Supplementary information S11

Tail probabilities for different priors on the effect size γ. A prior probability of association $\pi=10^{-4}$ is assumed in these calculations so as to be comparable with Table 2 in Stephens and Balding (2009). The mixture of normals prior has the form $\gamma \sim 0.9 N\left(0,0.2^{2}\right)+0.05 N\left(0,0.4^{2}\right)+0.05 N\left(0,0.8^{2}\right)$.

	$\gamma \sim N\left(0, .2^{2}\right)$	$\gamma \sim N\left(0,3^{2}\right)$	$\gamma \sim t\left(m=0, s^{2}=.2^{2}, d=3\right)$	Mixture of normals
$P(\|\gamma>0.05\|)$	8.0×10^{-5}	8.7×10^{-5}	8.2×10^{-5}	8.1×10^{-5}
$P(\|\gamma>0.1\|)$	6.2×10^{-5}	7.4×10^{-5}	6.5×10^{-5}	6.4×10^{-5}
$P(\|\gamma>0.2\|)$	3.2×10^{-5}	5.0×10^{-5}	3.9×10^{-5}	3.6×10^{-5}
$P(\|\gamma>0.4\|)$	4.5×10^{-6}	1.8×10^{-5}	1.4×10^{-5}	8.8×10^{-6}
$P(\|\gamma>1\|)$	5.7×10^{-11}	8.6×10^{-8}	1.5×10^{-6}	1.1×10^{-6}

