S1 | Genetics of collagen XVIII, XV and perlecan

Genetics
\section*{Collagen XVIII}
Human: Knobloch syndrome

Mouse: Double knockout

Collagen XV

Mouse: Knockout

Collagen XVIII/XV

Mouse: Double knockout

Collagen XVIII
C. elegans: cle-1

Perlecan

Human
Dyssegmental Dysplasia,
Silver-Handmaker type
(DDSH)
Schwartz-Jampel Syndrome (SJS)

Mouse: Knockout

Deletion of exon 3
$\left(H s p g 2^{\Delta 3 / \Delta 3}\right.$)

Drosophila melanogaster
(Trol (terribly reduced optical lobes))

Caenorhabditis elegans
(Unc-5 (uncoordinated phenotype))

Genotype and mutant forms

Autosomal recessive, mutations in the COL18A1 gene and truncation of the short form of collagen XVIII

Null mutation

Overexpression of endostatin in lens and skin driven by keratin 14 promoter

Double null mutation

Null mutation

Double null mutation

Deletion of the C-terminal NC1 domain and other mutant forms

Autosomal recessive, deletions or point mutations produce truncated, non-secreted/non-functional perlecan

Homozygous missense and splicing mutations produce truncated partially functional or reduced wild-type perlecan

Null mutation

Homozygous deletion mutant. Loss of HS attachment sites in domain I, but remaining protein core is fully expressed

Multiple deletion mutants

Null mutation
Mutations in exons 16, 17 and 18 affecting some, but not all, Unc-52 isoforms

Phenotype

High myopia, vitreoretinal degeneration with retinal detachment, macular abnormalities and occipital encephalocele ${ }^{1}$

Delay in postnatal regression of retinal hyaloid vessels, abnormal outgrowth of retinal vessels, accumulation of deposits in retinal pigment epithelium and reduced visual function ${ }^{2,3}$. Enhanced angiogenic response in aortic explants ${ }^{4}$. Hydrocephalus and dilation of brain ventricles, BM broadening ${ }^{5}$.

Cataracts and skin BM abnormalities ${ }^{6}$

Enhanced neovascularization and vascular permeability in atherosclerosis ${ }^{7}$

Viable and fertile; reduced inotropic response to cardiac perfusion; exercise-induced cardiac injury ${ }^{8}$

Viable and fertile; phenotypes similar to the individual knockouts, indicating separate biological roles

Defects in cell migration and axon guidance ${ }^{9}$, and abnormal neuromuscular structure

Lethal skeletal dysplasia characterized by anisospondyly and micromelia ${ }^{11,12}$

Non-lethal, myotonia, chondrodysplasia ${ }^{13,14}$

Mostly embryonic lethal with severe cephalic and cartilage abnormalities; complete transposition of aorta and pulmonary artery, and abnormal attachment of coronary arteries ${ }^{15-18}$

Viable and fertile. Small eyes with perinatal degeneration of lens. Col18a1 $1^{-/}, H s p g 2^{\Delta 3 / \Delta 3}$ double mutants show accelerated lens degeneration ${ }^{19}$, increased stenosis in injured carotid artery ${ }^{20}$, and impaired angiogenesis and tumour growth ${ }^{21}$

Lethal, reduced optical lobes and abnormal imaginal discs, abnormal proliferation of neuroblasts and modulation of FGF and Hedgehog ${ }^{22,23}$

Pat (paralyzed, arrested at twofold); lethal
Larvae move normally, adults paralyzed owing to progressive disruption of body wall ${ }^{24}$. Abnormal gonadogenesis owing to deregulation of several growth factor signalling pathways ${ }^{25}$

BM, basement membrane; FGF, fibroblast growth factor; NC1, non-collagenous domain-1.
1.Sertie, A. L. et al. Collagen XVIII, containing an endogenous inhibitor of angiogenesis and tumor growth, plays a critical role in the maintenance of retinal structure and in neural tube closure (Knobloch syndrome). Human Mol. Gen. 9, 2051-2058 (2000).
2. Fukai, N. et al. Lack of collagen XVIII/endostatin results in eye abnormalities. EMBO J. 21, 1535-1544 (2002).
3. Marneros, A. G. et al. Collagen XVIII/endostatin is essential for vision and retinal pigment epithelial function.

EMBO J. 23, 89-99 (2004).
4. Li, Q. \& Olsen, B. R. Increased angiogenic response in aortic explants of collagen XVIII/endostatin-null mice. Am. J. Pathol. 165, 415-424 (2004).
5. Utriainen, A. et al. Structurally altered basement membranes and hydrocephalus in a type XVIII collagen deficient mouse line. Human Mol. Gen. 13, 2089-2099 (2004).
6. Elamaa, H., Sormunen, R., Rehn, M., Soininen, R., \& Pihlajaniemi, T. Endostatin overexpression specifically in the lens and skin leads to cataract and ultrastructural alterations in basement membranes. Am. J. Pathol. 166,
221-229 (2004)
7. Moulton, K. S. et al. Loss of collagen XVIII enhances neovascularization and vascular permeability in atherosclerosis. Circulation 110, 1330-1336 (2004).
8. Eklund, L. et al. Lack of type XV collagen causes a skeletal myopathy and cardiovascular defects in mice. Proc. Natt. Acad. Sci. USA 98, 1194-1199 (2001).
9. Ackley, B. D. et al. The NC1/endostatin domain of Caenorhabditis elegans type XVIII collagen affects cell migration and axon guidance. J. Cell Biol. 152, 1219-1232 (2001).
10. Ackley, B. D. et al. The basement membrane components nidogen and type XVIII collagen regulate organization of neuromuscular junctions in Caenorhabditis elegans. J. Neurosci. 23, 3577-3587 (2003).
11. Arikawa-Hirasawa, E. et al. Dyssegmental dysplasia, Silverman-Handmaker type, is caused by functional null mutations of the perlecan gene. Nature Genet. 27, 431-434 (2001).
12. Arikawa-Hirasawa, E., Wilcox, W. R., \& Yamada, Y. Dyssegmental dysplasia, Silverman-Handmaker type: unexpected role of perlecan in cartilage development. Am. J. Med. Genet. 106, 254-257 (2001).
13. Nicole, S. et al. Perlecan, the major proteoglycan of basement membranes, is altered in patients with Schwartz-Jampel syndrome (chondrodystrophic myotonia). Nature Genet. 26, 480-483 (2000).
14. Arikawa-Hirasawa, E. et al. Structural and functional mutations of the perlecan gene cause Schwartz-Jampel syndrome, with myotonic myopathy and chondrodysplasia. Am. J. Hum. Genet. 70, 1368-1375 (2002).
15. Costell, M. et al. Perlecan maintains the integrity of cartilage and some basement membranes. J. Cell Biol. 147, 1109-1122 (1999).
16. Arikawa-Hirasawa, E., Watanabe, E., Takami, H., Hassell, J. R., \& Yamada, Y. Perlecan is essential for cartilage and cephalic development. Nature Genet. 23, 354-358 (1999).
17. Costell, M. et al. Hyperplastic conotruncal endocardial cushions and transposition of great arteries in perlecannullmice. Circ. Res. 91, 158-164 (2002).
18. González-Iriarte, M. et al. Development of the coronary arteries in a murine model of transposition of great arteries. J. Mol. Cell. Cardio. 35, 795-802 (2003).
19. Rossi, M. et al. Heparan sulfate chains of perlecan are indispensable in the lens capsule but not in the kidney. EMBO J. 22, 236-245 (2003).
20. Tran, P.-K. et al. Increased intimal hyperplasia and smooth muscle cell proliferation in transgenic mice with heparan sulfate-deficient perlecan. Circ. Res. 94, 550-558 (2004).
21. Zhou, Z. et al. Impaired angiogenesis, delayed wound healing and retarded tumor growth in perlecan heparan sulfate-deficient mice. Cancer Res. 64, 4699-4702 (2004).
22. Voigt, A., Pflanz, R., Schafer, U., \& Jackle, H. Perlecan participates in proliferation activation of quiescent Drosophila neuroblasts. Dev. Dyn. 224, 403-412 (2002).
23. Park, Y. et al. Drosophila perlecan modulates FGF and hedgehog signals to activate neural stem cell division. Dev. Biol. 253, 247-257 (2003)
24. Mullen, G. P., Rogalski, T. M., Bush, J. A., Gorij, P. R., \& Moerman, D. G. Complex patterns of alternative splicing mediate the spatial and temporal distribution of perlecan/UNC-52 in Caenorhabditis elegans. Mol. Biol. Cell 10, 3205-3221 (1999).
25. Merz, D. C., Alves, G., Kawano, T., Zheng, H., \& Culotti, J. G. UNC-52/perlecan affects gonadal leader cell migrations in C.elegans hermaphrodites through alterations in growth factor signaling. Dev. Biol. 256, 173-186 (2003)

