
Reviewers' comments:  

 

 

Reviewer #1 (Remarks to the Author):  

 

The authors present an analytical framework for epidemic spread on complex transportation 

networks. The framework applies to fast-spreading epidemics, which allows the authors to make 

several simplifying assumptions. The authors apply this framework to the initial spread of 

pandemic H1N1 2009 and the Liberian Ebola outbreak in 2014. I believe that this contribution is 

sufficiently novel and useful for publication.  

 

I am not certain that this work describes a "theory" of epidemic spread on networks. It seems to 

be a set of approximations that allow the authors to estimate the arrival time distribution at nodes 

in a reasonable network. The authors state that some of the assumptions hold for "all populations" 

and "epidemic scenarios" rather than stating they hold for a wide range of populations and tested 

scenarios. It is likely that one could construct perverse networks where the assumptions would not 

hold. Perhaps the manuscript's contribution is better described as a "framework" (the term used in 

Brockman and Helbig 2013 for the use of effective distance).  

 

The framework makes several reasonable approximations to make it possible to compute the 

distribution of epidemic arrival times for each node in a network. Figures in the Supplementary 

Information show the effect of individual approximations. Should we assume that most or all of 

these assumptions are necessary, or does that depend on the application? I would like more 

insight about which of these approximations are most important in practice. Could any of these 

approximations be ignored without affecting the results of the case studies?  

 

I request some clarification in the descriptions of the case study of pandemic H1N1. Are you 

assuming the epidemic started with a single individual? It is difficult to directly compare the 

estimate of R0 to that from Balcan et al 2009 (R0=1.75). Figure 4a plots estimated R0 vs the start 

date of the epidemic, covering values from R0=1.6 to R=2.1.  

 

In the Discussion, on line 214, it is stated that stochastic extinction could be estimated by 

discounting Wij. Would it be easier and more accurate to estimate the probability of non-extinction 

based on the number of introductions to a node? If each introduction has probability p of onward 

transmission, then could one estimate an epidemic start time of each node based on p and T^n?  

 

 

 

 

Reviewer #2 (Remarks to the Author):  

 

This paper proposes and claims to validate a novel theory for how a disease will spread to different 

populations around the globe.  

 

Many of the underlying assumptions, and the basis of the theory, has been established previously. 

In addition to improving the framing of this research with regards to the literature already cited, 

the relationship of the work to that of Barthelemy et al. (2010) Journal of Theoretical Biology 267, 

554-564 should be added, and more discussion of Scalia Tomba and Wallinga (2008) could be 

added in particular with respect to the probability of successful invasion (in the Discussion).  

 

It is unclear to me why the rate of import to population $j$ is removed when considering the rate 

of growth in prevalence in population $i$ (see Section 5, and bottom of page 5). Why should the 

growth in prevalence in a population be different dependent upon which population you are 

viewing it from?  



 

I cannot completely marry the discussion of discrete-time and discrete-state dynamics (see 

Section 1) and initial seed of infection $s_i$, with continuous-time and continuous-state models as 

discussed, for example, in Section 5 (and in which there is a continuous flow of individuals as 

opposed to a seed number).  

 

If a number of infectious individuals are assumed to arrive together, as a seed number, the 

probability of initial fadeout will be different to that as described in the Discussion.  

 

I believe there is insufficient detail to be able to reliably reproduce the Path reduction mentioned 

as part of Sections 5 and 6. Similarly, I think the detail of the determination of the 25 "fastest" 

paths could be increased.  

 

Further detail is required regarding the Markov Chain Monte Carlo inference. All parameters being 

inferred (or assumed known) should be detailed, along with precisely defining their prior 

distribution. The burn-in, convergence and mixing of chains should be discussed. What sample size 

has been used, and why? I also don't understand why the inferred basic reproductive number is 

monotonically increasing with time (this seems suspicious to me), and how this is actually 

consistent with the existing literature (Figure 4).  



Point-by-point response (NCOMMS-17-09001) 

 

Reviewer 1 

Please note: Page and line numbers refer to those in the cleaned manuscript. 

 

Comment 1.1 

The authors present an analytical framework for epidemic spread on complex transportation 

networks. The framework applies to fast-spreading epidemics, which allows the authors to make 

several simplifying assumptions. The authors apply this framework to the initial spread of 

pandemic H1N1 2009 and the Liberian Ebola outbreak in 2014. I believe that this contribution is 

sufficiently novel and useful for publication. 

 

Response 1.1 

Thank you for your supportive comments.  

 

 

Comment 1.2 

I am not certain that this work describes a "theory" of epidemic spread on networks. It seems to 

be a set of approximations that allow the authors to estimate the arrival time distribution at 

nodes in a reasonable network. The authors state that some of the assumptions hold for "all 

populations" and "epidemic scenarios" rather than stating they hold for a wide range of 

populations and tested scenarios. It is likely that one could construct perverse networks where the 

assumptions would not hold. Perhaps the manuscript's contribution is better described as a 

"framework" (the term used in Brockman and Helbig 2013 for the use of effective distance). 

 

Response 1.2 

We agree that the analytics developed in this study are better described as a framework and have 

revised the manuscript accordingly. We have also revised the text to indicate that our results are 

only valid for the range of tested epidemic scenarios instead of “all populations and epidemic 

scenarios”.  

 

 

Comment 1.3 



The framework makes several reasonable approximations to make it possible to compute the 

distribution of epidemic arrival times for each node in a network. Figures in the Supplementary 

Information show the effect of individual approximations. Should we assume that most or all of 

these assumptions are necessary, or does that depend on the application? I would like more 

insight about which of these approximations are most important in practice. Could any of these 

approximations be ignored without affecting the results of the case studies? 

 
Response 1.3 

We have added the following paragraph at the beginning of the Discussion section to address this 

comment: 

 

“In summary, our framework for characterizing the dynamics underlying global spread of 

epidemics comprises five approximations: (i) a closed-form pdf for EAT for any two directly-

connected populations (equation 1); (ii) adjustment for hub-effects; (iii) adjustment for 

continuous seeding; (iv) path reduction; and (v) path superposition. Approximation (i) is the 

indispensable centerpiece of our framework whereas the necessity of approximations (ii)-(v) 

would depend on the specific application. Hub-effect adjustment is necessary when estimating the 

times of case exportation for populations that (i) are directly connected to multiple populations 

and (ii) have relatively high outbound mobility rates. Continuous seeding adjustment is necessary 

when estimating the times of case exportation for all populations except the epidemic origin (for 

which seeding is assumed to occur only at time 0). Path reduction and superposition are 

developed for simplifying computation as well as generating insights regarding global spread 

dynamics. In terms of computation, path reduction is required for populations that are three or 

more degrees of separation from the epidemic origin in a given acyclic path (which typically 

account for less than 20% of all populations) while path superposition is used for all populations 

(however, path superposition may not be necessary for populations that are directly connected to 

the epidemic origin with high mobility rates because the indirect paths have only minor impact on 

their EATs; see Fig. S6). In terms of insights, the accuracy of path reduction implies that the 

epidemic arrival process from the epidemic origin to any given population along any given 

acyclic path ψ  can be accurately approximated as an NPP with intensity function ( )exp tψ ψα λ , 

whereas the accuracy of path superposition implies that the dependence of multiple paths 

connecting a given population to the epidemic origin is relatively weak for the purpose of 

estimating EAT.  



While approximation (ii)-(v) are all necessary for estimating EAT in the WAN (Figs. 1-3), they 

are not needed in our case studies on inference of transmission parameters: In the 2009 pandemic 

influenza A/H1N1 case study, we follow the inference formulation in Balcan et al which included 

only populations that are directly connected to Mexico City in the WAN 26. In the 2014 Ebola 

case study, the inference formulation tracks the timing of only two case exportations without the 

need to stratify them by outbound populations (see Methods section 9).” 

(Page 10, line 219) 

 
 
 
Comment 1.4 

I request some clarification in the descriptions of the case study of pandemic H1N1. Are you 

assuming the epidemic started with a single individual? It is difficult to directly compare the 

estimate of R0 to that from Balcan et al 2009 (R0=1.75). Figure 4a plots estimated R0 vs the start 

date of the epidemic, covering values from R0=1.6 to R=2.1. 

 

Response 1.4 

Yes, we assume that the epidemic started with a single infected individual in Greater Mexico City. 

We have revised the documentation of the case study as follows to address your comment: 

 

“In our first case study, we infer the transmissibility of the 2009 pandemic influenza A/H1N1 

virus in Greater Mexico City following the formulation in Balcan et al 26. Shortly after the 

pandemic influenza A/H1N1 virus was first detected in the USA and Mexico in April 2009, many 

countries enhanced their surveillance to monitor importations of pandemic infections. As such, 

data on EATs for these countries were deemed more reliable than epidemic curve data which are 

typically confounded by reporting behavior and surveillance capacity 26-28. Using GLEAM 

simulations powered by supercomputers to perform maximum-likelihood analyses of EATs for 

12 countries seeded by Mexico, Balcan et al. 26 estimated that if the 2009 influenza pandemic 

started in La Gloria on 11, 18, or 25 February 2009, the basic reproductive number R0 would be 

1.65 (1.54-1.77), 1.75 (1.64-1.88) or 1.89 (1.77-2.01), respectively (Fig. 4a). Integrating our 

framework into their inference formulation, we can express the likelihood as a simple analytical 

function of R0 (see Methods section 8) and obtain essentially the same R0 estimates without the 

need for supercomputing (Fig. 4a). Specifically, our point estimate of R0 would be the same as 

that in Balcan et al if the epidemic in Greater Mexico City began with a single seed on 22 



February, 1 March, or 9 March 2009, respectively, which are all consistent with range of the 

epidemic start times documented in surveillance reports 29 and other studies 27,28,30,31. The 

reduction in computational complexity and requirement provided by our framework translates 

into substantial improvement for timeliness and efficiency in situational awareness.” 

(Page 8, line 169) 

 

 

 
Fig. 4a. Case study of the 2009 influenza A/H1N1 pandemic in Greater Mexico City. The basic 

reproductive number R0 is inferred from the observed EATs for the 12 countries seeded by 

Mexico as formulated in Balcan et al 26. Blue circles and error bars indicate the R0 estimates and 

their 95% confidence intervals in Balcan et al assuming that the pandemic started in La Gloria on 

11, 18 or 25 February 2009. 

 

 
 
Comment 1.5 

In the Discussion, on line 214, it is stated that stochastic extinction could be estimated by 

discounting Wij. Would it be easier and more accurate to estimate the probability of non-

extinction based on the number of introductions to a node? If each introduction has probability p 

of onward transmission, then could one estimate an epidemic start time of each node based on p 

and T^n? 

 



Response 1.5 

We apologize for the confusion. We did not mean that the probability of stochastic extinction of 

the epidemic in a population could be estimated by discounting ijw . Instead, we mean that our 

current framework can be extended to account for the possibility that an imported case might not 

spawn an exponentially growing infection tree (which occurs with probability 01p R= ) by 

discounting ijw  by 1 p− .  

 

We have revised the corresponding sentence as follows to clarify this. 

 

“Second, we have assumed that each imported case spawns an exponentially growing infection 

tree with probability 1, whereas if we account for stochasticity in transmission dynamics, each 

imported case will fail to spawn an exponentially growing infection tree with probability 

01p R= 16. Because this effect is similar to that of border control 19, we conjecture that our 

framework can be extended to account for such stochasticity in transmission dynamics by 

discounting ijw  with  1 p− .”  

(Page 12, line 252)  



Reviewer 2 

Please note: Page and line numbers refer to those in the cleaned manuscript. 

 

Comment 2.1 

This paper proposes and claims to validate a novel theory for how a disease will spread to 

different populations around the globe. 

Many of the underlying assumptions, and the basis of the theory, has been established previously. 

In addition to improving the framing of this research with regards to the literature already cited, 

the relationship of the work to that of Barthelemy et al. (2010) Journal of Theoretical Biology 

267, 554-564 should be added, and more discussion of Scalia Tomba and Wallinga (2008) could 

be added in particular with respect to the probability of successful invasion (in the Discussion). 

 

Response 2.1 

We have followed your suggestion and added these papers in our introduction and discussion. 

Specifically, we have referenced “Barthelemy et al. (2010) Journal of Theoretical Biology 267, 

554-564” when stating Assumption 1 (page 3, line 55) and linked our discussion on the 

probability of successful invasion to Scalia “Tomba and Wallinga (2008)” as follows: 

 

“Second, we have assumed that each imported case spawns an exponentially growing infection 

tree with probability 1, whereas if we account for stochasticity in transmission dynamics, each 

imported case will fail to spawn an exponentially growing infection tree with probability 

01p R= 16. Because this effect is similar to that of border control 19, we conjecture that our 

framework can be extended to account for such stochasticity in transmission dynamics by 

discounting ijw  with  1 p− .”  

(Page 12, line 252) 

 

 

Comment 2.2 

It is unclear to me why the rate of import to population $j$ is removed when considering the rate 

of growth in prevalence in population $i$ (see Section 5, and bottom of page 5). Why should the 

growth in prevalence in a population be different dependent upon which population you are 

viewing it from? 

 



Response 2.2 

We have revised the description of “Hub-effect” in Section 5 of Methods as follows to clarify this 

point.  

 

“Hub effect. Suppose the epidemic origin (population i) is directly connected to two or more 

populations, one of which is population j (as illustrated in Fig. 2a). In the deterministic version of 

our metapopulation epidemic model (see Section 1), the disease prevalence in population i during 

the exponential growth phase is well approximated by the differential equation 

i
i i ik i i ik i ij i

k k j

dI
I w I w I w I

dt
λ λ

≠

 
= − = − − 

 
   

This equation leads us to make the following conjecture: In our original stochastic model, in 

which the epidemic arrival process for population j is essentially an NPP with intensity function 

being the second term of the above equation (i.e. ij iw I ), we can estimate the EAT for population j 

using the results from the two-population model (Section 4) where population i is only connected 

to population j with mobility rate ijw  and the disease prevalence in population i is growing 

exponentially at rate ij i ikk j
wλ λ

≠
= − . Note that this does not mean that the disease prevalence 

in population i would be different dependent upon which population we are viewing it from. 

To further illustrate the rationale underlying this hub-effect adjustment with a simple example. 

Suppose population i is only connected to populations j and k and the mobility rates are 

0.1ij iw λ=  and 0.01ik iw λ= . Because ijw  is 10 times larger than ikw , the epidemic arrives in 

population j much earlier than population k. Because ijw  is not small compared to iλ  but large 

compared to ikw , we expect that a significant percentage of disease prevalence in population i 

would have travelled to population j before population k imports its first case from population i. 

That is, the epidemic arrival process for population k is significantly slowed down by the case 

exportation process from population i to population j (in the sense that the former will be 

significantly faster if the latter is absent). This effect is approximated by our hub-effect 

adjustment which reduces the epidemic growth rate from iλ  to 0.9ik i ij iwλ λ λ= − =  when 

estimating the epidemic arrival time for population k using the two-population model. By the 

same reasoning, because ikw  is small compared to iλ  and ijw , we expect that the case 

exportation process from population i to population k would have negligible impact on the 



epidemic arrival process for population j. Indeed, the hub-adjusted growth rate for the epidemic 

arrival process for population j is 0.99ij i ik iwλ λ λ= − = .” 

(Page 21, line 418) 

 

 

Comment 2.3 

I cannot completely marry the discussion of discrete-time and discrete-state dynamics (see 

Section 1) and initial seed of infection $s_i$, with continuous-time and continuous-state models 

as discussed, for example, in Section 5 (and in which there is a continuous flow of individuals as 

opposed to a seed number). 

 

Response 2.3 

We apologize for the confusion. The full model in Section 1 is continuous-time. The discrete-time 

formulation in Section 1 (with arbitrarily small tΔ ) corresponds to the numerical implementation 

of the full model. The initial seed of infection si in the epidemic origin is assumed to be an integer. 

The transmission dynamics within a population is deterministic with continuous state space, 

whereas the movements of individuals between populations is stochastic and integer-valued. We 

have revised Section 5 (Page 21, line 418) to clarify that the differential equation therein is used 

as the clue for developing the hub-effect adjustment but does not reflect the actual (stochastic) 

dynamics in the full model (see Response 2.2).   

 

 

 

Comment 2.4 

If a number of infectious individuals are assumed to arrive together, as a seed number, the 

probability of initial fadeout will be different to that as described in the Discussion. 

 

Response 2.4 

Our current framework does not consider simultaneous arrivals of imported cases.  

 

 

 

 



Comment 2.5 

I believe there is insufficient detail to be able to reliably reproduce the Path reduction mentioned 

as part of Sections 5 and 6. Similarly, I think the detail of the determination of the 25 "fastest" 

paths could be increased. 

 

Response 2.5 

We have revised sections 5 and 6 with more details as follows.  

 

“Path reduction. Consider the path : i j kψ → →  in the previous section. We can approximate 

the pdf ( )1 |
ij

CEA
n jk jT

E g t w I    for n
ikT  with ( )| ,nf t ψ ψλ α , where ψλ  and ψα  are obtained by 

minimizing the relative entropy 25 for n = 1 (the first exportation)  

( ) ( )
( )

1

1

1

1
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|
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E g t w I dt

f t ψ ψλ α

∞         
 

 . 

This is a simple 2-dimensional optimization problem. The accuracy of such path reduction (Fig. 

2f and Fig. S5) implies that the spread of epidemics from the origin to any population ,2ik D∈  

can be regarded as a two-population model, in which (i) the adjusted mobility rate is ψα  and (ii) 

the epidemic in the origin grows exponentially at rate ψλ . Next, consider the path 

: i j k mϕ → → → , i.e. ,3im D∈ . Using path reduction, we can approximate ϕ  with 

' : i k mϕ → →  where the adjusted mobility rate and epidemic growth rate in the origin for the 

i k→  leg are ψα  and ψλ , respectively. The arrival times of imported cases in population 

,3im D∈ (i.e. n
imT , n = 1, 2, …) can then be estimated using the tools (i.e. adjustments for hub-

effect and continuous seeding) that we have developed for ,2iD  populations. The arrival times of 

imported cases for population ,i cD , c = 4, 5, …, can be estimated analogously.” 

(Page 23, line 465) 

 

 

“Superposition of paths. Let population i be the epidemic origin and consider population ,i ck D∈ , 

i.e. population k is c degrees of separation from the epidemic origin 24. Superposition of NPPs for 

paths connecting population i to k is implemented as follows. As in the main text, let ikΨ  be the 



set of all acyclic paths connecting the epidemic origin to population k. Enumeration of all paths in 

ikΨ  for every population in the WAN is computationally prohibitive 49 (and unnecessary). 

Instead, we approximate ikΨ  with the 25 “fastest” paths from population i to k that are identified 

using the following algorithm: 

1. Use the depth-first search algorithm 49 to identify the set of acyclic paths from the epidemic 

origin to population k that have at most 2c+  connections. We denote this set by ikΩ  and 

assume that all the paths not in ikΩ  have negligible contribution to the EAT for population k. 

2. Define the distance between any two directly connected populations a and b as ( )ln abw− , 

which is analogous to the distance metric in Brockmann and Helbing 20, namely 

( )1 ln ab abb
w w−  . We choose to use this distance metric because (as described in section 

4) if population j is directly connected to population i, then ( )1 1
lnij i ij

i

E T λ α γ
λ
   ≈ −     

given ijα  << iλ , where γ  denotes the Euler constant and ij i ijs wα =  . This indicates that the 

expected EAT is proportional to ( )ln ijw− . 

3. Based on our distance metric in step 2, identify the 100 shortest paths in ikΩ  by sorting in an 

ascending order. Denote the resulting set by S
ikΩ . 

4. For each path S
ikψ ∈ Ω , use hub-effect adjustment, continuous-seeding adjustment and path 

reduction developed in the WAN-SPT analysis to calculate ψλ  and ψα  and the 

corresponding expected EAT, namely 1

1
exp Eψ ψ

ψ ψ ψ

α α
λ λ λ

   
      
   

. 

5. Approximate ikΨ  with the 25 paths in S
ikΩ  that have the smallest expected EATs computed 

in step 4 (i.e. the 25 “fastest” paths). We choose to use the 25 fastest paths in S
ikΩ  to 

approximate ikΨ  because Fig. S9 shows that the accuracy of EAT estimates would slightly 

worsen if we use only the 10 fastest paths in S
ikΩ  while there is little improvement in 

performance if we use the 50 fastest or all paths in S
ikΩ .” 

(Page 24, line 483) 



 

Figure S9. Superposition of paths in the WAN. Analogous to Fig. 3 with Hong Kong as the 

epidemic origin, this figure shows the effect of increasing the number of "fastest" paths for 

superposition on estimating the epidemic arrival times in the WAN. From top to bottom, the 

epidemic arrival time for each population in the WAN is computed with the superposition of the 

10, 25, 50, and 100 “fastest” paths, respectively. 

 



Comment 2.6 

Further detail is required regarding the Markov Chain Monte Carlo inference. All parameters 

being inferred (or assumed known) should be detailed, along with precisely defining their prior 

distribution. The burn-in, convergence and mixing of chains should be discussed. What sample 

size has been used, and why? I also don't understand why the inferred basic reproductive number 

is monotonically increasing with time (this seems suspicious to me), and how this is actually 

consistent with the existing literature (Figure 4). 

 

Response 2.6 

 

Following your suggestion, we have substantially revised sections 8 and 9 of Methods by 

explicitly documenting the parameters being inferred, the priors, the burn-in, the convergence 

diagnostics, the number of MCMC iterations and the underlying rationale. Please see the revised 

manuscript for details (page 28, line 562 for the first case study, and page 32, line 639 for the 

second case study).  

 

We apologize for the confusion on Figure 4a. Figure 4a does not imply that the inferred R0 is 

monotonically increasing with time. The x-axis of Figure 4a refers to the (assumed) epidemic 

start time in Greater Mexico City which has been estimated to be between 18 February and 14 

March 2009 in surveillance reports 29 and other studies 27,28,30,31
.  As such, Figure 4a shows that the 

inferred R0 increases if the epidemic started in Greater Mexico City later.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Reviewers' comments:  

 

 

Reviewer #1 (Remarks to the Author):  

 

The authors have addressed my concerns in this revision. In particular, they now describe the 

work as a "framework" rather than a "theory" (which better describes the scope of the results) and 

make explicit the importance of each assumption in the framework early in the Discussion. I 

believe this version is suitable for publication.  

 

 

Reviewer #2 (Remarks to the Author):  

 

I have one remaining concern, and that is with respect to my original Comment 2.2 and the 

response to it.  

 

It is probable that I am confused, but I still have issue with the removal of the rate of import to 

population $j$ when considering the rate of growth in prevalence in population $i$.  

 

The authors have simply added "Note that this does not mean that the disease prevalence in 

population i would be different dependent upon which population we are viewing it from. " to the 

explanation, but this isn't satisfactory to me.  

 

Shouldn't the disease prevalence in population $i$ be growing exponentially at rate $\lambda_i - 

\sum_{k} w_{ik}$?  

 

Under your approximation, the exponential growth rate is different in population $i$ as you 

consider each patch, $j$, it is connected to with a different $w_{ij}$.  

 

Further, in the same explanation, the authors write "Because $w_{ij}$ is not small compared to 

$\lambda_i$ but large compared to $w_{ik}$, we expect...". The example has $w_{ij} = 

0.1\lambda_i$, and $w_{ik} = 0.01\lambda_i$.  



Point-by-point response (NCOMMS-17-09001A) 

 

Reviewer 1 

 

Comment 1.1 

The authors have addressed my concerns in this revision. In particular, they now 

describe the work as a "framework" rather than a "theory" (which better describes the 

scope of the results) and make explicit the importance of each assumption in the 

framework early in the Discussion. I believe this version is suitable for publication. 

 

Response 1.1 

Thank you for your supportive comments.  

 

 

  



Reviewer 2 

Please note: Page and line numbers refer to those in the cleaned manuscript. 

 

Comment 2.1 

I have one remaining concern, and that is with respect to my original Comment 2.2 and 

the response to it. 

 

It is probable that I am confused, but I still have issue with the removal of the rate of 

import to population $j$ when considering the rate of growth in prevalence in population 

$i$. 

 

The authors have simply added "Note that this does not mean that the disease prevalence 

in population i would be different dependent upon which population we are viewing it 

from. " to the explanation, but this isn't satisfactory to me. 

 

Shouldn't the disease prevalence in population $i$ be growing exponentially at rate 

$\lambda_i - \sum_{k} w_{ik}$? 

 

Under your approximation, the exponential growth rate is different in population $i$ as 

you consider each patch, $j$, it is connected to with a different $w_{ij}$. 

 

Further, in the same explanation, the authors write "Because $w_{ij}$ is not small 

compared to $\lambda_i$ but large compared to $w_{ik}$, we expect...". The example 

has $w_{ij} = 0.1\lambda_i$, and $w_{ik} = 0.01\lambda_i$. 

 

 

Response 2.1 

We apologize for the confusion. We have revised the “Hub-effect” section in Methods 

Section 5 as follows to clarify this point. In particular, we have removed the example 

because it did not seem to be helpful.  

 



“Hub effect. Suppose the epidemic origin (population i) is directly connected to one or 

more populations, one of which is population j (as illustrated in Fig. 2a). In the 

deterministic version of our metapopulation epidemic model (see Section 1), the disease 

prevalence in population i during the exponential growth phase is well approximated by 

the differential equation 

i
i i ik i i ik i ij i

k k j

dI
I w I w I w I

dt
λ λ

≠

 
= − = − − 

 
   

where the actual growth rate of the disease prevalence in population i is i ik
k

wλ − . This 

differential equation leads us to make the following conjecture: In our original stochastic 

model, in which the epidemic arrival process for population j is essentially an NPP with 

intensity function being the second term of the above equation (i.e. ij iw I ), we can 

estimate the EAT for population j using the results from the two-population model 

(Section 4) in which population i is exporting cases to population j at mobility rate ijw  

(viewed as a stochastic process) and the disease prevalence in population i is growing 

exponentially at rate ij i ikk j
wλ λ

≠
= −  (viewed as a deterministic process). The hub-

adjusted growth rate ijλ  can be interpreted as the rate at which disease prevalence in 

population i is growing exponentially before population j imports its first case from 

population i. Note that the hub-adjusted rate ij i ikk j
wλ λ

≠
= −  is not the same as the 

actual growth rate, namely i ik
k

wλ − . To see this, consider the two-population model in 

which population i is only connected to population j. In this case, the EAT distribution is 



given by equation (1) which requires ijλ  to be the hub-adjusted rate i ik ik j
wλ λ

≠
− =  but 

not the actual growth rate i ik i ij
k

w wλ λ− = − .” 

(Page 21, line 418) 

 

 

 

 

 

 



REVIEWERS' COMMENTS:  

 

 

Reviewer #2 (Remarks to the Author):  

 

The new explanation is improved. The emphasis on before the first import to j is important.  
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