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Supplementary Figures 

Figure 1:  

 
Figure 1: Distribution of frequencies in MSA for deleterious and benign variants that have a matching 
amino acid in the raw MSA and an alignment depth greater than 50 (see methods for details on data). 
Only variants with a matching amino acid in the MSA have been selected to allow for a direct 
comparison with the VST measure. 

 

  



Figure 2:  

 

Figure 2: Overview of LIST’s hierarchical module structure. Two modules (PVM and PM) generate scores 
based on shared taxa (ST) and local identity (LI) extracted from MSAs. The position variant module PVM 
computes scores based on the occurrence of a specific variant at a specific position and relies solely on 
variant shared taxa VST, while the second, position module PM, computes scores for specific positions 
independent of the variant. PM utilizes VST with its PM1 module and the shared taxa profile, STP, in its 
PM2 module. PVM and PM are combined in the CORE module of LIST. The CORE module is 
complemented with the amino acid module AM, which computes scores based on the probabilities of 
amino acid substitutions among variants that are rare and common, respectively, in the human 
population. 

 

 

  



Figure 3: 

 

Figure 3: LIST exhibits higher separation power when using higher allele frequency cut-off values to 
define benign variants.  

LIST scores for deleterious (red) and benign variants (shades of blue) in the ClinVar/ExAC test set. Different 
allele frequency cut-off values were used to define the benign (common) variant set. The number of 
benign variants N as well as the AUC values for LIST predictions at varying allele frequency cut-offs are 
provided in parentheses. 

  



Figure 4: 
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Figure 4: ROC curves for the Cancer test set.  We used all variants from the Cancer test set that are 
scored by all methods compared (intersection). See Supplementary Table 8 for AUCs of all methods 
compared. ROC curves are shown for LIST and the four best other methods that rely on conservation 
only (a) or use additional data sources (b). AUC values are provided in the parentheses next to each 
method’s name.  

 

 

  



Figure 5: 
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Figure 5: Comparison with methods that combine conservation measures with features derived from 
functional genomics studies and/or gene annotations using the ExAC/ClinVar test set. We used all 
variants from the ExAC/ClinVar test set that are scored by all methods compared (intersection). See 
Supplementary Table 3 for AUCs of all methods compared.  ROC curves (a) and precision recall curves 
(b) contrasting LIST with the four best other methods of this type. AUC values are provided in the 
parentheses next to each method’s name in a.  

 

 

  



Figure 6: 

 

Figure 6: Percentage of residues predicted to be folded or intrinsically disordered (ESpritz or IUpred 
predictions) in sequences that are binned according to their alignment depth. 

 

  



Figure 7: 
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Figure 7: ROC curves for variants from the ClinVar/ExAC test set that are located in regions identified 
by ESpritz or IUpred as in intrinsically disordered (IDR) and scored by all methods compared 
(intersection). See Supplementary Table 3 for AUCs of all methods compared. Here, LIST’s 
performance is contrasted with that of the four best other methods that use conservation measures 
only (a) or combine conservation measures with features derived from functional genomics studies 
and/or gene annotations (b). AUC values are provided in the parentheses next to each method’s 
name.  

 

 



Figure 8: 
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Figure 8: Measures involved in scoring of the variant R150Q of the human DNA repair protein RAD51. 
(a) Variant frequencies (normalized to percentages of overall occurence) observed in the raw MSA at 
position 150 and (b) VST values of these variants. 

 

 

  



Figure 9: 

 

Figure 9: Mapping array learned from the PM scores on the optimization set 2. The horizontal axis is the 
MAPPING array index divided by its size, which is the input PM score before rescaling (unknown 
distribution), and the vertical axis is the value of the MAPPING array cell at that index, which is the output 
rescaled PM score.  

  



Figure 10: 

 

Figure 10: Probability density function of the benchmarking ClinVar/ExAC PM scores before and after 
redistribution. 

 

  



Figure 11: 

 
Figure 11: Receiver operating characteristics (ROC) curves of each of the LIST modules using the 
ClinVar/ExAC benchmarking set. All variants in the ClinVar/ExAC test set are scored by LIST (compare to 
Supplementary Table 2). Values for the area under the ROC curve (AUC) are provided for each module, 
CORE and LIST.  

 

 

  



Figure 12 

 

 

 

Figure 12: “Screenshot” of the LIST server output for human protein A0AVF1 (IFT56_HUMAN) Top, heat-
map matrix representing the level of deleteriousness of all possible variants at each sequence position. 
Middle, disorder predictions made by IUPred and ESpritz. Bottom, conservation prediction provides the 
average LIST deleteriousness score for all possible variants at each position. 

 

 

 

 

  



Supplementary Tables 

Table 1: Human taxonomy lineage. The human Taxonomy lineage downloaded from 
https://www.uniprot.org/ with the associated shared taxa (ST) values. 

Shared Taxa Taxonomy lineage 
31 Homo sapiens 
30 Homo 
29 Homininae 
28 Hominidae 
27 Hominoidea 
26 Catarrhini 
25 Simiiformes 
24 Haplorrhini 
23 Primates 
22 Euarchontoglires 
21 Boreoeutheria 
20 Eutheria 
19 Theria 
18 Mammalia 
17 Amniota 
16 Tetrapoda 
15 Dipnotetrapodomorpha 
14 Sarcopterygii 
13 Euteleostomi 
12 Teleostomi 
11 Gnathostomata 
10 Vertebrata 
9 Craniata 
8 Chordata 
7 Deuterostomia 
6 Bilateria 
5 Eumetazoa 
4 Metazoa 
3 Opisthokonta 
2 Eukaryota 
1 cellular organisms 

  



Table 2: Data sets overview.  

Optimization and testing sets: We divided the SwissProt human protein sequences randomly into two 
equal sets A and B. Variants that map to proteins in set A were used for optimization only (optimization 
sets 1 and 2) and those that map to proteins in set B for testing only. Definitions provide the criteria for 
how variants were selected. Count provides the total number of variants in each class. It is important to 
note that the actual number of variants that are used for comparisons or analyses are often smaller 
because methods other than LIST do not score all variants and/or some of their scores are not deposited 
in the dbNSFPv3.522 database. ExAC_AF is the adjusted alternative allele frequency in total ExAC 
samples, and gnomAD_AF is the alternative allele frequency in the whole gnomAD exome samples. 

 

Set Name Protein 
set 

Benign Deleterious 
Definition Count Definition Count 

Optimization 1 A ExAC_AF ≥0.5% 24,096 0.015%≤ExAC_AF 
≤0.03% 

48,142 

Optimization 2 A ExAC_AF ≥1% 18,109 ClinVar pathogenic 
annotation & 
ExAC_AF >0 

2,146 

ClinVar/ExAC B ExAC_AF ≥1% 18,010 ClinVar pathogenic 
annotation & 
ExAC_AF >0 

1,991 

UniProt/gnomAD B gnomAD_AF ≥1% 13,926 UniProt pathogenic 
annotation 

14,554 

Cancer B gnomAD_AF ≥1% 13,926 UniProt pathogenic 
annotation and 

cancer annotation 

2,705 

HumVar B AF ≥1% 10,450 Disease annotations 
except cancer 

11,785 

  

  



Table 3: Contrasting AUC values using the ClinVar/ExAC test set.  

(a) AUC values for LIST and other methods that rely solely on conservation measures. These methods 
include PhyloP Vertebrata (phyloP_V), SIFT, PROVEAN, SiPhy, GERP++, phastCons Vertebrata 
(phastCons_V), PhyloP Mammalia (phyloP_M) and phastCons Mammalia (phastCons_M), EVmutation 
(EVM) and LRT. The first column (ALL) provides the AUCs for all benign and deleterious variants (number 
provided in the blue top section of the table) that are scored by all methods compared (excluding LRT 
and EVM). In columns LRT and EVM, we intersect the ALL set with the set of variants that are scored by 
LRT and EVmutation, respectively. The IDR column contains the AUC for the subset of variants in ALL 
that are identified by ESpritz or IUpred to be located in intrinsically disordered protein regions. The 
highest AUCs achieved are highlighted in bold. 

Benign count 13,384 11,252 3,484 5,127 
Deleterious count 1,820 1,773 1,076 273 
 ALL LRT EVM IDR 
LIST 0.888 0.881 0.911 0.832 
phyloP_V 0.820 0.810 0.839 0.756 
SIFT 0.818 0.819 0.850 0.735 
PROVEAN 0.816 0.820 0.819 0.750 
SiPhy 0.810 0.799 0.825 0.735 
GERP++_RS 0.781 0.766 0.799 0.721 
phastCons_V 0.778 0.762 0.798 0.714 
phyloP_M 0.744 0.725 0.778 0.698 
phastCons_M 0.724 0.702 0.737 0.687 
EVmutation   0.857  
LRT  0.805   

 

(b) AUC values for LIST and other methods that rely not only on conservation measures. These methods 
include Eigen, CADD, Fathmm-MKL, DANN, MutationTaster, Polyphen-2, MutationAssessor, 
GenoCanyon, fitCons HUVEC, fitCons H1-hESC, fitCons integrated (fitCons) and fitCons GM12878.  

Benign count 13,384 5,127 
Deleterious count 1,820 273 
 ALL IDR 
LIST 0.888 0.832 
Eigen 0.871 0.795 
CADD 0.864 0.773 
fathmm-MKL 0.841 0.783 
DANN 0.840 0.764 
MutationTaster 0.836 0.764 
Polyphen2 0.835 0.746 
MutationAssessor 0.826 0.756 
GenoCanyon 0.729 0.688 
fitCons_HUVEC 0.575 0.539 
fitCons_H1-hESC 0.572 0.546 
fitCons 0.562 0.544 
fitCons_GM 0.555 0.525 



Table 4: Comparison of prediction performance using different allele frequency cut-offs in the 
definition of the benign class.  

AUC values for the predictions of variants in the in the ClinVar/ExAC test set using different allele cut-off 
to define benign variants. The cut-offs used are indicted as well as the number of benign variants that 
result from the use of these cut-offs. The highest AUCs achieved are highlighted in bold. For the 
remaining of this paper, all results are for the case where the benign class contains those common 
variants with an AF ≥ 1%. 

(a) AUC values of methods that rely solely on conservation measures 

Benign count 13,384 5,958 3,738 1,833 
Deleterious count 1,820 1,820 1,820 1,820 
Benign cut-off Frequency 1% 10% 25% 50% 
LIST 0.888 0.931 0.950 0.971 
phyloP_V 0.820 0.850 0.858 0.867 
SIFT 0.818 0.865 0.893 0.930 
PROVEAN 0.816 0.858 0.882 0.919 
SiPhy 0.810 0.839 0.848 0.859 
GERP++_RS 0.781 0.809 0.812 0.808 
phastCons_V 0.778 0.808 0.815 0.818 
phyloP_M 0.744 0.804 0.833 0.872 
phastCons_M 0.724 0.762 0.773 0.781 

 

(b) AUC values for LIST and other methods that rely not only on conservation measures. 

Benign count 13,384 5,958 3,738 1,833 
Deleterious count 1,820 1,820 1,820 1,820 
Benign cut-off Frequency 1% 10% 25% 50% 
LIST 0.888 0.931 0.950 0.971 
Eigen 0.871 0.908 0.923 0.947 
CADD 0.864 0.900 0.916 0.938 
fathmm-MKL 0.841 0.885 0.905 0.933 
DANN 0.840 0.883 0.903 0.935 
MutationTaster 0.836 0.874 0.883 0.902 
Polyphen2_HD 0.835 0.879 0.903 0.939 
MutationAssessor 0.826 0.865 0.889 0.924 
GenoCanyon 0.729 0.751 0.752 0.753 
fitCons_HUVEC 0.575 0.588 0.592 0.598 
fitCons_H1-hESC 0.572 0.586 0.592 0.590 
fitCons 0.562 0.577 0.581 0.577 
fitCons_GM 0.555 0.566 0.570 0.574 

 

  



Table 5: Controls for the influence of the optimization process on scoring.  

(a) To assess the influence of the optimization set Y Î {A, B} on LIST output scores, we evaluated the 
performance of LIST on each set X Î {A, B}, AUCX/Y, twice; once for X≠Y and then for X=Y. Then we 
computed the effect of optimization for each set D AUC1X as AUCX/X - AUCX/Y. On average, the influence of 
optimization on LIST (D AUC1) is small: D AUC1 = (D AUC1A + D AUC1B) / 2 = 0.0043. 

Testing data (X) Optimization data (Y) AUCX/Y D AUC1X 
B A 0.8862 -0.0021 B B 0.8841 
A A 0.8804 0.0065 A B 0.8739 

 

(b) We can also see from panel (a) that there is a small, but noticeable, difference in LIST performance 
using set B vs A. This is likely because deleterious and benign variants in the B set are slightly more 
separable than those in the A set. We can approximately estimate this difference for all the tools as: 
DAUC2 = AUCB – AUCA. 

Benign count 13,384 13,659  
Deleterious count 1,820 1,949   

AUCB AUCA D AUC2 
fitCons_HUVEC 0.5752 0.5495 0.0256 
DANN 0.8398 0.8265 0.0134 
phyloP_M 0.7437 0.7328 0.0109 
SIFT 0.8180 0.8096 0.0084 
GenoCanyon 0.7293 0.7230 0.0062 
LIST* 0.8879 0.8822 0.0057 
phastCons_M 0.7243 0.7186 0.0057 
MutationAsse 0.8256 0.8204 0.0051 
GERP++ 0.7815 0.7767 0.0047 
CADD 0.8638 0.8594 0.0044 
phastCons_V 0.7780 0.7748 0.0032 
Eigen 0.8714 0.8688 0.0026 
fathmm-MKL 0.8413 0.8391 0.0022 
Polyphen2 0.8345 0.8329 0.0016 
SiPhy_29way 0.8103 0.8097 0.0005 
MutationTast 0.8363 0.8361 0.0002 
PROVEAN 0.8158 0.8159 -0.0001 
fitCons_GM 0.5555 0.5565 -0.0010 
phyloP_V 0.8205 0.8226 -0.0021 
fitCons_H1-hESC 0.5718 0.5802 -0.0084 
fitCons 0.5620 0.5733 -0.0112 

* LIST has been optimized on variants mapped to proteins from set A and tested on those mapped to 
proteins from set B. In contrast, we are not separating training and testing data for other tools. Thus, to 
be more accurate in estimating D AUC2 for LIST, one can subtract the average of the two AUCX/Y values 
for each testing set provided in panel a, resulting in a D AUC2 for LIST of 0.0080.   



Table 6: Contrasting AUC values using the UniProt/gnomAD  test set. 

(a) AUC values for LIST and other methods that rely solely on conservation measures. These methods 
include PhyloP Vertebrata (phyloP_V), SIFT, PROVEAN, SiPhy, GERP++, phastCons Vertebrata 
(phastCons_V), PhyloP Mammalia (phyloP_M) and phastCons Mammalia (phastCons_M), EVmutation 
(EVM) and LRT. The first column (ALL) provides the AUCs for all benign and deleterious variants (number 
provided in the blue top section of the table) that are scored by all methods compared (excluding LRT and 
EVM). In columns LRT and EVM, we intersect the ALL set with the set of variants that are scored by LRT 
and EVmutation, respectively. The IDR column contains the AUC for the subset of variants from ALL that 
are identified by ESpritz or IUpred to be located in intrinsically disordered protein regions. The highest 
AUCs achieved are highlighted in bold. 

Benign count 11,393 9,750 2,997 4,334 
Deleterious count 10,338 9,945 5,260 2,511  

ALL LRT EVM IDR 
LIST 0.892 0.886 0.913 0.854 
SIFT 0.843 0.844 0.872 0.803 
PROVEAN 0.838 0.841 0.848 0.808 
phyloP_V 0.828 0.818 0.864 0.738 
SiPhy 0.799 0.788 0.831 0.709 
phastCons_V 0.787 0.772 0.815 0.709 
GERP++ 0.781 0.766 0.807 0.709 
phyloP_M 0.772 0.757 0.796 0.729 
phastCons_M 0.769 0.753 0.787 0.728 
EVmutation 

  
0.875 

 

LRT 
 

0.804 
  

 

(b) AUC values for LIST and other methods that rely not only on conservation measures. These methods 
include Eigen, CADD, Fathmm-MKL, DANN, MutationTaster, Polyphen-2, MutationAssessor, GenoCanyon, 
fitCons HUVEC, fitCons H1-hESC, fitCons integrated (fitCons) and fitCons GM12878.  

Benign count 11,393 4,334 
Deleterious count 10,338 2,511  

ALL IDR 
LIST 0.892 0.854 
Eigen 0.880 0.817 
fathmm-MKL 0.855 0.784 
CADD 0.854 0.777 
MutationTaster 0.849 0.761 
PolyPhen-2 0.842 0.803 
MutationAssessor 0.837 0.804 
DANN 0.816 0.758 
GenoCanyon 0.733 0.667 
fitCons_HUVEC 0.619 0.595 
fitCons 0.618 0.620 
fitCons_H1-hESC 0.614 0.598 
fitCons_GM 0.600 0.606 

  



Table 7: Contrasting AUC values using the HumVar test set 

(a) AUC values for LIST and other methods that rely solely on conservation measures. These methods 
include PhyloP Vertebrata (phyloP_V), SIFT, PROVEAN, SiPhy, GERP++, phastCons Vertebrata 
(phastCons_V), PhyloP Mammalia (phyloP_M) and phastCons Mammalia (phastCons_M), EVmutation 
(EVM) and LRT. The first column (ALL) provides the AUCs for all benign and deleterious variants (number 
provided in the blue top section of the table) that are scored by all methods compared (excluding LRT and 
EVM). In columns LRT and EVM, we intersect the ALL set with the set of variants that are scored by LRT 
and EVmutation, respectively. The IDR column contains the AUC for the subset of variants from ALL that 
are identified by ESpritz or IUpred to be located in intrinsically disordered protein regions. The highest 
AUCs achieved are highlighted in bold. 

Benign count 8,397 7,532 2,517 3,113 
Deleterious count 9,054 8,547 5,613 1,407  

ALL LRT EVM IDR 
LIST 0.900 0.899 0.885 0.898 
SIFT 0.883 0.883 0.888 0.871 
PROVEAN 0.882 0.885 0.864 0.885 
phyloP_V 0.857 0.857 0.843 0.857 
SiPhy 0.825 0.822 0.806 0.826 
phastCons_V 0.797 0.792 0.777 0.805 
GERP++ 0.788 0.784 0.770 0.781 
phyloP_M 0.765 0.755 0.753 0.750 
phastCons_M 0.751 0.744 0.726 0.764 
EVmutation 

  
0.890 

 

LRT 
 

0.837 
  

 

(b) AUC values for LIST and other methods that rely not only on conservation measures. These methods 
include Eigen, CADD, Fathmm-MKL, DANN, MutationTaster, Polyphen-2, MutationAssessor, GenoCanyon, 
fitCons HUVEC, fitCons H1-hESC, fitCons integrated (fitCons) and fitCons GM12878.  

Benign count 8,397 3,113 
Deleterious count 9,054 1,407  

ALL IDR 
LIST 0.900 0.898 
Eigen 0.906 0.894 
CADD 0.887 0.866 
MutationAssessor 0.882 0.878 
PolyPhen-2 0.872 0.858 
fathmm-MKL 0.870 0.872 
MutationTaster 0.864 0.867 
DANN 0.843 0.829 
GenoCanyon 0.746 0.749 
fitCons_HUVEC 0.539 0.447 
fitCons_H1-hESC 0.533 0.522 
fitCons 0.522 0.498 
fitCons_GM 0.494 0.444 

  



Table 8: Contrasting AUC values using the Cancer set. 

(a) AUC values for LIST and other methods that rely solely on conservation measures. These methods 
include PhyloP Vertebrata (phyloP_V), SIFT, PROVEAN, SiPhy, GERP++, phastCons Vertebrata 
(phastCons_V), PhyloP Mammalia (phyloP_M) and phastCons Mammalia (phastCons_M), EVmutation 
(EVM) and LRT. The first column (ALL) provides the AUCs for all benign and deleterious variants (number 
provided in the blue top section of the table) that are scored by all methods compared (excluding LRT and 
EVM). In columns LRT and EVM, we intersect the ALL set with the set of variants that are scored by LRT 
and EVmutation, respectively. The IDR column contains the AUC for the subset of variants from ALL that 
are identified by ESpritz or IUpred to be located in intrinsically disordered protein regions. The highest 
AUCs achieved are highlighted in bold. 

Benign count 11,393 9,750 2,997 4,334 
Deleterious count 1,724 1,721 524 840  

ALL LRT EVM IDR 
LIST 0.834 0.822 0.899 0.817 
SIFT 0.783 0.785 0.832 0.759 
PROVEAN 0.774 0.777 0.810 0.774 
phyloP_M 0.714 0.699 0.801 0.653 
phastCons_M 0.711 0.691 0.858 0.618 
phyloP_V 0.678 0.661 0.836 0.555 
GERP++ 0.675 0.656 0.812 0.569 
phastCons_V 0.660 0.641 0.818 0.528 
SiPhy 0.647 0.630 0.805 0.524 
EVmutation 

  
0.819 

 

LRT 
 

0.655 
  

 

(b) AUC values for LIST and other methods that rely not only on conservation measures. These methods 
include Eigen, CADD, Fathmm-MKL, DANN, MutationTaster, Polyphen-2, MutationAssessor, GenoCanyon, 
fitCons HUVEC, fitCons H1-hESC, fitCons integrated (fitCons) and fitCons GM12878.  

Benign count 11,393 4,334 
Deleterious count 1,724 840  

ALL IDR 
LIST 0.834 0.817 
fitCons_GM 0.823 0.809 
fitCons 0.786 0.742 
PolyPhen-2 0.780 0.767 
Eigen 0.772 0.707 
MutationAssessor 0.763 0.776 
fitCons_HUVEC 0.763 0.699 
fitCons_H1-hESC 0.746 0.692 
CADD 0.738 0.659 
fathmm-MKL 0.738 0.632 
MutationTaster 0.723 0.586 
DANN 0.716 0.670 
GenoCanyon 0.606 0.538 

  



Table 9: Median prediction scores and prediction performance before rescaling as a function of 
alignment depths.  

AUC values for the predictions of all variants in optimization set 2 scored by LIST, PVM, PM1 and PM2 
(before rescaling) as well as SIFT, and PROVEAN (PROV). Variants were placed in bins according to the 
alignment depths of the sequences in which they occur (outer left column). The counts of benign and 
deleterious variants, the percentage of deleterious variants, median scores for PVM, PM1, and PM2 for 
each bin as well as AUCs for PVM, PM1, PM2 and LIST before rescaling are provided in different columns.  
The last column provides the AUCs for predictions of variants in each bin provided by SIFT and PROVEAN. 
Bold numbers highlight the highest AUC achieved for each bin. 

Alignment 
Depth Counts Del.% 

Median Scores 
before rescaling AUC before rescaling AUC 

From To Benign Del. PVM PM1 PM2 PVM PM1 PM2 LIST SIFT PROV. 
0 49 7,136 191 2.61% 0.32 0.88 0.33 0.667 0.622 0.666 0.712 0.646 0.631 
50 99 4,070 269 6.20% 0.32 0.86 0.21 0.757 0.719 0.759 0.813 0.741 0.763 
100 149 1,905 311 14.03% 0.45 0.87 0.30 0.754 0.75 0.779 0.814 0.742 0.745 
150 199 922 181 16.41% 0.45 0.85 0.24 0.778 0.766 0.789 0.844 0.788 0.788 
200 299 946 202 17.60% 0.45 0.83 0.04 0.793 0.777 0.775 0.848 0.79 0.773 
300 399 571 150 20.80% 0.45 0.83 -0.10 0.802 0.81 0.794 0.876 0.833 0.789 
400 ∞ 2,559 842 24.76% 0.32 0.77 -0.70 0.804 0.836 0.821 0.874 0.798 0.772 
0 ∞ 18,109 2,146 10.59%    0.732 0.706 0.737 0.795 0.792 0.807 

 

 

  



Table 10: Prediction performance after compensating for alignment depths.  

AUC values for the predictions of variants in optimization set 2 by LIST and its three modules PVM, PM1 
and PM2 (after rescaling) as well as SIFT and PROVEAN (PROV). Variants were placed in bins according to 
the alignment depths. Bold numbers highlight the highest AUC achieved. 

 

Alignment Depth AUC after rescaling 
SIFT PROV 

From To PVM PM1 PM2 LIST 
0 49 0.710 0.663 0.72 0.756 0.646 0.631 

50 99 0.774 0.724 0.766 0.814 0.741 0.763 
100 149 0.763 0.747 0.779 0.816 0.742 0.745 
150 199 0.775 0.765 0.775 0.842 0.788 0.788 
200 299 0.803 0.779 0.773 0.854 0.79 0.773 
300 399 0.814 0.808 0.801 0.876 0.833 0.789 
400 ∞ 0.810 0.841 0.826 0.877 0.798 0.772 

0 ∞ 0.840 0.832 0.823 0.880 0.792 0.807 
 

 

 

 

  



Supplementary Note 1 

Comparison with other methods that predict the deleteriousness of human variants 

We compared LIST with two broad categories of methods: (i) methods that rely solely on 
measures derived from multiple sequences alignment (MSA) and (ii) methods that, in addition to MSA 
derived measures, consider features derived from functional genomics data, available gene annotations 
and/or orthogonal prediction methods. Methods in category (i) can be subdivided further into methods 
that rely mainly on variant frequency and methods that exploit phylogenetic relationships among 
preselected subsets of species in order to determine departures from neutral substitution rates. It is 
important to note that orthogonal methods for the identification of deleterious human variants exist that 
rely on allele frequency in the human population1-3. Although successful, the scores of these methods are 
highly influenced by allele frequency and not of direct value for the evaluation of the new conservation 
measures introduced here. 

We contrasted LIST prediction performance against the leading predictors in each of the two main 
categories. For category (i), we used SIFT4, PROVEAN5 and EVmutation6 as representative methods that 
exploit variant frequencies as well as phyloP7, SiPhy8, GERP++ 9, phastCons10 and LRT11, which exploit 
phylogenetic relationships. For category (ii), we used Eigen12, CADD13, Fathmm-MKL14, DANN15, 
MutationTaster16, Polyphen-217, MutationAssessor18, GenoCanyon19, and fitCons20. Both PhyloP and 
phastCons provide two different scores, the “_V” suffix implies the score is computed based on 
phylogenetic trees rooted at Vertebrata, and “_M” is for those based on trees rooted at Mammalia. 
FitCons provides four scores. Three scores are based on three different cell types: fitCons_HUVEC (human 
umbilical vein epithelial cells), fitCons_H1-hESC (H1 human embryonic stem cells), and fitCons_GM 
(lymphoblastoid cells, GM12878). The forth score, fitCons, is an integrated score of the three cell type 
scores. Many of these methods have recently been used in a benchmark study that compared 
deleteriousness predictions for coding and non-coding human variants21.  Scores for the different 
predictors were downloaded from dbNSFPv3.522, except for EVmutation scores, for which we downloaded 
scores from its website.  

When contrasting the performance of these predictors, we only used those variants that map to 
SwissProt proteins that have less than 50% identity to the proteins used in the optimization of LIST. In 
contrast, variants used in the optimization of these predictors are not excluded (as they are not always 
known), which results in a disadvantage for LIST in the comparison.  



Supplementary Note 2 

Assessing the influence of the frequency cut-off used in the definition of benign variants 

It has been reported recently that common/benign variants with high allele frequency (e.g. AF > 
50%) can be separated from deleterious ones with higher contrast compared to variants with modest 
allele frequency6 (e.g. AF > 10%). Therefore, we compared the predictions of LIST with other methods 
using different allele frequency cut-offs in the definition of the benign class for the ClinVar/ExAC test set 
(Supplementary Table 4). Consistent with the prediction results reported for EVmutation6, the contrast in 
LIST scores between deleterious and benign variants increases with the allele frequency cut-off 
(Supplementary Figure 3). Thus, the separation power provided by LIST is bigger at higher AF cut-off 
values. More importantly, LIST outperforms all contested predictors (Supplementary Table 4). At an AF 
cut-off >= 50%, for instance, LIST reaches an AUC of 0.971, which is higher than that of the leading category 
(i) method  SIFT (0.930), and the leading category (ii) method Eigen (0.947). However, it is a common 
practice23 to use allele frequencies smaller than 1% to identify the variants that are under purifying 
selection and consider those with higher frequency as neutral polymorphisms, i.e. benign. To be 
consistent with that practice, all of the following results are generated using test sets in which an AF >= 
1% was used to define a putative benign class. 

 

 

  



Supplementary Note 3 

Assessing the influence of the optimization process on scoring  

Most predictors tend to have a superior performance in predicting variants used in their optimization 
when compared to novel variants, i.e. deleterious (benign) variants used during optimization tend to be 
scored higher (lower) compared to previously unseen ones. This difference in scoring can impede the 
identification of novel variants.  

When we designed the LIST algorithm, we took steps to limit the inflation of its optimization data. Mainly, 
we used a hierarchical learning approach to learn features separately, enabling us to rely on simple 
learning tools featuring low VC-dimension24 (e.g. linear classifiers) that pose limited risk of over-scoring 
variants used in the optimization. In addition, we used deleterious training variants that were identified 
based on allele frequency instead of annotation (optimization set 1), which also provided us with larger 
numbers of positive training variants. 

As a control for the influence of the optimization data on scoring, we first tested how much the prediction 
of the deleteriousness of variants change when variants used for testing are also used for optimization 
(training). Thus, we compared the reported performance of LIST on variants mapped to proteins in set B 
(Supplementary table 5 a first row) with the one LIST achieves when variants mapped to proteins in set B 
are also used in the optimization process (Supplementary table 5 a second row). We also tested how the 
performance changes when variants mapped to proteins in set A are used in testing (Supplementary table 
5 a last two rows), i.e. the variants used for testing changed. We see that the AUC is virtually the same 
when using either variants mapped to proteins in set B or A for optimization. Overall, this analysis 
demonstrates that LIST is unlikely to score known variants with deleterious effect much higher than 
unseen ones, and that its performance does not depend on the selection of variants used for optimization 
and testing.  

Supplementary Table 5 a also shows that variants in set B are slightly more separable than those in set A 
(AUCs are always slightly higher when variants in set B are tested), which is likely a result of clustering 
sequences at 50% identity and then dividing the clusters at random into two sets A and B. Importantly, 
most of the predictors that we compared LISTS with also perform better on variants in set B 
(Supplementary Table 5 b). 

 

  



Supplementary Note 4 

Compensating for alignment depth 

We computed the range of PM2 scores at each alignment depth using the optimization set 2. For 
each alignment depth e, we stored all PM2 scores with alignment depth in the range e - 10 to e + 10 in an 
array and computed the percentage of deleterious variants as (pdele). Then, we sorted this array and used 
the score at 20% as lower boundary, L_boundary, and that at 80% as upper boundary, U_boundary. 

When evaluating query sequences, for each position at alignment depth e, we computed the un-
correlated PM2 score scoreUPM2 as: 

score&'() =
(score'() − L_boundarye)

(U_boundarye − L_boundarye)7  (1) 

Where scorePM2 is the PM2 score that is inversely correlated with alignment depth. 

Then, we accounted for enrichment in deleterious variants, such that the “probability like” scores of 
module Mx at alignment depth e, p_scoreMx,e is: 

p_score(9,; = score(9,; ∗ pdel; (2) 
Where Mx is either PVM, PM1, or UPM2. 

 

 

  



Supplementary Note 5 

Redistributing scores to fit a target distribution 

The idea is to alter the numerical values of a set of scores, SCORES, in the range [0 ... 1] from an 
unknown distribution to fit some desired target distributing without modifying their ranks within SCORES. 
In this work, we used this redistribution process three times; twice to redistribute the PM and CORE sets 
to fit a Normal distribution centered at the Bayes rule identity element (0.5) with a variance of 0.01, N(μ 
= 0.5, σ2 = 0.01), and the third time to redistribute the final LIST score to fit a uniform distribution. This 
redistribution process involves two steps: first, we use a training data set (scores generated from 
optimization set 2) to learn a mapping function that map every value in the training set (unknown 
distribution) into a different value that reflect the target distribution without altering its rank, and then 
we use that mapping function for transforming any value from the input distribution to the target 
distribution. Supplementary figure 9 shows the mapping function learned for mapping the PM scores on 
optimization set 2 to N(μ = 0.5, σ2 = 0.01), and supplementary figure 10 shows the probability density 
function of the benchmarking ClinVar/ExAC PM scores before and after redistribution. 

Learning the mapping function: we created an array, CDF, of size 10,001 and filled it with the cumulative 
distribution of our target distribution. So, CDF[0]=0 and CDF[10000]=1. Then, we sorted SCORES in an 
ascending order. Consequently, the index of each value in SCORES is its rank. We created a third array 
MAPPING with a size equal to CDF, and we assigned MAPPING with the mapping values using CDF and 
SCORES as follows: 

For each i in the range from zero to cdf_last: 

X = SCORES[CDF[i] ∗ scores_last] (3) 

MAPPING[X ∗ cdf_last] = 0.025 + 0.95 ∗ (i/cdf_last) (4) 
 

Where: 

scores_last is the size of the SCORES set minus one. 

cdf_last is the size of the CDF set minus one. 

Locations in MAPPING that were not assigned a value are then given a value based on their closest 
neighbors, linearly. 
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