Supplementary information S1 (table) | Reported antisense transcripts and their targets

targets						
Sense–antisense transcripts	Proposed function or disease relevance	Suggested mechanism	Species	Ref.		
BACE1 and BACE1-AS	Alzheimer's disease	Stability	H, M	1		
APOE and APOE-AS1	Alzheimer's disease	Not known	H, M	2		
PU.1 and PU.1-AS	Haematopoiesis	Translational block	Н, М	3		
$\Delta 5$ -desaturase and reverse $\Delta 5$ -desaturase	Fatty acid metabolism	Translational block, transcriptional interference, mRNA stability	H, R	4		
P15 and P15-AS	Tumour suppressor	Chromatin modification	Н	5		
P21 and P21-AS	Tumour Suppressor	Chromatin modification	Н	6		
NKx2.2 and NKx2.2-AS	Neuronal cell differentiation	Not known	Н	7		
Zfh-5 and zfh-5AS	Transcription factor	Not known	H, M	8		
Progesteron receptor and PR-AS	PR activation / inhibition	Promoter activation/inhibition through heterochromatin protein 1	Н	9		
HAR1F and HAR1R	Neuro-development	Not known	Н	10		
WT1 and WT1-AS	Kidney development	Methylation	H, M	11		
BDNF and BDNFOS	Neurotrophic factor	RNA duplex formation	Р	12,13		
PINK1 and naPINK1	Mitochondrial function	Not known	Н	14		
FMR1 and ASFMR1	Fragile X mental retardation	Epigenetic changes	H, M	15,16		
EPO-R and asEPO-R	Lung growth	Stability, translation	H, C	17		
Ghrelin and ghrelinOS	Anxiety, depression	Not known	Н	18		
Rad 18 and NAT-Rad18	Apoptosis	Post-transcriptional control	H, R	19		
HFE and HFE antisense RNA	Iron storage disorder	Translation repression	Н	20		
Zeb2 and Zeb2 NAT	Epithelial–mesenchymal transition	Splicing	H, M	21,22		
TSP1 and TSP1-AS	Platelet aggregation	Not known	Н	23		
Urocortin, Ucn and Ucn-AS	Neuro-transmission	Post-transcriptional	R	24		
Sphk1 and Khps1	Calcium mobilization	Demethylation	H, R	25		
Pdcd2 and Tbp	Apoptosis	Editing, alternative splicing and polyadenylation	H, M, Ch	26		
Msh4 and Hspa5	Meiotic DNA recombination	RNA degradation	М	27		
Pax6 and Pax6OS	Eye development	Not known	М, Н	28		
Pax2 and Pax2OS						
Six3 and Six3OS						
Six6 and Six6OS						
Otx2 and Otx2OS						
Crx and CrxOS						
Rax and RaxOS						
Vax2 and Vax2OS						

Hyaluronan synthase 2 and HASNT	Hyaluronan biosynthesis	Not known	М, Н	29
Msx1 and Msx1_AS	Skeletal terminal differentiation	Splicing, imprinting	R, H	30
FGF-2 and FGF-AS (bFGF and bFGF-AS)	Haematological tumours, endometriosis	Polyadenylation, translational block, editing, stability	Mm	31-34
p53	Differentiation	Transport	М	35
N-myc	Oncogenesis	Splicing	М, Н	36
Tsix and Xist	X chromosome inactivation	X inactivation	Mm	37
HIF-1 α and aHIF	Poor prognosis marker in breast cancer, renal cancer	RNA destabilization, pre-mRNA splicing	H, R	38
Survivin and EPR-1	Colon cancer	Not known	Н	39
α -globulin and LUC7L	α-Thalassaemia	Methylation	Н	40
IGF2R and Air	Tumour suppressor	Imprinting	H, M	41,42
KvLQT1	Beckwith-Wiedemann syndrome	Imprinting	Н	43
SNURF-SNRPN and UBE3A	Prader-Willi and Angelman syndrome	Imprinting	Н	44
GNAS	Signal transduction	Imprinting	H, M	45
BCMA and BCMA-AS RNA	B-cell maturation	Translation block, editing	Н	46,47
Bcl-2 and IgH	Follicular B-cell lymphoma	RNA stabilization	Н	48
c-erbA and Rev-ErbA α	Thyroid hormone receptor	Splicing	H, R	49-51
Thymidylate synthase and $rTS\alpha$	DNA replication and repair	Editing	Н	52
CHRNA3 and CHRNA5	Neuronal nicotinic receptor	Stabilization	H, B	53
Myelin basic protein (MBP and MBP-AS)	Myelin formation	Transport	М	54
eNOS and NOS3AS (sONE)	Vascular disease	Inverse S-AS correlation	H, M	55
Neuronal nitric oxide synthase and NOS	Nervous system signalling	Post-transcriptional, translation	S, H, R	56
Inducible nitric oxide synthase (iNOS and iNOS AS)	Inflammatory diseases	Stability	R	57
NOS2A and anti-NOS2A	Neuronal differentiation	Inverse S-AS correlation	Р	58
SMAD5 and DAMS	TGF-β/BMP inhibitory signals	Transcriptional interference, translational block	H, R	59
eIF2a	T cell mitogenesis	RNA degradation	Н	60
ERCC-1, RAF49 (ASE-1)	DNA repair	Stability, localization	Н	61
α1 collagen	Chondrogenesis	Competitive transcriptional interference	Ch	62
MKRN2 and RAF1	Cancer	Polyadenylation	Mm	63
Hoxa 11	Development	Epigenetic	Mm	64
Cardiac troponin 1	Myocardial function	Translation	H, R	65
pMCH and pMCH antisense	Food intake	Splicing	H, R	66,67
CDYL and CDYL-AS	Spermatogenesis	Not known	В	68

FGFR-3 and psiFGFR-3	Bone and haematopoietic maturation	RNA degradation, translation inhibition	М	69
TOP1 and TOP1-AS	Cell cycle	Translational regulation	Н	70
EP1 prostanoid receptor and PKN protein kinase	Intracellular signalling	Not known	М	71
EMX2 and EMX2OS	Development	Splicing, polyadenylation	H, M	72
Thymidine kinase and TK-AS	Cell cycle	Inverse S-AS correlation	М	73
DIPLA1 and DIPAS	Placenta specific	Not known	Н	74
GnRH and SH	Gonadotropin-releasing hormone (GnRH)	Not known	R	75
HLA-J cluster HZFw and HZFc	MHC class I	Alternative splicing, alternative polyadenylation	H, M	76
HZFw and HCGV				
HTEX6 and HTEX4				
MHC IIa, IIx, IIb and antisense aII, xII, bII	Skeletal muscle myosin heavy chain regulation	Transcriptional interference and/or promoter methylation	R	77
Cardiac α MHC and AS- α MHC	Cardiac myosin heavy chain α - β gene switching	Transcriptional regulation at promoter	H, R	78
ABO and ABOAS	Blood group, ABO gene expression	Post-transcriptional, methylation	Н	79
Frequency, <i>frq</i> and antisense- <i>frq</i>	Circadian clock function	Inverse S-AS correlation	F	80
ORCTL2 and ORCTL2S	Wilm's tumour	Imprinting	Н	81
Tenascin-X and P450c21B	Adrenal function	Post-transcriptional	Н	82
NPT and NPT-AS	Na/Pi co-transporter, Phosphate homeostasis	Translation interference	M, Z	83
PKN and EP1	Protein kinase	Alternative polyadenylation	М	71
COX10 and C17ORF1	Charcot-Marie-Tooth	Post-transcriptional	Н	84
c-myc and c-myc-antisense	Oncogene	Pre-mRNA processing, transcription interference	R, H	85,86

Species: B, bovine; C, canine; Ch, chicken; F, fungus; H, human; M, mice; Mm, mammals; P, primate; R, rat or rodent; S, snail; Z, zebrafish.

- 1. Faghihi, M.A. et al. Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase. *Nat Med* **14**, 723-30 (2008).
- 2. Seitz, A. et al. Sense and antisense transcripts of the apolipoprotein E gene in normal and ApoE knockout mice, their expression after spinal cord injury and corresponding human transcripts. *Hum Mol Genet* **14**, 2661-70 (2005).
- 3. Ebralidze, A.K. et al. PU.1 expression is modulated by the balance of functional sense and antisense RNAs regulated by a shared cis-regulatory element. *Genes Dev* **22**, 2085-92 (2008).

- 4. Dreesen, T.D. et al. A newly discovered member of the fatty acid desaturase gene family: a non-coding, antisense RNA gene to delta5-desaturase. *Prostaglandins Leukot Essent Fatty Acids* **75**, 97-106 (2006).
- 5. Yu, W. et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. *Nature* **451**, 202-6 (2008).
- 6. Morris, K.V., Santoso, S., Turner, A.M., Pastori, C. & Hawkins, P.G. Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. *PLoS Genet* **4**, e1000258 (2008).
- 7. Tochitani, S. & Hayashizaki, Y. Nkx2.2 antisense RNA overexpression enhanced oligodendrocytic differentiation. *Biochem Biophys Res Commun* **372**, 691-6 (2008).
- 8. Komine, Y., Nakamura, K., Katsuki, M. & Yamamori, T. Novel transcription factor zfh-5 is negatively regulated by its own antisense RNA in mouse brain. *Mol Cell Neurosci* **31**, 273-83 (2006).
- 9. Schwartz, J.C. et al. Antisense transcripts are targets for activating small RNAs. *Nat Struct Mol Biol* **15**, 842-8 (2008).
- 10. Pollard, K.S. et al. An RNA gene expressed during cortical development evolved rapidly in humans. *Nature* **443**, 167-72 (2006).
- 11. Dallosso, A.R. et al. Alternately spliced WT1 antisense transcripts interact with WT1 sense RNA and show epigenetic and splicing defects in cancer. *Rna* 13, 2287-99 (2007).
- 12. Liu, Q.R. et al. Rodent BDNF genes, novel promoters, novel splice variants, and regulation by cocaine. *Brain Res* **1067**, 1-12 (2006).
- 13. Pruunsild, P., Kazantseva, A., Aid, T., Palm, K. & Timmusk, T. Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. *Genomics* **90**, 397-406 (2007).
- 14. Scheele, C. et al. The human PINK1 locus is regulated in vivo by a noncoding natural antisense RNA during modulation of mitochondrial function. *BMC Genomics* **8**, 74 (2007).
- 15. Ladd, P.D. et al. An antisense transcript spanning the CGG repeat region of FMR1 is upregulated in premutation carriers but silenced in full mutation individuals. *Hum Mol Genet* **16**, 3174-87 (2007).
- 16. Khalil, A.M., Faghihi, M.A., Modarresi, F., Brothers, S.P. & Wahlestedt, C. A novel RNA transcript with antiapoptotic function is silenced in fragile x syndrome. *PLoS ONE* **3**, e1486 (2008).
- 17. Žhang, Q., Zhang, J., Moe, O.W. & Hsia, C.C. Synergistic upregulation of erythropoietin receptor (EPO-R) expression by sense and antisense EPO-R transcripts in the canine lung. *Proc Natl Acad Sci U S A* **105**, 7612-7 (2008).
- 18. Seim, I., Collet, C., Herington, A.C. & Chopin, L.K. Revised genomic structure of the human ghrelin gene and identification of novel exons, alternative splice variants and natural antisense transcripts. *BMC Genomics* **8**, 298 (2007).
- 19. Parenti, R., Paratore, S., Torrisi, A. & Cavallaro, S. A natural antisense transcript against Rad18, specifically expressed in neurons and upregulated during beta-amyloid-induced apoptosis. *Eur J Neurosci* **26**, 2444-57 (2007).
- 20. Thenie, A.C. et al. Identification of an endogenous RNA transcribed from the antisense strand of the HFE gene. *Hum Mol Genet* **10**, 1859-66 (2001).
- 21. Beltran, M. et al. A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. *Genes Dev* 22, 756-69 (2008).
- 22. Nelles, L., Van de Putte, T., van Grunsven, L., Huylebroeck, D. & Verschueren, K. Organization of the mouse Zfhx1b gene encoding the twohanded zinc finger repressor Smad-interacting protein-1. *Genomics* **82**, 460-9 (2003).
- 23. Ye, G.M. et al. Human THROMBOSPONDIN-1 gene contains a natural antisense transcript, and characterization of its expression in human multiple tissues and cells. *DNA Seq* **16**, 295-9 (2005).

- 24. Haeger, P. et al. Natural expression of immature Ucn antisense RNA in the rat brain. Evidence favoring bidirectional transcription of the Ucn gene locus. *Brain Res Mol Brain Res* **139**, 115-28 (2005).
- 25. Imamura, T. et al. Non-coding RNA directed DNA demethylation of Sphk1 CpG island. *Biochem Biophys Res Commun* **322**, 593-600 (2004).
- 26. Mihola, O., Forejt, J. & Trachtulec, Z. Conserved alternative and antisense transcripts at the programmed cell death 2 locus. *BMC Genomics* **8**, 20 (2007).
- 27. Hirano, M. & Noda, T. Genomic organization of the mouse Msh4 gene producing bicistronic, chimeric and antisense mRNA. *Gene* **342**, 165-77 (2004).
- 28. Alfano, G. et al. Natural antisense transcripts associated with genes involved in eye development. *Hum Mol Genet* **14**, 913-23 (2005).
- 29. Chao, H. & Spicer, A.P. Natural antisense mRNAs to hyaluronan synthase 2 inhibit hyaluronan biosynthesis and cell proliferation. *J Biol Chem* **280**, 27513-22 (2005).
- 30. Blin-Wakkach, C. et al. Endogenous Msx1 antisense transcript: in vivo and in vitro evidences, structure, and potential involvement in skeleton development in mammals. *Proc Natl Acad Sci U S A* **98**, 7336-41 (2001).
- 31. Volk, R., Koster, M., Poting, A., Hartmann, L. & Knochel, W. An antisense transcript from the Xenopus laevis bFGF gene coding for an evolutionarily conserved 24 kd protein. *Embo J* **8**, 2983-8 (1989).
- 32. Zuniga Mejia Borja, A., Meijers, C. & Zeller, R. Expression of alternatively spliced bFGF first coding exons and antisense mRNAs during chicken embryogenesis. *Dev Biol* **157**, 110-8 (1993).
- 33. Li, A.W. & Murphy, P.R. Expression of alternatively spliced FGF-2 antisense RNA transcripts in the central nervous system: regulation of FGF-2 mRNA translation. *Mol Cell Endocrinol* **162**, 69-78 (2000).
- 34. Kimelman, D. & Kirschner, M.W. An antisense mRNA directs the covalent modification of the transcript encoding fibroblast growth factor in Xenopus oocytes. *Cell* **59**, 687-96 (1989).
- 35. Khochbin, S., Brocard, M.P., Grunwald, D. & Lawrence, J.J. Antisense RNA and p53 regulation in induced murine cell differentiation. *Ann N Y Acad Sci* **660**, 77-87 (1992).
- 36. Krystal, G.W., Armstrong, B.C. & Battey, J.F. N-myc mRNA forms an RNA-RNA duplex with endogenous antisense transcripts. *Mol Cell Biol* **10**, 4180-91 (1990).
- 37. Nesterova, T.B. et al. Xist expression and macroH2A1.2 localisation in mouse primordial and pluripotent embryonic germ cells. *Differentiation* **69**, 216-25 (2002).
- 38. Thrash-Bingham, C.A. & Tartof, K.D. aHIF: a natural antisense transcript overexpressed in human renal cancer and during hypoxia. *J Natl Cancer Inst* **91**, 143-51 (1999).
- 39. Yamamoto, T., Manome, Y., Nakamura, M. & Tanigawa, N. Downregulation of survivin expression by induction of the effector cell protease receptor-1 reduces tumor growth potential and results in an increased sensitivity to anticancer agents in human colon cancer. *Eur J Cancer* **38**, 2316-24 (2002).
- 40. Tufarelli, C. et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. *Nat Genet* **34**, 157-65 (2003).
- 41. Wutz, A. et al. Imprinted expression of the Igf2r gene depends on an intronic CpG island. *Nature* **389**, 745-9 (1997).
- 42. Moore, T. et al. Multiple imprinted sense and antisense transcripts, differential methylation and tandem repeats in a putative imprinting control region upstream of mouse Igf2. *Proc Natl Acad Sci U S A* **94**, 12509-14 (1997).
- 43. Smilinich, N.J. et al. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome. *Proc Natl Acad Sci U S A* **96**, 8064-9 (1999).

- 44. Rougeulle, C., Cardoso, C., Fontes, M., Colleaux, L. & Lalande, M. An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. *Nat Genet* **19**, 15-6 (1998).
- 45. Hayward, B.E. & Bonthron, D.T. An imprinted antisense transcript at the human GNAS1 locus. *Hum Mol Genet* **9**, 835-41 (2000).
- 46. Laabi, Y. et al. The BCMA gene, preferentially expressed during B lymphoid maturation, is bidirectionally transcribed. *Nucleic Acids Res* **22**, 1147-54 (1994).
- 47. Hatzoglou, A. et al. Natural antisense RNA inhibits the expression of BCMA, a tumour necrosis factor receptor homologue. *BMC Mol Biol* **3**, 4 (2002).
- 48. Capaccioli, S. et al. A bcl-2/IgH antisense transcript deregulates bcl-2 gene expression in human follicular lymphoma t(14;18) cell lines. *Oncogene* **13**, 105-15 (1996).
- 49. Munroe, S.H. & Lazar, M.A. Inhibition of c-erbA mRNA splicing by a naturally occurring antisense RNA. *J Biol Chem* **266**, 22083-6 (1991).
- 50. Hastings, M.L., Milcarek, C., Martincic, K., Peterson, M.L. & Munroe, S.H. Expression of the thyroid hormone receptor gene, erbAalpha, in B lymphocytes: alternative mRNA processing is independent of differentiation but correlates with antisense RNA levels. *Nucleic Acids Res* **25**, 4296-300 (1997).
- 51. Miyajima, N. et al. Two erbA homologs encoding proteins with different T3 binding capacities are transcribed from opposite DNA strands of the same genetic locus. *Cell* **57**, 31-9 (1989).
- 52. Dolnick, B.J. Cloning and characterization of a naturally occurring antisense RNA to human thymidylate synthase mRNA. *Nucleic Acids Res* **21**, 1747-52 (1993).
- 53. Solda, G. et al. In vivo RNA-RNA duplexes from human alpha3 and alpha5 nicotinic receptor subunit mRNAs. *Gene* **345**, 155-64 (2005).
- 54. Okano, H., Aruga, J., Nakagawa, T., Shiota, C. & Mikoshiba, K. Myelin basic protein gene and the function of antisense RNA in its repression in myelin-deficient mutant mouse. *J Neurochem* **56**, 560-7 (1991).
- 55. Fish, J.E. et al. Hypoxia-inducible expression of a natural cis-antisense transcript inhibits endothelial nitric-oxide synthase. *J Biol Chem* **282**, 15652-66 (2007).
- 56. Korneev, S.A., Park, J.H. & O'Shea, M. Neuronal expression of neural nitric oxide synthase (nNOS) protein is suppressed by an antisense RNA transcribed from an NOS pseudogene. *J Neurosci* **19**, 7711-20 (1999).
- 57. Matsui, K. et al. Natural antisense transcript stabilizes inducible nitric oxide synthase messenger RNA in rat hepatocytes. *Hepatology* **47**, 686-97 (2008).
- 58. Korneev, S.A. et al. Novel noncoding antisense RNA transcribed from human anti-NOS2A locus is differentially regulated during neuronal differentiation of embryonic stem cells. *Rna* 14, 2030-7 (2008).
- 59. Zavadil, J., Svoboda, P., Liang, H., Kottickal, L.V. & Nagarajan, L. An antisense transcript to SMAD5 expressed in fetal and tumor tissues. *Biochem Biophys Res Commun* **255**, 668-72 (1999).
- 60. Silverman, T.A., Noguchi, M. & Safer, B. Role of sequences within the first intron in the regulation of expression of eukaryotic initiation factor 2 alpha. *J Biol Chem* **267**, 9738-42 (1992).
- 61. van Duin, M. et al. Conserved pattern of antisense overlapping transcription in the homologous human ERCC-1 and yeast RAD10 DNA repair gene regions. *Mol Cell Biol* **9**, 1794-8 (1989).
- 62. Farrell, C.M. & Lukens, L.N. Naturally occurring antisense transcripts are present in chick embryo chondrocytes simultaneously with the down-regulation of the alpha 1 (I) collagen gene. *J Biol Chem* **270**, 3400-8 (1995).
- 63. Gray, T.A. et al. Phylogenetic conservation of the makorin-2 gene, encoding a multiple zinc-finger protein, antisense to the RAF1 proto-oncogene. *Genomics* **77**, 119-26 (2001).

- 64. Potter, S.S. & Branford, W.W. Evolutionary conservation and tissue-specific processing of Hoxa 11 antisense transcripts. *Mamm Genome* **9**, 799-806 (1998).
- 65. Podlowski, S., Bramlage, P., Baumann, G., Morano, I. & Luther, H.P. Cardiac troponin I sense-antisense RNA duplexes in the myocardium. *J Cell Biochem* **85**, 198-207 (2002).
- 66. Hervieu, G. & Nahon, J.L. Pro-melanin concentrating hormone messenger ribonucleic acid and peptides expression in peripheral tissues of the rat. *Neuroendocrinology* **61**, 348-64 (1995).
- 67. Miller, C.L., Burmeister, M. & Thompson, R.C. Antisense expression of the human pro-melanin-concentrating hormone genes. *Brain Res* **803**, 86-94 (1998).
- 68. Wang, A. et al. Molecular characterization of the bovine chromodomain Y-like genes. *Anim Genet* **39**, 207-16 (2008).
- 69. Weil, D., Power, M.A., Webb, G.C. & Li, C.L. Antisense transcription of a murine FGFR-3 psuedogene during fetal development. *Gene* **187**, 115-22 (1997).
- 70. Zhou, B.S., Beidler, D.R. & Cheng, Y.C. Identification of antisense RNA transcripts from a human DNA topoisomerase I pseudogene. *Cancer Res* **52**, 4280-5 (1992).
- 71. Batshake, B. & Sundelin, J. The mouse genes for the EP1 prostanoid receptor and the PKN protein kinase overlap. *Biochem Biophys Res Commun* 227, 70-6 (1996).
- 72. Noonan, F.C., Goodfellow, P.J., Staloch, L.J., Mutch, D.G. & Simon, T.C. Antisense transcripts at the EMX2 locus in human and mouse. *Genomics* **81**, 58-66 (2003).
- 73. Sutterluety, H. et al. Growth-regulated antisense transcription of the mouse thymidine kinase gene. *Nucleic Acids Res* **26**, 4989-95 (1998).
- 74. Garcia, J. & Castrillo, J.L. Identification of two novel human genes, DIPLA1 and DIPAS, expressed in placenta tissue. *Gene* **344**, 241-50 (2005).
- 75. Adelman, J.P., Bond, C.T., Douglass, J. & Herbert, E. Two mammalian genes transcribed from opposite strands of the same DNA locus. *Science* **235**, 1514-7 (1987).
- 76. Coriton, O., Lepourcelet, M., Hampe, A., Galibert, F. & Mosser, J. Transcriptional analysis of the 69-kb sequence centromeric to HLA-J: a dense and complex structure of five genes. *Mamm Genome* **11**, 1127-31 (2000).
- 77. Pandorf, C.E. et al. Dynamics of myosin heavy chain gene regulation in slow skeletal muscle: role of natural antisense RNA. *J Biol Chem* **281**, 38330-42 (2006).
- 78. Haddad, F., Bodell, P.W., Qin, A.X., Giger, J.M. & Baldwin, K.M. Role of antisense RNA in coordinating cardiac myosin heavy chain gene switching. *J Biol Chem* **278**, 37132-8 (2003).
- 79. Hata, Y., Kominato, Y. & Takizawa, H. Identification and characterization of a novel antisense RNA transcribed from the opposite strand of the human blood group ABO gene. *Transfusion* **47**, 842-51 (2007).
- 80. Kramer, C., Loros, J.J., Dunlap, J.C. & Crosthwaite, S.K. Role for antisense RNA in regulating circadian clock function in Neurospora crassa. *Nature* **421**, 948-52 (2003).
- 81. Cooper, P.R. et al. Divergently transcribed overlapping genes expressed in liver and kidney and located in the 11p15.5 imprinted domain. *Genomics* **49**, 38-51 (1998).
- Bristow, J., Tee, M.K., Gitelman, S.E., Mellon, S.H. & Miller, W.L. Tenascin-X: a novel extracellular matrix protein encoded by the human XB gene overlapping P450c21B. *J Cell Biol* 122, 265-78 (1993).
- 83. Werner, A., Preston-Fayers, K., Dehmelt, L. & Nalbant, P. Regulation of the NPT gene by a naturally occurring antisense transcript. *Cell Biochem Biophys* **36**, 241-52 (2002).

- 84. Kennerson, M.L. et al. The Charcot-Marie-Tooth binary repeat contains a gene transcribed from the opposite strand of a partially duplicated region of the COX10 gene. *Genomics* **46**, 61-9 (1997).
- 85. Nepveu, A. & Marcu, K.B. Intragenic pausing and anti-sense transcription within the murine c-myc locus. *Embo J* **5**, 2859-65 (1986).
- 86. Shliakhova, L.N., Itkes, A.V., Chernov, B.K. & Kiselev, L.L. [Transcription of antisense RNA for the human c-myc gene]. *Mol Biol (Mosk)* **28**, 909-17 (1994).