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCGA ATTATTTTTGATGGCGTTCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAATGCGAATTTTAACAAAATATTA ACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTTTTTGGGGCTTTTCTGATTATCAACCGGGGTACATATGATT GACATGCTAGTTTTACGATTACCGTTCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGT AGATCTCTCAAAAATAGCTACCCTCTCCGGCATTAATTTATCAGCTAGAACGGTTGAATATCATATTGATGGTGATTTG ACTGTCTCCGGCCTTTCTCACCCTTTTGAATCTTTACCTACACATTACTCAGGCATTGCATTTAAAATATATGAGGGTTCT AAAAATTTTTATCCTTGCGTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACCG ATTTAGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTGCTAATTCTTTGCCTTGCCTGTATGATTTATTGGATGTT

Supplementary Fig. 3: Robot staple sequences

Staples were purchased from Integrated DNA Technologies, reconstituted in ultrapure, DNase/RNase-free water to $100 \mu \mathrm{M}$ concentration and stored at $-20^{\circ} \mathrm{C}$. All sequences are in the 5' to 3' direction.

ID	Des	Sequence
1	core	AAAAACCAAACCCTCGTTGTGAATATGGTTTGGTC
2	core	GGAAGAAGTGTAGCGGTCACGTTATAATCAGCAGACTGATAG
3	core	TACGATATAGATAATCGAACAACA
4	core	CTTTTGCTTAAGCAATAAAGCGAGTAGA
5	core	GTCTGAAATAACATCGGTACGGCCGCGCACGG
6	core	GGAAGAGCCAAACAGCTTGCAGGGAACCTAA
7	core	AAAATCACCGGAAGCAAACTCTGTAGCT
8	core	CCTACATGAAGAACTAAAGGGCAGGGCGGAGCCCCGGGC
9	core	CATGTAAAAAGGTAAAGTAATAAGAACG
10	core	ATTAAATCAGGTCATTGCCTGTCTAGCTGATAAATTGTAATA
11	core	ATAGTCGTCTTTTGCGGTAATGCC
12	core	AGTCATGGTCATAGCTGAACTCACTGCCAGT
13	core	AACTATTGACGGAAATTTGAGGGAATATAAA
14	core	ATCGCGTCTGGAAGTTTCATTCCATATAGAAAGACCATC
15	core	AAATATTGAACGGTAATCGTAGCCGGAGACAGTCATAAAAAT
16	core	GTCTTTACAGGATTAGTATTCTAACGAGCATAGAACGC
17	core	GCACCGCGACGACGCTAATGAACAGCTG
18	core	AACTTCATTTTAGAATCGCAAATC
19	core	CGTAGAGTCTTTGTTAAGGCCTTCGTTTTCCTACCGAG
20	core	CCAATCAAAGGCTTATCCGGTTGCTATT
21	core	AGAGGCGATATAATCCTGATTCATCATA
22	core	CCGTAATCCCTGAATAATAACGGAATACTACG
23	core	AAATGGTATACAGGGCAAGGAAATC
24	core	TCCTCATCGTAACCAAGACCGACA
25	core	CATTATCTGGCTTTAGGGAATTATGTTTGGATTAC
26	core	ACCCGCCCAATCATTCCTCTGTCC
27	core	CGACCAGTCACGCAGCCACCGCTGGCAAAGCGAAAGAAC
28	core	CTAAAGGCGTACTATGGTTGCAACAGGAGAGA
29	core	TTGGCAGGCAATACAGTGTTTCTGCGCGGGCG
30	core	TATACAGGAAATAAAGAAATTTTGCCCGAACGTTAAGACTTT
31	core	AAGTATAGTATAAACAGTTAACTGAATTTACCGTTGAGCCAC
32	core	ACATTCAGATAGCGTCCAATATTCAGAA
33	core	AAACATCTTTACCCTCACCAGTAAAGTGCCCGCCC
34	core	GAGATGACCCTAATGCCAGGCTATTTTT
35	core	TCCTGAATTTTTTGTTTAACGATCAGAGCGGA
36	core	GCCGAAAAATCTAAAGCCAATCAAGGAAATA
37	core	AGCGTAGCGCGTTTTCACAAAATCTATGTTAGCAAACGAACGCAAC AAA
38	core	ACCAATCGATTAAATTGCGCCATTATTA
39	core	ATCTTACTTATTTTCAGCGCCGACAGGATTCA
40	core	CCCTAAAAGAACCCAGTCACA

41	core	GGAAGGGCGAAAATCGGGTTTTTCGCGTTGCTCGT
42	core	CAGACCGGAAGCCGCCATTTTGATGGGGTCAGTAC
43	core	TAATATTGGAGCAAACAAGAGATCAATATGATATTGCCTTTA
44	core	TTCCTTATAGCAAGCAAATCAAATTTTA
45	core	ACTACGAGGAGATTTTTTCACGTTGAAACTTGCTTT
46	core	AAACAGGCATGTCAATCATATAGATTCAAAAGGGTTATATTT
47	core	AACAGGCACCAGTTAAAGGCCGCTTTGTGAATTTCTTA
48	core	TTCCTGAGTTATCTAAAATATTCAGTTGTTCAAATAGCAG
49	core	AAAGAAACAAGAGAAGATCCGGCT
50	core	TTGAGGGTTCTGGTCAGGCTGTATAAGC
51	core	TTTAACCGTCAATAGTGAATTCAAAAGAAGATGATATCGCGC
52	core	ACGAGCGCCCAATCCAAATAAAATTGAGCACC
53	core	AATAAGTCGAAGCCCAATAATTATTTATTCTT
54	core	ACGAAATATCATAGATTAAGAAACAATGGAACTGA
55	core	TTTCATAGTTGTACCGTAACACTGGGGTTTT
56	core	AGGAGCGAGCACTAACAACTAAAACCCTATCACCTAACAGTG
57	core	CAAAGTATTAATTAGCGAGTTTCGCCACAGAACGA
58	core	TGGGGAGCTATTTGACGACTAAATACCATCAGTTT
59	core	ATAACGCAATAGTAAAATGTTTAAATCA
60	core	ACGAATCAACCTTCATCTTATACCGAGG
61	core	TAATGGTTTGAAATACGCCAA
62	core	CGGAACAAGAGCCGTCAATAGGCACAGACAATATCCTCAATC
63	core	ATTAAAGGTGAATTATCAAAGGGCACCACGG
64	core	GGCAACCCATAGCGTAAGCAGCGACCATTAA
65	core	AGAAACGTAAGCAGCCACAAGGAAACGATCTT
66	core	AGAGGTCTTTAGGGGGTCAAAAGGCAGT
67	core	GGGGACTTTTTCATGAGGACCTGCGAGAATAGAAAGGAGGAT
68	core	TTTTAGAACATCCAATAAATCCAATAAC
69	core	AAATGTGGTAGATGGCCCGCTTGGGCGC
70	core	ACGGATCGTCACCCTCACGATCTAGAATTTT
71	core	CGCCATAAGACGACGACAATAGCTGTCT
72	core	GCGTATTAGTCTTTAATCGTAAGAATTTACA
73	core	AGAGAACGTGAATCAAATGCGTATTTCCAGTCCCC
74	core	AACGAAAAAGCGCGAAAAAAAGGCTCCAAAAGG
75	core	TAATTTAGAACGCGAGGCGTTAAGCCTT
76	core	ACCAGGCGTGCATCATTAATTTTTTCAC
77	core	CAGCCTGACGACAGATGTCGCCTGAAAT
78	core	ATTAGTCAGATTGCAAAGTAAGAGTTAAGAAGAGT
79	core	CTCGAATGCTCACTGGCGCAT
80	core	GGGCAGTCACGACGTTGAATAATTAACAACC
81	core	TAAAAACAGGGGTTTTGTTAGCGAATAATATAATAGAT
82	core	TCAACCCTCAGCGCCGAATATATTAAGAATA
83	core	ATTATACGTGATAATACACATTATCATATCAGAGA
84	core	GCAAATCTGCAACAGGAAAAATTGC
85	core	ATAATTACTAGAAATTCTTAC
86	core	TATCACCGTGCCTTGAGTAACGCGTCATACATGGCCCCTCAG
87	core	AAGTAGGGTTAACGCGCTGCCAGCTGCA
88	core	CCAGTAGTTAAGCCCTTTTTAAGAAAAGCAAA

89	core	TGGCGAAGTTGGGACTTTCCG
90	core	CAGTGAGTGATGGTGGTTCCGAAAACCGTCTATCACGATTTA
91	core	AAATCAAAGAGAATAACATAACTGAACACAGT
92	core	CTGTATGACAACTAGTGTCGA
93	core	ATCATAAATAGCGAGAGGCTTAGCAAAGCGGATTGTTCAAAT
94	core	TTGAGTAATTTGAGGATTTAGCTGAAAGGCGCGAAAGATAAA
95	core	ATAAGAATAAACACCGCTCAA
96	core	CGTTGTAATTCACCTTCTGACAAGTATTTTAA
97	core	AACCGCCTCATAATTCGGCATAGCAGCA
98	core	AAATAGGTCACGTTGGTAGCGAGTCGCGTCTAATTCGC
99	core	CAGTATAGCCTGTTTATCAACCCCATCC
100	core	TTGCACCTGAAAATAGCAGCCAGAGGGTCATCGATTTTCGGT
101	core	CGTCGGAAATGGGACCTGTCGGGGGAGA
102	core	AAGAAACTAGAAGATTGCGCAACTAGGG
103	core	CCAGAACCTGGCTCATTATACAATTACG
104	core	ACGGGTAATAAATTAAGGAATTGCGAATAGTA
105	core	CCACGCTGGCCGATTCAAACTATCGGCCCGCT
106	core	GCCTTCACCGAAAGCCTCCGCTCACGCCAGC
107	core	CAGCATTAAAGACAACCGTCAAAAATCA
108	core	ACATCGGAAATTATTTGCACGTAAAAGT
109	core	CAACGGTCGCTGAGGCTTGATACCTATCGGTTTATCAGATCT
110	core	AAATCGTACAGTACATAAATCAGATGAA
111	core	TTAACACACAGGAACACTTGCCTGAGTATTTG
112	core	AGGCATAAGAAGTTTTGCCAGACCCTGA
113	core	GACGACATTCACCAGAGATTAAAGCCTATTAACCA
114	core	AGCTGCTCGTTAATAAAACGAGAATACC
115	core	CTTAGAGTACCTTTTAAACAGCTGCGGAGATTTAGACTA
116	core	CACCCTCTAATTAGCGTTTGCTACATAC
117	core	GAACCGAAAATTGGGCTTGAGTACCTTATGCGATTCAACACT
118	core	GCAAGGCAGATAACATAGCCGAACAAAGTGGCAACGGGA
119	core	ATGAAACAATTGAGAAGGAAACCGAGGATAGA
120	core	GGATGTGAAATTGTTATGGGGTGCACAGTAT
121	core	GGCTTGCGACGTTGGGAAGAACAGATAC
122	core	TAAATGCCTACTAATAGTAGTTTTCATT
123	core	TGCCGTCTGCCTATTTCGGAACCAGAATGGAAAGCCCACCAGAAC
124	core	TGACCATAGCAAAAGGGAGAACAAC
125	core	CGAGCCAGACGTTAATAATTTGTATCA
126	core	GCTCAGTTTCTGAAACATGAAACAAATAAATCCTCCCGCCGC
127	core	AGACGCTACATCAAGAAAACACTTTGAA
128	core	AGTACTGACCAATCCGCGAAGTTTAAGACAG
129	core	GATTCCTGTTACGGGCAGTGAGCTTTTCCTGTGTGCTG
130	core	GGTATTAAGGAATCATTACCGAACGCTA
131	core	GTTCATCAAATAAAACGCGACTCTAGAGGATCGGG
132	core	AGCCTTTAATTGGATAGTTGAACCGCCACCCTCATAGGTG
133	core	ACAGAGGCCTGAGATTCTTTGATTAGTAATGG
134	core	AACGAGATCAGGATTAGAGAGCTTAATT
135	core	TACCAAGTTATACTTCTGAATCACCAGA
136	core	CAGTAGGTGTTCAGCTAATGCGTAGAAA

137	core	AGGATGACCATAGACTGACTAATGAAATCTACATTCAGCAGGCGCG TAC
138	core	TTTCAACCAAGGCAAAGAATTTAGATAC
139	core	TTGAAATTAAGATAGCTTAACTAT
140	core	CTATTATCGAGCTTCAAAGCGTATGCAA
141	core	CAGGGTGCAAAATCCCTTATAGACTCCAACGTCAAAAGCCGG
142	core	GAGCTTGTTAATGCGCCGCTAATTTTAGCGCCTGCTGCTGAA
143	core	CGAACGTTAACCACCACACCCCCAGAATTGAG
144	core	GTGTGATAAATAAGTGAGAAT
145	core	GCTATATAGCATTAACCCTCAGAGA
146	core	AGGAGAGCCGGCAGTCTTGCCCCCGAGAGGGAGGG
147	core	CGGCCTCCAGCCAGAGGGCGAGCCCCAA
148	core	CCAAAACAAAATAGGCTGGCTGACGTAACAA
149	core	GGCGGTTAGAATAGCCCGAGAAGTCCACTATTAAAAAGGAAG
150	core	ATAAAGGTTACCAGCGCTAATTCAAAAACAGC
151	core	ATTGCCCCCAGCAGGCGAAAAGGCCCACTACGTGACGGAACC
152	core	TTTTAAAACATAACAGTAATGGAACGCTATTAGAACGC
153	core	AATTGGGTAACGCCAGGCTGTAGCCAGCTAGTAAACGT
154	edge	TTACCCAGAACAACATTATTACAGGTTTTTTTTTTTTTTTT
155	edge	TTTTTTTTTTTTTTTTAATAAGAGAATA
156	edge	TTTTTTTTTTTTTTTTCCAGTTTGGGAGCGGGCTTTTTTTTTTTTTTT
157	edge	GGTTGAGGCAGGTCAGTTTTTTTTTTTTTTT
158	edge	TTTTTTTTTTTTTTTTGATTAAGACTCCTTATCCAAAAGGAAT
159	edge	TTTTTTTTTTTTTTTTCTTCGCTATTACAATT
160	edge	TTTTTTTTTTTTTTTCTTGCGGGAGAAGCGCATTTTTTTTTTTTTTTT
161	edge	TTTTTTTTTTTTTTTGGGAATTAGAGAAACAATGAATTTTTTTTTTTTT TT
162	edge	TCAGACTGACAGAATCAAGTTTGTTTTTTTTTTTTTTTT
163	edge	TTTTTTTTTTTTTTTGGTCGAGGTGCCGTAAAGCAGCACGT
164	edge	TTTTTTTTTTTTTTTTTTTAATCATTTACCAGACTTTTTTTTTTTTTTT
165	edge	TTTTTTTTTTTTTTCATTCTGGCCAAATTCGACAACTCTTTTTTTTTTTTT T
166	edge	TTTTTTTTTTTTTTTTACCGGATATTCA
167	edge	TTTTTTTTTTTTTTTTAGACGGGAAACTGGCATTTTTTTTTTTTTTTT
168	edge	TTTTTTTTTTTTTTTCAGCAAGCGGTCCACGCTGCCCAAAT
169	edge	CTGAGAGAGTTGTTTTTTTTTTTTTTTT
170	edge	CAATGACAACAACCATTTTTTTTTTTTTTTT
171	edge	TTTTTTTTTTTTTTTTTGAGAGATCTACAAGGAGAGG
172	edge	TCACCAGTACAAACTATTTTTTTTTTTTTTT
173	edge	TTTTTTTTTTTTTTGGCAATTCATCAAATTATTCATTTTTTTTTTTTTTT T
174	edge	TAAAGTTACCGCACTCATCGAGAACTTTTTTTTTTTTTTTT
175	edge	TTTTTTTTTTTTTTTTCACCCTCAGAACCGCC
176	edge	TTTTTTTTTTTTTTAGGTTTAACGTCAATATATGTGAGTTTTTTTTTTTTT T
177	edge	CCACACAACATACGTTTTTTTTTTTTT
178	edge	TTTTTTTTTTTTTTTGCTAGGGCGAGTAAAAGATTTTTTTTTTTTTTTT
179	edge	TTTTTTTTTTTTTTTAGTTGATTCCCAATTCTGCGAACCTCA
180	edge	TTATTTAGAGCCTAATTTGCCAGTTTTTTTTTTTTTTTTT
181	edge	TTTTTTTTTTTTTTTACGGCGGAT
182	edge	TTTTTTTTTTTTTTTTATATGCGTTAAGTCCTGATTTTTTTTTTTTTTT

183	edge		TTTTTTTTTTTTTTTACGATTGGCCTTGATA
184	edge		TTTTTTTTTTTTTTTCAACGCCTGTAGCATT
185	edge		TTTTTTTTTTTTTTTGGCTTTGAGCCGGAACGATTTTTTTTTTTTTTT
186	edge		TTTTTTTTTTTTTTTAAGCAAGCCGTTT
187	edge		TTTTTTTTTTTTTATGTGTAGGTAAGTACCCCGGTTGTTTTTTTTTTTT
T			

226	edge		CAAGTTTTTTGGTTTTTTTTTTTTTTT
227	edge		TTTTTTTTTTTTTTTCCTTTAGCGCACCACCGGTTTTTTTTTTTTTTT
228	edge		TTTTTTTTTTTTTTTGAATCGGCCGAGTGTTGTTTTTTTTTTTTTTTT
229	edge		TTTTTTTTTTTTTCATCTTTGACCC
230	edge		
231	edge		GATACAGGAGTGTACTTTTTTTTTTTTTTTT
232	edge		TTTTTTTTTTTTTTTGGCGCAGACAATTTCAACTTTTTTTTTTTTTTT
233	edge		GGAGGTTTAGTACCGCTTTTTTTTTTTTTTT
234	edge		TTTTTTTTTTTTTACCGCCAGCCATAACAGTTGAAAGTTTTTTTTTTT TT
235	edge		TTTTTTTTTTTTTTTATAGCAATAGCT
236	Key handle		AATAAGTTTTGCAAGCCCAATAGGGGATAAGTATCGGATGACTATA CT
237	handles		ACATAGCTTACATTTAACAATAATAACGTTGTGCTACTCCAGTTC
238	handles		CCTTTTTGAATGGCGTCAGTATTGTGCTACTCCAGTTC
239	handles		CGTAACCAATTCATCAACATTTTGTGCTACTCCAGTTC
240	handles		CACCAACCGATATTCATTACCATTATTGTGCTACTCCAGTTC
241	handles		CCACCCTCATTTTCTTGATATTTGTGCTACTCCAGTTC
242	handles		AACTTTGAAAGAGGAGAAACATTGTGCTACTCCAGTTC
243	handles		CAAGGCGCGCCATTGCCGGAATTGTGCTACTCCAGTTC
244	handles		CATAGCCCCCTTAAGTCACCATTGTGCTACTCCAGTTC
245	handles		TTTCCCTGAATTACCTTTTTTACCTTTTTTGTGCTACTCCAGTTC
246	handles		AACGGTGTACAGACTGAATAATTGTGCTACTCCAGTTC
247	handles		GATTCGCGGGTTAGAACCTACCATTTTGTTGTGCTACTCCAGTTC
248	guides		AGAGTAGGATTTCGCCAACATGTTTTAAAAACC
249	guides		ACGGTGACCTGTTTAGCTGAATATAATGCCAAC
250	guides		CGTAGCAATTTAGTTCTAAAGTACGGTGTTTTA
251	guides		GCTTAATGCGTTAAATGTAAATGCTGATCTTGAAATGAGCGTT
252	guides		AAGCCAACGGAATCTAGGTTGGGTTATATAGATTAAGCAACTG
253	guides		TTTAACAACCGACCCAATCGCAAGACAAAATTAATCTCACTGC
254	guides		TTTAGGCCTAAATTGAGAAAACTTTTTCCTTCTGTTCCTAGAT
255	guide removal		GGTTTTTAAAACATGTTGGCGAAATCCTACTCT
256	guide removal		GTTGGCATTATATTCAGCTAAACAGGTCACCGT
257	guide removal		TAAAACACCGTACTTTAGAACTAAATTGCTACG
258	guide removal		AACGCTCATTTCAAGATCAGCATTTACATTTAACGCATTAAGC
259	guide removal		CAGTTGCTTAATCTATATAACCCAACCTAGATTCCGTTGGCTT
260	guide removal		GCAGTGAGATTAATTTTGTCTTGCGATTGGGTCGGTTGTTAAA
261	guide removal		ATCTAGGAACAGAAGGAAAAAGTTTTCTCAATTTAGGCCTAAA
262	gates	P_apt1	TGGGGCGCGAGCTGAAAAGTACTCAGGGCACTGCAAGCAATTGTGG TCCCAATGGGCTGAGTA
263	gates	P_com1	TGATGAGCGTGGATGATACTCAGCCCATTGGGTTTTTTTTTTTTTTTT TTTTTTTTTTTTAGGTCATTTTTGCGGATGG
264	gates	P_apt2	ATACAAAAAGCCTGTTTAGTATCTACTCAGGGCACTGCAAGCAATT GTGGTCCCAATGGGCTGAGTA
265	gates	P_com2	TACTCAGCCCATTGGGTTTTTTTTTTTTTTTTTTTTTTTTTTTTAGGTC TGAGAGACTACCTT
266	gates	V_apt1	TGGGGCGCGAGCTGAAAAGATACCAGTCTATTCAATTGGGCCCGTC CGTATGGTGGGTGTGCT
267	gates	V_com1	AGCACACCCACCATACTTTTTTTTTTTTTTTTTTTTTTTTTTTTAGGTC ATTTTTGCGGATGG
268	gates	V_apt2	ATACAAAAAGCCTGTTTAGTATCATACCAGTCTATTCAATTGGGCCC GTCCGTATGGTGGGTGTGCT
269	gates	V_com2	TGATGAGCATGGCATCAGCACACCCACCATACTTTTTTTTTTTTTTTT

			TTTTTTTTTTTTAGGTCTGAGAGACTACCTT
270	gates	P_apt3	TGGGGCGCGAGCTGAAAAGTACTCAGGGCACTGCAAGCAATTGTGG TCCCAATGGGCTGAGTA
271	gates	P_com3	ACCTAGTGTACTCAGCCCATTGGGTTTTTTTTTTTTTTTTTTTTTTTTTT TTTAGGTCATTTTTGCGGATGG
272	gates	V_apt3	ATACAAAAAGCCTGTTTAGTATCATACCAGTCTATTCAATTGGGCCC GTCCGTATGGTGGGTGTGCT
273	gates	V_com3	TACGGAGTAGCACACCCACCATACTTTTTTTTTTTTTTTTTTTTTTTTT TTTAGGTCTGAGAGACTACCTT
274	gates	P1_Mag_key	AAGTATGGTGGGTGTGCTGATGCCATTTTTTAGTATAGTCATCCGAT A
275	gates	P3_Ora_key	AACCCAATGGGCTGAGTATCATCCACTTTTTAGTATAGTCATCCGAT A
276	gates	N_clasp1	AAGTATGGTGGGTGTGCTACTCCGTATTTTTAGTATAGTCATCCGAT A
277	gates	CCCAATGGGCTGAGTATCATCCACGCTCATCATTTTTGAACTGGAGT AGCAC	
278	gates	N_clasp2	GTATGGTGGGTGTGCTGATGCCATGCTCATCATTTTTGAACTGGAGT AGCAC

Gate and payload configuration per robot type:

```
E: P_apt1/P_com1 + V_apt2/V_com2 + antibody fragment
P1: P_apt1/P_com1 + P_apt2/P_com2 + magenta key
P2: V_apt1/V_com1 + V_apt2/V_com2 + orange key
N: P_apt2/P_com2 + V_apt1/V_com1 + clasps
F: P_apt3/P_com3 + V_apt3/V_com3 + drug
P3: -- apt1/P_com1 + P_-apt2/P_-com2 + red key
```


Robot preparation:

Robots were initially produced by mixing M13mp18 ssDNA as scaffold strand (NEB, N 4040 , final concentration of 20 nM) and staple strands (final concentrations of 200 nM of each strand), purchased from Integrated DNA Technologies. Buffer and salts of solution included 5 mM Tris, 1 mM EDTA (pH 8.0 at $20^{\circ} \mathrm{C}$) and 10 mM MgCl . The mixture was subjected to a thermal-annealing ramp for folding. Initially the following program was used: $80^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ at $2 \mathrm{~min} /{ }^{\circ} \mathrm{C}, 60^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ at $150 \mathrm{~min} /{ }^{\circ} \mathrm{C}$. Later, a robust folding condition screening was carried out and folding sequence was considerably optimized (Supplementary Fig. 4).

Two proteins - human platelet-derived growth factor BB (PDGF-BB) and human vascular endothelial derived growth factor $165\left(\mathrm{VEGF}_{165}\right)$ - were used as cues, and the DNA aptamers binding them ${ }^{1,2}$ (41 t in the case of PDGF, SL12 in the case of VEGF) were used as gates. Typical robot mixture contained 0.1 pmol of the effector robot, and 0.2 pmol or more of each regulator robot, as described below.

It is important to note that we used exogenous, human-origin cues as a proof of principle rather than endogenous cues, to which generating stable sensing strands that function in biological conditions proved technically challenging. However, we continue to generate DNA aptamers for a variety of murine cues to demonstrate the scalability of our system using endogenous cues in a mammal. In future designs, endogenous DNA or RNA cues could be used rather than proteins or other molecules that require aptamer-based sensing, which would likely contribute to scalability and performance, however this concept needs to be investigated further.

Supplementary Fig. 4: Agarose-gel analysis of folding conditions. 'Folding Duration' refers to either a 60 -hours long fold $\left(80-60{ }^{\circ} \mathrm{C}\right.$ at $5 \mathrm{~min} /{ }^{\circ} \mathrm{C}, 60-10^{\circ} \mathrm{C}$ at $\left.75 \mathrm{~min} /{ }^{\circ} \mathrm{C}\right)$ or a 30 -hours long fold $\left(80-60{ }^{\circ} \mathrm{C}\right.$ at $5 \mathrm{~min} /{ }^{\circ} \mathrm{C}, 60-10^{\circ} \mathrm{C}$ at $\left.50 \mathrm{~min} /{ }^{\circ} \mathrm{C}\right)$. 'Staples $/ \mathrm{Scaffold}$ ' refers to the excess molar ratio of each staple to scaffold DNA. Either a 10- or a 5- staples molar excess ratios were used. Scaffold was used at 20 nM final concentration. EDTA was used at a 1 mM final concentration. MgCl_{2} concentration was 10 mM . Folding volume was $50 \mu \mathrm{~L}$. Lanes 3 and 13 indicate particularly good folding of robots.

Purification of folded robots:

After folding, excess staples were removed by centrifugal filtration using Amicon Ultra0.5 mL 100 K centrifugal filters (Millipore). Folding buffer was added to reach a total volume of $500 \mu \mathrm{~L}$, after which samples were centrifuged at $12,000 \mathrm{~g}$ for 10 min . this was repeated three times as previously described. DNA concentration was measured by spectrophotometer (Thermo Sci. NanoDrop 2000c).

Supplementary Fig. 5: Nanorobot excess staples purification. A) Gel migration pattern of nanorobots before removal of excess staples (lane 1) and after (lane 2). B) histograms of lane 1 in $\mathbf{A} . \mathbf{C}$) histogram of lane 2 in \mathbf{A}. histograms were generated by ImageJ 1.42 q software.

Gel purification of folded samples:

Leading monomer bands were visualized on a UV table and excised from a $1.5 \%-2 \%$ agarose gel (running buffer is 0.5 X TBE supplemented with 10 mM MgCl$)_{2}$), frozen at $20^{\circ} \mathrm{C}$ for 5 min , chopped to small pieces and centrifuged at $13,000 \mathrm{~g}$ for 3 min inside a Quantum Prep Freeze N' Squeeze DNA Gel Extraction spin column (Bio-Rad). Recovered solution was measured for DNA concentration by spectrophotometer (Thermo Sci. NanoDrop 2000c) and prepared for imaging by transmission electron microscopy (TEM).

TEM negative-stain:

Negative staining of robots was done as previously described ${ }^{3}$. Briefly, $5 \mu \mathrm{~L}$ of 0.5 M NaOH are added to a pre-made frozen aliquot of $100 \mu \mathrm{~L} 2 \%$ uranyl formate solution (Polysciences, 24762) followed by rigorous vortexing for 3 minutes, after which solution is centrifuged at $18,000 \mathrm{~g}$ for 5 minutes and precipitate is removed. Robot samples at 1-5 nM concentration are loaded onto a TEM Grid (Science Services, EFCF400-Cu-50) immediately after glow-discharge treatment (Emitech K100X), followed by two consecutive washes with 0.1% uranyl formate solution. During the third wash the grid is incubated with uranyl formate solution for 30 seconds. Samples are visualized using a TEM microscope (JEM-1400, JEOL) an hour to one week after negative staining.

Supplementary Fig. 6: Agarose-gel analysis and TEM photos of different folding durations. Both samples were folded at 20 nM scaffold concentration, 200 nM staples concentration, 1 X TAE, 10 mM MgCl 2 . After folding, excess staples were removed using micon Ultra -0.5 mL 100 K centrifugal filters (Millipore). A) Folding duration is $80-60{ }^{\circ} \mathrm{C}$ at $2 \mathrm{~min} /{ }^{\circ} \mathrm{C}$ and $60-10^{\circ} \mathrm{C}$ at $150 \mathrm{~min} /{ }^{\circ} \mathrm{C}$. B) Folding duration is $80-60{ }^{\circ} \mathrm{C}$ at $5 \mathrm{~min} /{ }^{\circ} \mathrm{C}, 60-$ $10{ }^{\circ} \mathrm{C}$ at $75 \mathrm{~min} /{ }^{\circ} \mathrm{C}$.

Supplementary Fig. 7: AFM image of folded robots. Robots after folding and staple removal were dispensed on a newly cleaved mica surface at a concentration of 5 nM in TAE containing $10 \mathrm{mM} \mathrm{Mg}{ }^{2+}$. AFM images were acquired on a Veeco Multimode V atomic force microscope at ScanAsyst mode in fluid as previously described. Bar $=200$ nm .

Antibody payload preparation:

Antibodies were digested using a commercial kit (Thermo) with immobilized ficin in mouse IgG digestion buffer with 25 mM cysteine by shaking at a $37^{\circ} \mathrm{C}$ water bath for 4 hours. Antibody Fab' fragments were purified by centrifugal filtration (Amicon, 10K MWCO Millipore) and evaluated by spectrophotometer (Thermo Sci. NanoDrop 2000c). Fab' fragments were buffer-exchanged into 0.05 M sodium borate buffer, pH 8.5 , and incubated with DyLight Amine-Reactive Dye (Thermo) for 1 hour at room temperature on a rotary shaker. Excess dye was thoroughly removed using Amicon 10K MWCO (Millipore). Fab' fragments were incubated for 1 minute with 5 '-amine-modified linker oligonucleotide (5AmMC6/GAACTGGAGTAGCAC, Integrated DNA Technologies) at a molar ratio of 1 to 10 , in a 0.1 M MES-buffered saline, pH 4.7 (Pierce \#28390). EDC (Thermo, \#22980) was added at a molar ratio of 5000 to 1 Fab' fragment and incubated at room temperature for 1 hour on a rotary shaker. Afterwards, Tris was added to a final concentration of 10 mM and solution was filtered via Amicon column 30K MWCO (Millipore).

Loading of robot with antibody:

Oligonucleotide-Fab' concentration was evaluated via absorption at 260 and 280 nm . Loading was performed for 2 hours on a rotary shaker at room temperature in folding buffer ($10 \mathrm{mM} \mathrm{MgCl} 2_{2}$ in 1 X TAE) at a 2 -fold molar excess of payloads to loading sites. Finally, loaded robots were cleaned by centrifugal filtration with a 100K MWCO Amicon column (Millipore) as described above.

Supplementary Note 2: Robot collision programming

System design:

Cue-driven collisions between robots were based on toehold-mediated strand displacement reactions. The basic design enabling collisions between DNA strands extending from E, P, and N robots was based on a 3-level interaction: the first level is the interaction of the cue itself (e.g. PDGF or VEGF in this study) with the sensing strands of the gates of all robots (E, P, and N). Alternatively, the E gates can also interact with either P or N as described in Supplementary Fig. 8-9 below.

Supplementary Fig. 8: Collision between E and P. Robots are depicted here from a side view schematically as rectangles revolving around a vertical axis. The E gate complementary strand contains four regions (from 5' to 3'): 5 (toehold for collision with N), 4 (toehold for collision with P), 3^{*} (partially complements with the aptamer), and 1 (anchors the gate to the robot chassis). The sensing strand contains two regions (from 5' to 3^{\prime}): 2 (anchors the gate to the robot chassis) and 3 (the aptamer). The key loaded into P contains 3 regions (from 5' to 3^{\prime}): 3 (portion of the sensing strand which only appear identical in this scheme), 4* (hybridizes with toehold 4), and 6 (loading sequence to robot).

Supplementary Fig. 9: Collision between E and N. E robots are shown here first from a front view with the virtual sides stated for proper orientation. The arms (clasps) extending from N include 4 regions (from 5' to 3^{\prime}): 3 (portion of the sensing strand which only appear identical in this scheme), 4* (hybridizes with toehold 4), 5* (hybridizes with toehold 5), and 6 (loading sequence to robot, which is not identical to the loading sequence in Supplementary Fig. 8). Multiple arms extending from N clasp the two gates of E. Since these are located on opposite sides of the robot (up and down), the result is inability of E to open properly.

Supplementary Fig. 10: Structural basis for differential keying of E and F robots. E and F consist of different regions dictating collisions with P and N . P 1 and P 2 robots key E by interacting with region 4 on the E gate (Supplementary Fig. 8). N robots close E by interacting with region 5 (Supplementary Fig. 9). Since F robots contain neither region

4 nor 5, robots P1, P2 and N cannot interact with it. However, P3 keys F by interacting with region 7 , which is also why it cannot key E .
It is important to note that the N gate complementary strands lack regions 5 and 4 , so the N clasp arms cannot hybridize with them and inactivate N itself.

Based on this basic design, collision-mediating sequences were chosen and the resulting systems EP, EN and EPN were modeled and prototyped in visual DSD (vDSD) ${ }^{20}$. The sequences were then altered as necessary to achieve the desired performance and kinetics (Supplementary Fig. 11).

Supplementary Fig. 11: Modeling the robot collision system in vDSD. Compiling the code written in the left window generates all the DNA strands taking part in our collision system, with tunable concentrations (numbers before the asterisks in the three last lines of code). Note that E gate is abstracted in the code as a single line representing two strands, according to the vDSD syntax. The robot sensing strand is released from the E gate after EP complex formation.

Supplementary Fig. 12: Simulated kinetics of the EP complex. E and P robots in varying stoichiometries - from 0.1 to 10 - were simulated in vDSD. The fastest reaction occurs when P is at a molar excess of 5 over E, consistently with the ex-vivo prototyping.

Supplementary Fig. 13: Simulated kinetics of the EN complex.

Supplementary Fig. 14: Verification of EPN system in equimolar (top) vs. actual (bottom) stoichiometry.

Supplementary Note 3: Ex-vivo prototyping of robots

Hemocyte extraction:

Insects were anesthetized one by one, by incubation at $-20^{\circ} \mathrm{C}$ for $7-10 \mathrm{~min}$ (depending on animal weight and resilience) in a fresh glass beaker (such that possible secretions from previously frozen insects will not induce stress or unwanted responses). Once an insect has been anesthetized, hemolymph was extracted by puncturing the arthrodial membrane at the base of either metathoracic leg with an ice-cold needle dipped in anti-coagulation buffer (30 mM citric acid, 30 mM sodium citrate, 1 mM EDTA and 0.05% sodium azide). $25 \mu \mathrm{~L}$ of hemolymph were immediately added to $100 \mu \mathrm{~L}$ of ice-cold anti-coagulation buffer. Prior to ex-vivo experiments, cells were washed once in ice-cold TAE and kept on ice in TAE supplemented with $4 \mathrm{mM} \mathrm{Mg}{ }^{2+}$. Following extraction, hemocytes were counted by flow cytometry and then reconstituted and divided into samples containing approximately 10^{4} cells in $50 \mu \mathrm{~L}$ sample. The samples were kept in round bottom 96 -well plates on ice until experiment initiation.

Ex-vivo prototyping:

Robots (0.1 pmol of E, plus P1, P2, N, F, and/or P3 in quantities according to the tested stoichiometry) were added to the freshly isolated hemocytes and given 2 minutes at room temperature to equilibrate. Then, protein cues were added in varying concentrations (typically from 1 pM to 10 nM) and the samples were incubated for 2 hours at room temperature. Following incubation, samples were directly analyzed using flow cytometry.

Supplementary Fig. 15: Ex-vivo prototyping of the E (AND) architecture. FAMtagged E robots mixed with freshly isolated hemocytes were incubated in the presence of both protein cues (X, PDGF; Y, VEGF) in 25 combinations representing all the possible concentrations of X and Y from 0 to 10 nM . Each sample was analyzed by flow cytometry. Each point in the graph represents a sample. Height on the Y axis represents median fluorescence intensity measured by flow cytometry.

Supplementary Fig. 16: Ex-vivo prototyping of EP1, EP2, and EP1P2 (OR) architectures. EP1 and EP2 were prototyped separately prior to EP1P2, to verify that the addition of either one renders E robots responsive to one cue alone (X or Y). After determining the efficient $\mathrm{E}: \mathrm{P}$ ratios (found to be $1:>2:>2$, shown in the top panel), combinatorial incubation of the EP1P2 architecture with X and Y followed and analyzed by flow cytometry.

Supplementary Fig. 17: Slanting pattern indicating EP complexes. This scheme explains how can the existence of EP complexes be concluded from slanted populations in flow cytometry. Cells, either primary or lines, that are double-stained in flow cytometry (e.g. for the expression of two surface markers) tend to present as spherical populations (left panel). The spherical pattern indicates that the population is heterogenous, consisting of cells expressing high levels of marker A with low levels of marker B as well as cells expressing high levels of marker B with low levels of marker A. In our system this cannot occur because robot interactions (e.g. between E and P) are approximately always $1: 1$, so any real pattern generated by robots will consist solely of equal quantities of both species, as shown on the right. Slanting in double-stained cells usually derive from signal leakage due to insufficient compensation. However, in our observations the slanting is preserved even at high compensation levels, indicating that they are robot-derived.

Supplementary Fig. 18: Ex-vivo prototyping of the EP1P2N (XOR) architecture. We first sought to define the $\mathrm{N}:$ E stoichiometry in which N efficiently inactivates E. For this, E robots were mixed with varying quantities of N robots making up ratios ranging from 0.1 to 100 (the baseline activity of E was statistically identical to that of E at a 0.1 stoichiometry) in the presence of 10 nM of both protein cues. Complete inactivation of E
by N robots was observed at a molar excess of 10 N over E. Using this ratio, EP1P2N architecture was effectively emulated a XOR gate (right panel).

Supplementary Fig. 19: Ex-vivo prototyping of the $\mathbf{E}_{\text {open }} \mathbf{N}$ (NAND) architecture. To examine whether this stoichiometry is different than the one measured and shown in Supplementary Fig. 18, we repeated this experiment but with $\mathrm{E}_{\text {open }}$ in the absence of protein cues ($\mathrm{E}_{\text {open }}$ contains only complementary gate strands but no sensing strands and are therefore constitutively open). Here, too, the efficient N:E ratio was observed to be 10 , and this ratio was chosen in testing the architecture.

Supplementary Note 4: Animal model techniques and analysis:

A highly desired goal is to perform computing in a living animal. The insect Blaberus discoidalis was chosen as model animal for various reasons, including simplicity, previous experience with closely related models, and availability of reliable custom made reagents ${ }^{4}$. The hemolymph of B. discoidalis expresses negligible nuclease activity and contains large amounts of free DNA as reported for other Dictyoptera ${ }^{5}$, and its salt/metal composition is compatible with DNA origami structures (Weidler \& Sieck, 1977). We prototyped the robots first ex-vivo on freshly extracted insect hemocytes, with fluorescently-tagged robots loaded with anti-insect hemocyte antibodies as the effector payload.

Animal maintenance:

Adult Blaberus discoidalis of both sexes (purchased from Meital Laboratories, Israel) were housed at room temperature and humidity in large plastic containers, and fed with dry dog food, fresh fruit and water ad libitum. Egg cartons were used as light shelters. Maximum number of insects per cage was 12.

Injection protocol:

Insects were anesthetized one by one, by incubation at $-20^{\circ} \mathrm{C}$ for $7-10 \mathrm{~min}$ (depending on animal weight and resilience) in a fresh glass beaker (such that possible secretions from previously frozen insects will not induce stress or unwanted responses). Once an insect has been anesthetized, a $10 \mu \mathrm{~L}$ solution of robots ($0.1-3 \mathrm{pmol}$ depending on architecture) in TE containing $4 \mathrm{mM} \mathrm{Mg}{ }^{2+}$, was injected into the hemocoel using a Hamilton syringe. Injection was carried out through the soft membrane between the two last abdominal sternites close to the lateral body margin. Following injection, insects were left to recuperate for up to 4 hours.

Supplementary Fig. 20: Video caps before and after injection to the insect.

Hemolymph exatraction:

Hemolymph samples were extracted as described in Supplementary Note 3.

Isolation of hemolymph DNA:

Hemolymph DNA isolation was carried out using Qiagen's DNeasy Blood \& Tissue Kit according to the manufacturer's instructions (Supplementary Fig. 21).

Supplementary Fig. 21: DNA in cockroach hemolymph. Sample migration pattern on a 1% agarose gel. Shown are samples from two different insects.

Nuclease activity assay:

Flow cytometric analysis was carried out to measure nuclease activity in the hemolymph over time. DNA oligos have the following sequences:
/5BioTEG/TTTACTCAGGGCCCTGCAATTGATACTCGAGCAATGGACAGTTA /5Cy5/TTTAACTAGTCCATTGCTCGAGATATCAATTGCAGGGCCCTGAGTA
were purchased from Integrated DNA Technologies. Sequences were designed to complement each other, generating a potential recognition site for over 40 potential sitespecific nucleases as well as DNase I (Supplementary Fig. 22, panel a). The duplex is adsorbed onto streptavidin-coated polystyrene microparticles according to the manufacturer's instructions.

Flow cytometry:

Flow cytometry was performed on a dual-laser Accuri A6 flow cytometer and analyzed by FCS Express 4.0 software.

Supplementary Fig. 22: Nuclease activity in hemolymph. A) Restriction map, generated with NEBcutter V2.0 (http://tools.neb.com/NEBcutter2), of dsDNA sequence used in assay, showing over 40 different potential nucleases restriction sequences. B) Positive control of beads-bound sequences incubated with XhoI at time $t=1 \mathrm{~min}$, as measured by flow cytometry. C) beads-bound sequences incubated with freshlyextracted, undiluted hemolymph at $\mathrm{t}=1 \mathrm{~min}$, as measured by flow cytometry. Time scale is in 0.1 sec . The slight increase in fluorescence in \mathbf{C} represents aggregation of polystyrene microparticles mediated by hemolymph proteins, which are not present in \mathbf{B}, however regardless to this aggregation, nuclease activity should have resulted in decreased fluorescence per event over time as seen in \mathbf{B}.

Supplementary Fig. 23: Robot quantification in hemolymph. Robots were quantified in hemolymph using quantitative PCR performed with a TaqMan probe complementary to a region of the M13mp18 scaffold strand that spans one of the chassis axes. A) Calibration curve was generated by performing the qPCR assay on samples containing known quantities of robots (serially diluted, left). B) 1 pmol robots were mixed into undiluted freshly-extracted hemolymph, and at the designated time points DNA was isolated by centrifugal filtration on Amicon $100 \mathrm{~K}(15,000 \mathrm{~g}, 15 \mathrm{~min})$ and qPCR was performed. Results from hemolymph extracted from 3 different insects are shown (square, triangle and rhombus).

Supplementary Fig. 24: Cockroach survival following robot injection. Cockroaches were injected with 3 pmol robots as described above, housed in separate cages and counted every 2 days, with another untreated group as a control. One animal in the untreated group died of natural causes during the experiment, which was the only death documented in the two groups.

Supplementary Fig. 26: Distribution of robots in the cockroach following injection. Robots (1 pmol) were injected to cockroaches ($\mathrm{n}=3$). Animals were sacrificed at $\mathrm{t}=1 \mathrm{~h}$ and scaffold strands were counted by qPCR in samples drawn from various locations in the cockroach body - between the abdominal sternites (location of injection), the left arthrodial membrane, base of left antenna, and following decapitation of the animal.

Supplementary Note 5: Statistical mechanics of robots in insect hemocoel

Fluorescence Correlation Spectroscopy ${ }^{667}$:

Fluorescence Correlation Spectroscopy (FCS) measurements were performed on a MicroTime 200 single molecule fluorescence lifetime measurement system (PicoQuant, GmbH Berlin, Germany) and the setup consists of an inverse Olympus IX 71 microscope. As excitation source, a ps pulsed-diode laser, set at repetition rate of 40 MHz and emitting at wavelength 635 nm (LDH-P-C-640B, PicoQuant GmbH Berlin Germany), was used, which fits well to the excitation of the Cy5 dye.
The presented measurements were performed at a depth of approx. $100 \mu \mathrm{~m}$ inside a drop of solution (on top of a cover-slip glass) which contains the sample, a $15 \mu \mathrm{~L}$ vol. at concentrations of the fluorescent sample in the $0.1-1.0 \mathrm{nM}$ range. Fluorescence from the excited molecules was collected with the same objective, and focused with an achromatic lens ($\mathrm{f}=175 \mathrm{~mm}$) onto a $50 \mu \mathrm{~m}$ diameter pinhole. The fluorescence emissions was selected by a 690/70 nm Band-pass filter (HQ690/70, Chroma Technology Corp. Rockingham Vermont, USA). The detector was a single photon avalanche photodiodes (SPAD) ($170 \mu \mathrm{~m}$, Perkin Elmer SPCM-AQRH 13).
The data were correlated by the HydraHarp400 Time Correlated Single Photon Counting (TCSPC) system and collected with SymphoTime version 5 (both by PicoQuant GmbH Berlin, Germany).

The fluorescence autocorrelation function (ACF), $G(\tau)$, is defined as

$$
\begin{equation*}
G(\tau)=\frac{\langle\delta F(t) \cdot \delta F(t+\tau)\rangle}{\langle\delta F(t)\rangle^{2}} \quad \delta F(t)=F(t)-\langle F(t)\rangle \tag{1}
\end{equation*}
$$

where $F(t)$ is the fluorescence at time t, brackets denote time averages, and τ is the time between each pair of detected photons. The contribution of detector afterpulsing was removed using the Fluorescence Lifetime Correlation Spectroscopy (FLCS) harnessing the extra information from Cy5 fluorescence decays. The data were fit using a triplet corrected autocorrelation function, $G(\tau)$, as shown in the analytical form in Eq. 2:

$$
\begin{equation*}
G(\tau)=\frac{1}{\langle N\rangle}\left(1-T+T e^{-\frac{\tau}{\tau_{T}}}\right) \frac{1}{\left(1+\frac{\tau}{\tau_{D}}\right)\left(1+\frac{\tau}{\kappa^{2} \tau_{D}}\right)^{1 / 2}} \tag{2}
\end{equation*}
$$

T is the amplitude of the triplet blinking process, τ_{T} is the apparent triplet blinking relaxation time of the dye, τ_{D} is the mean 3 D free diffusion time of the molecule (nanorobot) in the focal volume, and $\langle N\rangle$ is the mean number of emitting molecules in the focal volume. The factor, κ, describes the 3D Gaussian focal volume in terms of the axial to radial ratio and is calculated from measurements of the standard dye Atto 647 N with a known diffusion coefficient of $400 \mu \mathrm{~m}^{2} / \mathrm{s}$ at $298{ }^{0} \mathrm{~K}$.

Supplementary Fig. 26: Correlation function data. Typical data obtained in the FCS experiments with closed nanorobots in 40 mM Tris-Acetate buffer, 8 mM MgCl 2 , pH 8 . The experimental data (black curve) were fit to triplet corrected autocorrelation function model (red curve) as described in the text, and the residual distribution for the fit is shown in the bottom panel.

Supplementary Fig. 27: Simulated diffusion of robots without mixing. In this simulation virtual, very small robots with diffusion coefficient of $100 \mathrm{microns}^{2} / \mathrm{sec}$ were injected into a central spot and allowed to diffuse for 10 seconds and 2 hours. Even after 2 hours of diffusion without mixing, robots are not expected to diffuse more than 3 mm to each direction. Therefore mixing is necessary, as in the case of the open circulatory system of B. discoidalis.

Figure S28: Calculation of the hemolymph space from CT scans.

x_{1}	x_{2}	E_{I}	F_{I}
0	0	0	0
1	0	1	0
0	1	1	0
1	1	0	1

E_{I}
Figure S29: Scaling-up half-adders to create n-bit ripple carry adders. The basic half-adder architecture consists of 5 robots ($\mathrm{E}, \mathrm{F}, \mathrm{P} 1, \mathrm{P} 2, \mathrm{~N}$), receiving two input molecules (x 1 and x 2) and produces two outputs (robot states), which can be either closed (0) or open (1). A closed state is a dead-end and does not key further robots, while the open state has two functions: it exposes a therapeutic molecule, and relays a key sequence to the next robot. Each therapeutic molecule is tagged with a different color, so the number of distinct color combinations represents the number of therapeutic molecules or combinations of them which are producible by this group of robots.

x_{1}	x_{2}	$\mathrm{E}_{\text {I }}$	$\mathrm{F}_{\text {I }}$	x_{3}	$\mathrm{E}_{\text {II }}$	$\mathrm{F}_{\text {II }}$	$\mathrm{G}_{\text {I }}$
0	0	0	0	0	0	0	0
0	0	0	0	1	1	0	0
1	0	1	0	0	1	0	0
1	0	1	0	1	0	1	1
0	1	1	0	0	1	0	0
0	1	1	0	1	0	1	1
1	1	0	1	0	0	0	1
1	1	0	1	1	1	0	1

Fig. S29 (continued): Combining two half adder generates a full adder which receives 3 inputs (two molecules and a key from the original half-adder) and produces 2 output robots. These can again activate a therapeutic molecule simultaneously with keying the next robot. The "carry bit" robot $\mathrm{F}(\mathrm{I})$ (from the original half adder) and the "carry bit" robot F (II) from the second half adder are fed into an OR gate consisting of 3 robot types (G, P3, P4). The resulting G robot, with the "sum bit" robot from the second half adder $\mathrm{E}(\mathrm{II})$, now form the two outputs of the full adder.
In terms of robot complexity, adding the second half adder required 8 additional robots - 5 in the half adder, 3 in the OR gate.

x_{1}	x_{2}	E_{I}	F_{I}	x_{3}	$\mathrm{E}_{\text {II }}$	F_{II}	G_{I}	x_{4}	$\mathrm{E}_{\text {III }}$	$\mathrm{F}_{\text {III }}$	$\mathrm{G}_{\text {II }}$
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	0	0	0	1	0	0
1	0	1	0	0	1	0	0	0	1	0	0
1	0	1	0	1	0	1	1	0	0	0	1
0	1	1	0	0	1	0	0	0	1	0	0
0	1	1	0	1	0	1	1	0	0	0	1
1	1	0	1	0	0	0	1	0	0	0	1
1	1	0	1	1	1	0	1	0	1	0	1
0	0	0	0	0	0	0	0	1	1	0	0
0	0	0	0	1	1	0	0	1	0	1	1
1	0	1	0	0	1	0	0	1	0	1	1
1	0	1	0	1	0	1	1	1	1	0	1
0	1	1	0	0	1	0	0	1	0	1	1
0	1	1	0	1	0	1	1	1	1	0	1
1	1	0	1	0	0	0	1	1	1	0	1
1	1	0	1	1	1	0	1	1	0	1	1

Fig. S29 (continued): Adding a third half adder requires, again, the addition of 8 robots - 5 in the third half adder, 3 in the second OR gate. It is evident therefore that each half adder requires 8 new robot types, and increases the capacity of the system to control therapeutic molecules by 3 additional molecules.

Fig. S29 (continued): An example of a 2-bit ripple carry adder, requiring 29 different types of robots and capable of generating combinations of 11 therapeutic molecules in response to 5 biomarkers.

Fig. S30: Scaling, complexity, and capacity in the half adder based system presented here. The complexity rises as the number of therapeutic molecules in the chosen repertoire increases. However the scaling is linear and not exponential. Bottom graphs show the different robot types required and their quantity in fmol (fit for insect system presented here) as a function of chosen repertoire size.

Fig. S31: Expected vs. measured error propagation in a scaled robot system. Robot activation errors (measured as $\%$ of targets engaged by robots in the complete absence of input) scaled at an order of the root sum square of the combined errors from all robots linked within the logical operator. Left: theoretical error propagation based on RSS of combined robot errors. Right: measured errors from 10 AND robots combined such that each keys the next; blue circles represent measurements, orange trend line represent expected propagation of combined AND robots.

References

1. Green, LS et al. Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry 35, 14413-14424 (1996).
2. Kaur, H, Yung, LY. Probing high affinity sequences of DNA aptamer against VEGF165. PLoS One 7, e31196 (2012).
3. Castro, CE et al. A primer to scaffolded DNA origami. Nat. Methods 8, 221-229 (2011).
4. Bulmer, MS, Bachelet, I, Raman, R, Rosengaus, RB, Sasisekharan, R. Targeting an antimicrobial effector function in insect immunity as a pest control strategy. Proc. Natl. Acad. Sci. USA 106, 12652-12657 (2009).
5. Garbutt, JS, Belles, X, Richards, EH, Reynolds, SE. Persistence of double-stranded RNA in insect hemolymph as a potential determiner of RNA interference success: Evidence from Manduca sexta and Blattella germanica. J. Insect Physiol. 59, 171-178 (2013).
6. Magde, D, Elson, E, Webb, WW. Thermodynamic fluctuations in a reacting system: measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705-708 (1972).
7. Korlann Y, Dertinger T, Michalet X, Weiss S, Enderlein J. Measuring diffusion with polarization-modulation dual-focus fluorescence correlation spectroscopy. Opt. Express. 16, 14609-14616 (2008).
