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Supplementary Box 3 - Testing for association at im-
puted SNPs

Score tests
A Score Test needs calculations of the observed data score and information matrix
only under the null hypothesis, H0 : θ = θ0. For a binary phenotype, if H0 : γ = 0
then θ0 = (µ̂, 0) where µ̂ is the MLE of µ with γ = 0 i.e. µ̂ = log N1

N2
. Also, in

this case, pi = N1

N
and
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The Score Test Statistic is S =
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In the case of an equal number of cases and controls (N1 = N2 = N/2) this Score
test reduces to

S =
(A−B)2

4

C − (A+B)2

N
−N(F + Q)

 . (8)

The Score test relies upon the asymptotic result that U∗γ ∼ N(0, I∗γ) under H0 so
that S ∼ χ21 under H0.

When genotypes are imputed with no uncertainty i.e pijk = 1 for some k ∈
{0, 1, 2} then this test statistic reduces to the Armitage Trend Test statistic1

S =
N(N2(s1 + 2s2)−N1(r1 + 2r2))

2

N1N2(N(r1 + s1 + 4(r2 + s2))− (r1 + s1 + 2(r2 + s2))2)
, (9)

where r1 and r2 are the numbers of cases with Gij equal to 1 and 2 respectively
and s1 and s2 are the numbers of cases with Gij equal to 1 and 2 respectively.
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EM algorithm
In the context of testing imputed SNPs for association the EM algorithm iterates
between the following 2 steps

E-step Using the current parameter estimate, θt, calculate the distribution P (YM |YO, θ)
and use this to calculate the expected log likelihood as

Q(θ|θt) =
N

i=1

2
k=0

qijk logP (Φ|Gij = k, θ). (10)

M-step Create the new estimate, θt+1 by maximizing Q(θ|θt). One option is to
calculate the first and second derivatives of this function and use a Newton-
Raphson scheme (or any other numerical optimization algorithm) to update
θ. Since the Newton-Raphson scheme makes a quadratic assumption the
convergence is not guaranteed. In the case of a binary phenotype we’ve
found this approach does tend to have better convergence behaviour than
direct maximization. In the case of a quantitative phenotype, analyzed using
a Normal model, the M-step can be done precisely with parameter updates
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where dij = qij1 + 2qij2 and wij = qij1 + qpij2.

Calculating Bayes factors at imputed SNPs
The Laplace approximation can be used to estimate the marginal likelihoods (P (Data|M1)
and P (Data|M0)) needed to calculate the Bayes factor. The precise expressions
are

logP (Data|M1) ≈
 N
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
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1
2
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logP (Data|M0) ≈
 N

i=1
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2
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2
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These expressions require finding the maximum point of the product of the ob-
served data likelihood and the prior on θ,

θ̂ = argmaxθ

 N
i=1

2
k=0

P (Φ|Gij = k, θ)pijk


P (θ|Ml) (13)
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Then the relevant score and information matrices are

U∗(θ) = EYM |YO,θ[U(θ)] +
d logP (θ|Ml)

dθ
(14)

I∗(θ) = EYM |YO,θ[I(θ)]− VYM |YO,θ[U(θ)]−
d2 logP (θ|Ml)

dθ2
. (15)

Newton-Raphson iterations can be used to obtain the maximum a posteiori (MAP)
estimates, θ̂M1 and θ̂M0 . In general, we have found that one iteration is often
sufficient. The maximisation suffers from less problems than the Score test since
the prior acts to regularize (or penalize) the estimate. In effect, the addition of
the prior means that the log posterior is often much closer to a quadratic than the
log likelihood would be. This means that the Newton-Raphson algorithm is more
stable and converges faster. The EM algorithm can also be used as above.

When calculating the marginal likelihood for the alternative model M1 with
a binary phenotype a prior that has been used in this scenario2 is P (θ|M1) =
P (µ)P (γ) where µ ∼ N(0, 1) and γ ∼ N(0, s2) where s = 0.2. In this case,

d logP (θ|M1)

dθ
=


− µ − γs−2

T
, (16)

d2 logP (θ|M1)

dθ2
=

−1 0
0 −s−2


. (17)

A similar set of equations can be derived for the null model, M0.

t-distribution priors for binary trait Bayes factors
Stephens and Balding (2009)3 have pointed out that the tail probabilities of the
Normal prior might be too small to reflect realistic beliefs about effect sizes in
GWAS. They propose the use of a mixture of Normal distributions as a prior to
sufficiently fatten the tails of the prior. Another way to do this is to use a t-
distribution prior for the effect size parameter γ with density

f(γ;m, s, d) =
Γ((d+ 1)/2)

Γ(d/2)d1/2π1/2s


1 +

(γ −m)2

ds2

− d+1
2

(18)

where m is the mean, s2 is the variance parameter and d is the degrees of freedom
(implemented in SNPTEST v2). If we use this as a prior for γ and keep the N(0, 1)
prior for µ then

d logP (θ|Ml)

dθ
=


− µ − (d+ 1)(γ −m)

ds2 − (γ −m)2

T
, (19)

d2 logP (θ|Ml)

dθ2
=

−1 0

0 − (d+1)(ds2+(γ−m)2)
(ds2−(γ−m)2)2


. (20)

One clear advantage of using a t-distribution prior rather than a mixture of nor-
mals is that only one model fit is required rather than three model fits. Some tail
probabilities for the Normal and t priors are given in Supplementary Information
11. These illustrate how a t(m = 0, s2 = .22, d = 3) prior can give very similar
tail probabilities to the mixture of normals prior proposed in Stephens and Balding
(2009).
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Priors for Quantitative Trait models
Setting the priors for a quantitative trait analysis using the Normal model is a bit
more tricky than when analysing a binary trait as the scale of the phenotype and
the size of the expected genetic effect relative to this scale needs to be considered.
In SNPTEST v2 there is an option to calculate a Bayes Factor for a quantitative
trait using the Normal model. The prior used is the conjugate Normal Inverse
Gamma (NIG) prior. The way in which this model is formulated is best illustrated
though examples. For an additive model the formulation is

φ
i = γeij + i, i ∼ N(0, σ2) (21)

where φ
i is the residual phenotype after a baseline mean and any covariate effects

have been estimated and subtracted off (so that the effect we are testing for is
conditional upon those estimates), eij is the expected genotype and σ2 is the error
variance. The NIG prior on the model parameters γ and σ2 is written as

γ|σ2 ∼ N(mγ, Vγσ
2) (22)

σ2 ∼ InverseGamma(a, b). (23)

This results in a marginal prior for γ of

γ ∼ t2a(mγ, 4abVγ/(a− 1)). (24)

It can be shown that the expected non-centrality parameter for the F-test when
fitting (21) is approximately

Np(1− p)
2γ2

σ2
(25)

where γ and σ2 are the true values of the alternative model and 2N is the total
sample size4. This can be usefully compared to the non-centrality parameter for
the case-control test which is approximately

Np(1− p)γ2 (26)

assuming N cases and N controls, and here γ is the log-odds ratio parameter of
a logistic regression model. If we believe that the loci underlying quantitative
traits are likely to have similar effect sizes to those underlying binary traits then
we can equate the priors on γ for a binary trait and

√
2γ
σ

in model (21). So, the
N(0, 0.22) prior on γ for a binary trait can be used for

√
2γ
σ

in model (21) i.e
γ ∼ N(0, 0.02σ2). In the context of the NIG prior used this would mean setting
Vγ = 0.02. The parameters a and b can be set by ensuring that the total variance
of the phenotype lies well within the range of the IG(a, b) distribution which
has mean b/(a − 1) and variance b2/[(a − 1)2(a − 2)]. Extension of this way
of setting the priors to dominant, recessive, heterozygote and general models is
straightforward.
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