
Reviewers' Comments:  

 

Reviewer #1:  

Remarks to the Author:  

A. The major claims of the paper include:  

 

- showing that co-citing network widely used in scientometrics contains meaningful communities that 

define the research topics of a scientist;  

 

- finding that the distribution of the number of topics for a scientist is narrow;  

 

- using switching probability between papers to measure speed of topics switching and finding that 

this probability increased in the last 100 years;  

 

- finding that switching probability impacts productivity and the average number of citations per paper 

differently;  

 

- introducing a model with exploitation and exploration to match real publication patterns that 

compete with existing ones;  

 

- using Gini coefficient PACS codes in different communities and showing that distribution of PACS 

codes indeed differ between communities;  

 

- showing that results are similar for computer science publications making the approach 

generalizable.  

 

B. The claims are modestly novel.  

 

Some of the claim use the well-known tools in an innovative way (co-citing network, Gini coefficient), 

one other proposes alternative model of random walk with exploitation and exploration, another 

depends on correctness of finding communities (distribution of the number of topics, switching 

probability) and one claim (patterns for computer scientists) was not included in the paper just in SI 

so I was not able to evaluate its correctness.  

 

Below, I discussed how the claims can be strengthened. The points 2 and 4 suggest some additional 

investigations that are essential for the validity of the corresponding claims.  

Once the validity of the claims is demonstrated, I consider the paper certainly worth of publishing 

since it may influence future developments in the area of science of science.  

Here is the list of my comments and suggestions for improvements.  

 

1. At the end of the first paragraph of Introduction authors list issues addressed in other papers:  

“… issues such as the evolution of scientists’ creativity [15], reputation [16], social ties [17] and 

mobility [18, 19] over their careers have also been investigated.”  

The authors miss an important issue of an impact of funding on scientist’s interest in topics, discussed 

in A. Hoonlor, et al, “Trends in Computer Science Research, Communications of the ACM 56(10):74-

83, Oct. 2013. This paper studies the patterns of topic selection by computer scientists.  

 

2. The authors describe their approach to community detection as follows:  

“… communities of each co-citing network of a scientist are identified with the fast unfolding algorithm 

which detects communities by maximizing the modularity function [29].”  

And later they add:  



“Our community analysis has also been examined based on a modified modularity function with higher 

resolution parameter.”  

My concern is that maximizing modularity on large networks is likely to trigger well known anomalies 

of this approach in which certain well-defined medium size communities are either split and distributed 

over other communities, or merged together into a large community (the so-called resolution limit 

problem, well documented in the literature). Moreover, a suitable resolution parameter to avoid these 

anomalies may not exit. Such anomalies often lead to underrepresentation of medium size 

communities, which authors seem to report in the paper. Since a lot of conclusions rely on 

communities found by modularity maximization, it is important that the authors confirm their 

community detection results using different approach not suffering from the mentioned above 

anomalies.  

 

3. While discussing Figure 2(b), the authors write:  

“All points are located under the diagonal line, indicating that the community structure in real CCN is 

truly significant.”  

This is insufficient, since we do not even know how many random counterparts were plotted for each 

real network, whether the modularity of the counterparts was averaged or not. Moreover, there is no 

statistical measure of the significance of the difference between modularity of detected communities 

and their random counterparts.  

 

4. At the beginning of the third paragraph on page 6, the authors remark:  

“Here, we measure the research performance of a scientist using two almost uncorrelated metrics (see 

Fig. S8), i.e., number of published papers and mean citation per paper.”  

These two measures share the weakness that each is not a good measure of performance when the 

second metric is low for a scientist. So a scientist with large number of publication (so ranked highly 

by this metric) and low mean citations should not be ranked highly on performance. So should a 

scientist with large number of citations to just one publication. So it will be worth to measure how 

performance defined as the total number of citations (so the product of the two proposed measures) is 

impacted by switching probability.  

 

5. At the end of the Abstract, the authors claim:  

“We propose a model reproducing the main observed empirical patterns.”  

And in the middle of page 8, they elaborate further:  

“Here, we propose an Exploitation-Exploration model (EEM) by introducing an exploitation process 

(controlled by a probability p) and an exploration process (controlled by a probability q) to the random 

walk model.”  

Since somehow similar model with random walk and exploration and exploitation was presented 

earlier in reference [24], it is important that the authors elaborate what novel elements are present in 

their model, and what patterns their model reproduces that the earlier model does not. Such 

discussion will strengthen their claim to novel contribution in modeling research interest evolution.  

 

C. The Introduction section requires some proofreading.  

 

Below is a sample of not well formulated statements:  

 

- “The digital publishing era has led to a revolution in science embodied in big data that captures 

major activities in research.”  

This is a curious statement for the paper that used APS publications form the last 100 years so period 

majority of which predated the digital publishing era.  

 

- “Scientists’ cumulative production”  



At this stage it is undefined and it could be measured in patents, papers, citations, websites with 

products….  

 

- “By associating each publication with its citation,”  

Single citation? Probably “citations” was intended.  

 

- “How frequent a scientist switches”  

Probably “frequently” was intended.  

 

- “Does more frequent switching of scientists between topics help their impact?”  

Who would do switching of scientists between topics?  

 

- “We find that the typical number of major topics during last century”  

Probably a phrase “for scientists active” or something like that before “last century”  

 

 

 

Reviewer #2:  

Remarks to the Author:  

This manuscript analyzes the publication records of scientists to understand how they change topics 

and why. The manuscript uses the citations of these papers to identify the community of co-citations 

that they belong to, creating “topics” based on such communities. The switching process across a 

scientist’ career and across science are analyzed. Moreover, the manuscript presents evidence of when 

this switching happens and how it is related to seniority, productivity of the scientist, and overall 

trends in science over the last century. The authors found that switching early in a career is associated 

with low productivity whereas switching later in a career is associated with high productivity. The 

authors propose a model to explain these findings based on an exploration-exploitation analogy.  

 

I think the examination of topic switching in scientists’ careers is an interesting and underexplored 

topic in scientometrics and science of science. The analysis of how scientist switches topics is an 

important question not only for scientists but for institutions and funding agencies. Understanding why 

this happens can help us understand one of the main factors behind the generation of new knowledge. 

Also, the authors attempt to produce a normative or prescriptive model of such switching could help 

us predict and understand this behavior at a deeper level than simply data mining. In the end, 

however, I think the manuscript and authors felt short of providing a compelling evidence for their 

claims. I found that the article came to very general conclusions while only analyzing two disciplines 

(Physics and CS) and a narrow set of (very) productive scientists (e.g., people with more than 50 

publications in APS). It also seems that the major claims relating switching behavior with productivity 

lacks proper statistical reporting and that the authors neglect to review the rich area of language topic 

modeling and optimal exploratory-exploitative models. For these reasons, I think the paper needs 

major revisions to be reconsidered. Please allow me to expand.  

 

The idea that the number of topics has remained nearly constant throughout the last century is at 

least unintuitive and the authors do not provide a good rationale for such finding. It would seem that 

science has become more and more specialized and therefore more topics are needed to understand 

the breadth of scientific disciplines. I suspect that this might be happening due to the method they 

chose to find topics. One possible control would be to analyze the PACS codes in more detail. While 

the authors analyzed how these codes correlated with the communities, they did not use them as a 

control for corroborating the claim that topics have remained nearly fixed. It is therefore unclear 

whether their results is an artifact of their way of defining topics. Moreover, I am surprised that the 

authors do not mention the rich literature on language-based topic modeling at all. Perhaps comparing 



these techniques to their findings would serve as a useful control. I can think of a couple of papers 

and techniques specifically meant to model author topics (e.g., Rosen-Zvi et al., The author-topic 

model for authors and documents, 2004) and dynamic topic models (e.g., Wang et al., Continuous 

Time Dynamic Topic Models, 2012).  

 

Another shortcoming is that they are using a dataset of Physics and Computer Science, which may 

have substantial differences compared to other disciplines. Since the co-citation network is very 

important for learning the topics, the varying discipline-specific citation behavior may affect their 

findings dramatically While the author acknowledged that their framework was applied only to 

“physicists and computer scientists”, they make claims about how their findings apply to all of science. 

More worryingly, their analysis is based on what appears to be very productive set of scientists (50+ 

papers in APS). Perhaps changing the title or analyzing other fields with different citation behavior 

may alleviate some of these issues.  

 

In general, I found that the authors allude to statistical significance in important parts of the 

manuscript without providing enough evidence that that was the case. For example, they mention 

that, “All points are located under the diagonal line, indicating that the community structure in real 

CCN is truly significant.” but it is unclear what constitutes a “truly significant” community structure. 

Similarly, the authors claim that the switching probability has increase over the last century, but an 

examination of Fig. 4b shows enormous error bars that I am sure render the trend non-significant. 

The authors did compare, however, two periods that are significantly different but failed to explain 

why they chose 1940 to 1950 and 1970 and 1980 as points of comparison. Would these findings 

translate continuously across time?  

 

Finally, the authors seem to equate switching behavior with explore-exploit. For example, they seem 

to suggests that authors increasingly switch topics throughout their careers -- explore. This seems to 

go against the usual findings in optimal adaptive control and optimal foraging behavior whereas 

organisms tend to explore at the beginning (i.e., start with high topic switching) and then they 

become significantly more exploitative at the end (i.e., then do not switch topics at all). Also, the 

model they propose, EEM, seems to be one in which the authors are following a modified random walk 

with a probability of staying and a probability of switching. This is a very peculiar way of thinking 

about exploration and exploration. There is a rich literature in stay/switch models for 

exploration/exploitation (and similarly the matching law) -- see THE STAY/SWITCH MODEL OF 

CONCURRENT CHOICE -- but these models depend on a reward signal. I failed to find any reference to 

this rich literature in the manuscript. Moreover, I did not see any discussion of what would constitute a 

“reward” or “reinforcement” signal - I presume such signal could be citations, publications, or 

collaborations. Perhaps this is a matter of renaming their model or discussing its differences to classic 

optimal control literature.  

 

Another minor (or perhaps major for people who do not like citations or productivity as a measure of 

impact!) is the issue of linking low productivity with something negative. I would adventure that if a 

scientist switches her area a great deal, it might be because the area of research is not interesting or 

it is too difficult to do anything productive in it - productivity therefore drives switching behavior 

rather than the other way around! This is a perfectly rational and not at all negative process. A 

discussion of this issue could be added.  

 

Other points:  

How are the authors controlling for the fact that an author is contributing to papers with multiple other 

authors? I can image an scenario in which a scientist is an expert in a particular method but 

collaborates with several other scientists. As the expert gets more senior, she will probably collaborate 

with more scientists, inflating the “switching probability” of her articles but in reality it has not 



switched topics at all!  

The correlation between citation and switching probability seems to be very small. Since you are 

dealing with a large number of cases, this can give you significance but with an irrelevant effect size.  

 

 

 

Reviewer #3:  

Remarks to the Author:  

In this interesting and well-written manuscript, the authors aim to quantify topic switching dynamics 

of physicists by using the APS dataset. They used a community detection method to classify various 

topics a scientist typically engages in. Empirically, they found that within a career, the probability to 

switch topics tends to increase in early career stage, and decrease at later career stage. Overall across 

physicists, researchers seem to switch topics at an increasing frequency over time. The authors 

further proposed a random-walk based model to incorporate the competing dynamics of exploration vs 

exploitation, attempting to reproduce the observed patterns. I like the paper, and think that it 

addresses a timely and important question, which could be informative for funders and science 

decision makers. I have several comments on the technical aspects of the paper, which need to be 

addressed before the paper can be considered for publication.  

 

 

1. Results shown in Fig 1 are great. The network visualization is impressive, and convincing. I can see 

that detecting communities using such a network approach can be useful, and complement existing 

approaches which mainly rely on PACS codes. However, I don’t think the authors have done full justice 

to prior papers in this domain. Take for example the Jia et al 2017 paper. While that paper uses a 

different way of classifying topics (PACS code), it did offer several observations on the topic switching 

behavior, some of which seem consistent with the findings reported here. For example, Jia et al found 

heterogeneity in topic engagements which are consistent with findings in Fig 2c & 2f. It also proposed 

a random-walk based model to capture the exploration vs exploitation processes, which also 

resembles at a high level the model proposed here. I think the authors need to offer a more clear 

articulation of differentiation between this work and prior scholarship, especially given that the present 

work uses the same data with a similar theoretical framework. Otherwise it feels results reported in 

Fig 2 can be largely anticipated by prior work in this area. And if it’s indeed the case, it should be 

clearly noted in the paper.  

2. I believe Fig 3 offers new empirical observations which look at the dynamics of topic switching 

along a career. I think the pattern is intriguing and value adding to the literature, but I don’t think 

there’s enough evidence in the main text or SI to support the conclusion of this rise-and-fall pattern. 

The main reason is that Fig 3a is strongly influenced by the typical career length within the sample of 

scientists studied, as well as their productivity profiles (how productivity changes over a career). The 

authors attempted to account for these confounds using Fig 3b, but in my view, it doesn’t eliminate at 

all these concerns, as Fig 3b could hold independent of these productivity/career longevity factors. 

Given the importance of this result to carry the paper, I think it’s important to rule out these 

confounding factors, and I suggest two ways to examine it further. First, instead of plotting as a 

function of year, the authors should plot it as a function of the number of papers published in a career, 

which would eliminate the varied productivity intensity over a career. Second, one should repeat these 

results by using different career length. For example, there are only few scientists with career length 

40 year (evidence from Fig. S1), which means the sample size is substantially different for 10-year or 

40-year career length. It is necessary to control for career length so that the measurements do not 

mix different scientists with different career age. Another possible way to solve this issue is to focus 

on the normalized career age (i.e., from 0 to 1).  

3. In fig 3cd, the authors go beyond the average effect and look at tails (top 10%). But top 10% is a 

rather odd choice. I’d suggest top 5% or even 1% as alternatives and also controlling for its career 



stage and topic areas when computing the percentiles. Similarly, for measurements related to average 

citations, it is necessary to control for different subfields. One way to do this is to use Radicchi et al 

2008 methodology.  

4. Figure 4 reports another key finding of the paper, but there are key confounding factors left 

unaddressed. For example, the number of papers and scientists grow exponentially (Fig. S1), how 

would this growth affect results in Fig. 4? For example, to answer this question, one may consider to 

construct a null model to eliminate this effect. And more importantly, what’s the effect of 

collaborations in the topic switching behavior? We know that teams are on the rise, and collaboration 

is an important means for scientists to engage in a new topic. To what degree can Fig 4b & 4d be 

explained by the increasing trends of collaborations? More generally, using the methodology presented 

here, how do you account for the fact that some topic switching may simply reflect the expertise of 

other collaborators, rather than an endogenous process as proposed in the model?  

5. The main question is the validity of the model. I think the modeling aspect of the paper is what 

makes it a strong paper, and I appreciate the generative nature of the model. But it’s not clear that 

the model actually captures the (interesting) empirical observations made in the paper. For example, 

it’s not clear to me how a random walk with restart can account for topic heterogeneity – the fact that 

scientists engage disproportionately in different topics. What’s the model prediction for quantities 

measured in Fig 2d, e, f? Does the model recover the same results? For the network predicted by the 

model (Fig 5b), does it resemble those observed in real data (fig. 1b)? Does the predicted network 

have hubs? Do they have the same degree distribution as networks constructed from real careers? 

Quantitative answers to these questions are critical to establish the validity and boundary of the 

model. They will help us understand what does the model capture? What does it not capture? And If 

not, why?  

6. Also is the underlying knowledge space a lattice? If not, presenting it as lattice in Fig 5a would be 

misleading.  

7. For discussion part, I think the authors should be more specific about potential implications of their 

results. If these results are true, what do they mean for funders or decision makers?  

 

I hope these comments are helpful in thinking about how to revise the piece.  



----------------------------------------------------- 

Response to reviewer #1  

----------------------------------------------------- 

A. The major claims of the paper include: 

 

- showing that co-citing network widely used in scientometrics contains meaningful communities   

that define the research topics of a scientist; 

- finding that the distribution of the number of topics for a scientist is narrow; 

- using switching probability between papers to measure speed of topics switching and finding that 

this probability increased in the last 100 years; 

- finding that switching probability impacts productivity and the average number of citations per 

paper differently; 

- introducing a model with exploitation and exploration to match real publication patterns that 

compete with existing ones; 

- using Gini coefficient PACS codes in different communities and showing that distribution of 

PACS codes indeed differ between communities; 

- showing that results are similar for computer science publications making the approach 

generalizable.  

 

B. The claims are modestly novel. 

 

Some of the claim use the well-known tools in an innovative way (co-citing network, Gini 

coefficient), one other proposes alternative model of random walk with exploitation and 

exploration, another depends on correctness of finding communities (distribution of the number of 

topics, switching probability) and one claim (patterns for computer scientists) was not included in 

the paper just in SI so I was not able to evaluate its correctness. 

 

Below, I discussed how the claims can be strengthened. The points 2 and 4 suggest some 

additional investigations that are essential for the validity of the corresponding claims. 

Once the validity of the claims is demonstrated, I consider the paper certainly worth of publishing 

since it may influence future developments in the area of science of science.  

Reply: We thank the referee for reading carefully our manuscript, for considering a revised version 

"certainly worth of publication" once "the validity of the claim is demonstrated", and also for 

his/her useful suggestions on how to strengthen our claims. 

 

Here is the list of my comments and suggestions for improvements. 

 

1. At the end of the first paragraph of Introduction authors list issues addressed in other papers:  

“… issues such as the evolution of scientists’ creativity [15], reputation [16], social ties [17] and 

mobility [18, 19] over their careers have also been investigated.” 



The authors miss an important issue of an impact of funding on scientist’s interest in topics, 

discussed in A. Hoonlor, et al, “Trends in Computer Science Research, Communications of the 

ACM 56(10):74-83, Oct. 2013. This paper studies the patterns of topic selection by computer 

scientists. 

Reply: We thank the referee for bringing this important reference to our attention. We agree with 

the referee that funding is an important factor affecting scientists’ interest in topics. Accordingly, 

we have added this paper to our reference list and briefly discuss its results in the introduction 

section as follows.  

 

“It has been revealed empirically [Communications of the ACM 56, 74 (2013)] that the keyword 

became bursty in the NSF proposals before it became bursty in the ACM publications, indicating 

that scientific funding may increase interest in the supported areas.” 

 

2. The authors describe their approach to community detection as follows: 

“… communities of each co-citing network of a scientist are identified with the fast unfolding 

algorithm which detects communities by maximizing the modularity function [29].” 

And later they add: 

“Our community analysis has also been examined based on a modified modularity function with 

higher resolution parameter.” 

My concern is that maximizing modularity on large networks is likely to trigger well known 

anomalies of this approach in which certain well-defined medium size communities are either split 

and distributed over other communities, or merged together into a large community (the so-called 

resolution limit problem, well documented in the literature). Moreover, a suitable resolution 

parameter to avoid these anomalies may not exit. Such anomalies often lead to 

underrepresentation of medium size communities, which authors seem to report in the paper. Since 

a lot of conclusions rely on communities found by modularity maximization, it is important that 

the authors confirm their community detection results using different approach not suffering from 

the mentioned above anomalies.  

Reply: We thank the referee for this very important comment. To address the concern raised above, 

we further examined our conclusions using two additional methods. The first one is a community 

detection algorithm called Infomap which is independent of modularity maximization [PNAS 105, 

1118 (2008)]. It has been found that the resolution limit is orders of magnitudes smaller for 

Infomap compared to modularity [Phys. Rev. E 91, 012809 (2015)]. We re-analyzed the APS data 

with Infomap and compared it with the results based on modularity maximization. For each 

scientist's co-citing network, we calculate the Normalized Mutual Information (NMI) between the 

communities detected based Infomap and modularity. NMI score is between 0 (no correlation) and 

1 (perfect correlation). The right skewed distribution of the NMI shown in Fig. R1a suggests that 

the communities detected based on Infomap and modularity are highly similar. In addition, we 

show in Fig. R1b the distribution of the number of communities detected with Infomap for all 

scientists. The number of communities is seemingly broadly distributed, yet the distribution 



becomes narrow after filtering small clusters. Fig. R1c shows the fraction of papers in each 

community sorted by size. Several major communities comprise most of the nodes. In Fig. R1d, 

we show the evolution of the mean switching probability in different career years. We also find 

that high overall productivity is associated with low switching probability in the early career, yet 

in later career stage, high productivity is associated with high switching probability. However, 

high average citation per paper in all career periods is associated with low switching probability. 

In Figs. R1ef, we find that the number of major communities of individual scientists stays almost 

stable, yet the switching probability tends to increase over the years. These results are all 

consistent with those observed with modularity maximization. 

 

Fig. R1, The figure summarizes the results based on the Infomap method. (a) The distribution of NMI 

between the communities detected based Infomap and modularity. For comparison, we reshuffled the nodes 

between the communities detected by Infomap, and present also the distribution of NMI between the 

reshuffled communities and the communities detected by modularity maximization. (b) The distribution of the 

number of communities for all scientists. Small communities with less than 3 nodes are eliminated (legend as 

“size>2”), and small communities with less than 6 nodes are eliminated (legend as “size>5”). (c) Fraction of 

papers in different communities. (d) The switching probability of scientists in different career years. The 

switching probability of the 10% most productive scientists and 10% scientists who have the highest mean 

citation per paper are shown for comparison. (e) The mean number of communities (size>2) of scientists who 

started their career in different years. (f) The average switching probability of scientists who started their 

career in different years. For fair comparison of scientists from different years, we only consider scientists’ 

first y career years. Here, y=10, 20 and 30. 

 

Furthermore, we tested our results by a second method which is completely independent of 

community detection. The method is based on PACS codes which are filed classification codes 

enforced by APS from 1985 to 2015. Usually, a paper may have several PACS codes (typically 3). 

Here, we select the first 4 digits of the primary PACS codes (the first one in a paper) to identify 

the field of a paper. For a scientist, if two of his/her papers share the same first 4 digits of the 

primary PACS codes, we consider these two papers to belong to the same topic. We consider the 



scientists who published their first paper in APS after 1985. Similar to the analysis of the Infomap 

method, we first calculate the NMI between the topics detected based on PACS codes and 

modularity maximization. In Fig. R2a, we find that the distribution of NMI peaks around 0.5, 

indicating the similarity between topics detected by these two methods. For comparison, we 

reshuffle the primary PACS codes of each scientist’s papers and calculate the NMI between the 

topics detected based on reshuffled PACS codes and modularity maximization. The distribution of 

NMI in this case peaks around 0.25, much smaller than that of the real PACS codes (p value of the 

Kolmogorov-Smirnov test of these two distributions is          ). The results in Figs. R2bcd 

exhibit the same patterns as those of the modularity maximization (see Fig. 2 and Fig. 3). As the 

papers before 1985 have no PACS codes, we can only study the evolution of the number of major 

topics and switching probability for the scientists who started their career after 1985. The results 

in Figs. R2ef indicate that the number of major topics stays almost unchanged, yet the switching 

probability tends to increase even in this relative short period.  

 

Fig. R2, The figure summarizes the results based on the PACS codes. (a) The distribution of NMI between 

the topics detected based PACS codes and modularity method. For comparison, we show also the 

distribution of NMI between the topics detected based on randomly reshuffled PACS codes and modularity 

method. (b) The distribution of the number of topics for all scientists. Small topics with less than 3 papers are 

eliminated (legend as “size>2”), and small topics with less than 6 papers are eliminated (legend as “size>5”). 

(c) Fraction of papers in different topics. (d) The switching probability of scientists in different career years. 

The switching probability of the 10% most productive scientists and 10% scientists who have the highest 

mean citation per paper are shown for comparison. (e) The mean number of topics (size>2) of scientists who 

started their career in different years. The p value is 0.053 for the Kolmogorov-Smirnov test of the topic 

number distributions in 1985-1990 and 1995-2000. (f) The average switching probability of scientists who 

started their career in different years. The p value is          for the Kolmogorov-Smirnov test of the 

switching probability distributions in 1985-1990 and 1995-2000. For fair comparison of scientists from 

different years, in (e) and (f) we only consider scientists’ first 10 career years.  

 

To sum up, the patterns observed with Infomap and PACS codes are consistent with those based 



on modularity maximization, indicating the validity of our findings. The above results have been 

added to the SI (see Figs. S21 and S22) and a brief discussion of these results have been added to 

the revised manuscript (see page 10). 

 

3. While discussing Figure 2(b), the authors write: 

“All points are located under the diagonal line, indicating that the community structure in real 

CCN is truly significant.”  

This is insufficient, since we do not even know how many random counterparts were plotted for 

each real network, whether the modularity of the counterparts was averaged or not. Moreover, 

there is no statistical measure of the significance of the difference between modularity of detected 

communities and their random counterparts. 

Reply: We thank the referee for detecting this point. We are sorry for our error regarding the 

missing information on the random counterparts test. For each scientist’s co-citing network, we 

generated 100 random counterparts. See Fig. R3a for the modularity of the co-citing network of a 

randomly selected scientist as well as the distribution of the modularity of the random counterparts. 

The modularity of the counterparts in Fig. 2b was averaged over these 100 random counterparts. 

 

In order to measure the significance of the difference between modularity of detected communities 

and their random counterparts, we conducted the one sample t-test of the modularity of each 

scientist’s co-citing network and its 100 random counterparts. After obtaining the p value for each 

scientist, we find that all p values are significantly smaller than 0.01 (the largest p value is 

       , see distribution in Fig. R3b). The results indicate that the modularity of the co-citing 

networks are significantly larger than their random counterparts. The above information has been 

added to the revised manuscript (see page 5). Fig. R3a is now included in the revised SI (see Fig. 

S5). 

  

Fig. R3, (a) The modularity of the co-citing network of a typical scientist compared to the distribution of the 

modularity of its random counterparts. (b) For each scientist, we conducted the one sample t-test of the 

modularity of the real co-citing network and its 100 random counterparts. We show here the distribution of 

the p values for all scientists. All p values are significantly smaller than 0.01, showing that the modularity of 

the co-citing networks are significantly larger than their random counterparts. 

 



4. At the beginning of the third paragraph on page 6, the authors remark: 

“Here, we measure the research performance of a scientist using two almost uncorrelated metrics 

(see Fig. S8), i.e., number of published papers and mean citation per paper.”  

These two measures share the weakness that each is not a good measure of performance when the 

second metric is low for a scientist. So a scientist with large number of publication (so ranked 

highly by this metric) and low mean citations should not be ranked highly on performance. So 

should a scientist with large number of citations to just one publication. So it will be worth to 

measure how performance defined as the total number of citations (so the product of the two 

proposed measures) is impacted by switching probability.  

Reply: We thank the referee for this good suggestion. As the network size needs to be large 

enough to ensure meaningful community detection results, our analysis in the manuscript focuses 

on scientists with at least 50 papers. Therefore, the top 10% scientists with highest mean citation 

per paper are not the scientists with large number of citations to just one or few publications. 

Meanwhile, we agree with the referee that a scientist with large number of publications (so ranked 

highly by this metric) and low mean citations should not be ranked highly on performance. To 

address this concern, we remove the scientists with low mean citations from the top 10% 

productive scientists. We present in Fig. R4a the switching probability of the top 10% productive 

scientists with mean citations higher than 3 and 6, respectively. The results suggest that high 

productivity is still associated with low switching probability in the early career but with high 

switching probability in the later career. The finding is supported by Fig. 4b where we directly 

compute the Pearson correlation between scientists’ switching probability in different career years 

and their productivity. The trend does not change even if we exclude the scientists with low mean 

citations. Fig. R4 has been added to the SI (see Fig. S8) and a brief discussion of the results have 

been added to the revised manuscript (see page 7).     

 

Fig. R4, (a) Comparison of the overall switching probability (all scientists) with the switching probability of the 

10% most productive scientists in different career years. The switching probability of the top 10% productive 

scientists with mean citations      higher than 3 and 6 are also presented for comparison. (b) The Pearson 

correlation between scientists’ switching probability in different career years and their productivity. The 

correlation is also measured when the scientists with low mean citations (       or       ) are 

excluded. 

 

5. At the end of the Abstract, the authors claim:  



“We propose a model reproducing the main observed empirical patterns.”  

And in the middle of page 8, they elaborate further: 

“Here, we propose an Exploitation-Exploration model (EEM) by introducing an exploitation 

process (controlled by a probability p) and an exploration process (controlled by a probability q) 

to the random walk model.” 

Since somehow similar model with random walk and exploration and exploitation was presented 

earlier in reference [24], it is important that the authors elaborate what novel elements are present 

in their model, and what patterns their model reproduces that the earlier model does not. Such 

discussion will strengthen their claim to novel contribution in modeling research interest evolution. 

Reply: We thank the referee for this important suggestion. Ref. [24] (now ref. [27] in the revised 

manuscript) indeed made an important step towards understanding the "macroscopic" patterns that 

underlie the research-interest evolution over scientists' whole careers. The key finding in [24] is 

that research interest distance between the earliest and the last stages of scientists’ career follow an 

exponential distribution. They finally proposed a “seashore walk” model which successfully 

reproduced this empirical observation. Some of our empirical findings are indeed consistent with 

those presented in ref. [24]. However, as the analysis in ref. [24] is focused on the overall change 

of the research interests over scientists’ whole careers, still very little is known about the 

"microscopic" dynamics of the short time (paper by paper) topic switching within the individual 

career. Our paper aims to address this issue. The novelty of our work can be further summarized 

by the following three aspects. 

 

(1) One of the novelty issues in our paper is applying of community detection algorithms for each 

individual scientist’s co-citing network to identify his/her major research topics. Comparing 

the ref. [24] which relies on PACS code (only enforced from 1985 to 2015), our methodology 

is more general and not restricted to availability of field classification codes. Thus, it can be 

applied also to the time periods when the PACS code did not exist, and thus revealing the 

increasing trend of scientists to switch between topics over the past 100 years. 

 

(2) Instead of the overall change of the research interests between the beginning and the end of 

careers studied in ref. [24], the focus of our paper is on the microscopic dynamics of the topic 

switching within each researcher career. This difference results in a series of novel findings. 

We find that scientists tend to be involved in very small number of topics during their early 

career, while the change of interest happens in the more mature stages of scientists’ careers. 

We also reveal how switching topics in different career stages is associated with scientists’ 

research performance (productivity and impact).  

 

(3) Despite that both the seashore walk model in ref. [24] and our Exploitation-Exploration model 

are random-walk-based, yet they are essentially different in the design and results. In ref. [24], 

the main purpose of the seashore walk model is to capture the exponential distribution of the 

overall change of the research interests, so it incorporates three key features (i.e. heterogeneity, 



subject proximity, and recency) which modify the standard random walk process. The model 

in ref. [24] assumes that a scientist always walks to the neighboring location, and two 

neighboring locations have very high similarity in topics. So this model assumes scientists 

change research interest gradually. It cannot capture the dramatic topic switching behavior 

(switching to a very different topic) in two adjacent publications, which is observed in our 

empirical analysis. In our model, we aim to reproduce the structure of the co-citing network 

and the microscopic dynamics of the topic switching. We thus, introduce the restart 

mechanism and long-jump mechanism to the random walk process.  

 

In the revised manuscript, we have added a paragraph in the discussion section to summarize the 

above main issues regarding the findings in ref. [24], and also to highlight the novelty of our paper 

by discussing in detail the differences between our work and ref. [24].    

 

C. The Introduction section requires some proofreading.  

 

Below is a sample of not well formulated statements: 

Reply: Thanks. We have reformulated the statements below as suggested. In addition, we have 

carefully proofread the manuscript and tried our best to correct language problems. We hope the 

readability of the revised manuscript has been significantly improved. 

 

- “The digital publishing era has led to a revolution in science embodied in big data that captures 

major activities in research.” 

This is a curious statement for the paper that used APS publications form the last 100 years so 

period majority of which predated the digital publishing era.  

Reply: The above sentence has been rewritten as “The increased availability of large datasets that 

capture research activities creates an unprecedented opportunity to explore the dynamical patterns 

of scientific production and reward using state-of-the-art mathematical and computational tools.” 

 

- “Scientists’ cumulative production” 

At this stage it is undefined and it could be measured in patents, papers, citations, websites with 

products….  

Reply: We have rephrased it as “Scientists’ cumulative production measured by the number of 

papers”. 

 

- “By associating each publication with its citation,” 

Single citation? Probably “citations” was intended. 

Reply: We have changed the word “citation” to “citations”. 

 

- “How frequent a scientist switches” 

Probably “frequently” was intended. 



Reply: We have changed the word “frequent” to “frequently”. 

 

- “Does more frequent switching of scientists between topics help their impact?” 

Who would do switching of scientists between topics?  

Reply: We have rephrased the sentence as “Is scientists’ impact improved if they switch more 

frequently between topics?” 

 

- “We find that the typical number of major topics during last century” 

Probably a phrase “for scientists active” or something like that before “last century” 

Reply: We have rephrased the sentence as “We find that the typical number of major topics for 

active scientists during last century…” 

 

  



----------------------------------------------------- 

Response to reviewer #2  

----------------------------------------------------- 

This manuscript analyzes the publication records of scientists to understand how they change 

topics and why. The manuscript uses the citations of these papers to identify the community of 

co-citations that they belong to, creating “topics” based on such communities. The switching 

process across a scientist’ career and across science are analyzed. Moreover, the manuscript 

presents evidence of when this switching happens and how it is related to seniority, productivity of 

the scientist, and overall trends in science over the last century. The authors found that switching 

early in a career is associated with low productivity whereas switching later in a career is 

associated with high productivity. The authors propose a model to explain these findings based on 

an exploration-exploitation analogy. 

 

I think the examination of topic switching in scientists’ careers is an interesting and underexplored 

topic in scientometrics and science of science. The analysis of how scientist switches topics is an 

important question not only for scientists but for institutions and funding agencies. Understanding 

why this happens can help us understand one of the main factors behind the generation of new 

knowledge. Also, the authors attempt to produce a normative or prescriptive model of such 

switching could help us predict and understand this behavior at a deeper level than simply data 

mining. In the end, however, I think the manuscript and authors felt short of providing a 

compelling evidence for their claims. I found that the article came to very general conclusions 

while only analyzing two disciplines (Physics and CS) and a narrow set of (very) productive 

scientists (e.g., people with more than 50 publications in APS). It also seems that the major claims 

relating switching behavior with productivity lacks proper statistical reporting and that the authors 

neglect to review the rich area of language topic modeling and optimal exploratory-exploitative 

models. For these reasons, I think the paper needs major revisions to be reconsidered. Please allow 

me to expand. 

 

The idea that the number of topics has remained nearly constant throughout the last century is at 

least unintuitive and the authors do not provide a good rationale for such finding. It would seem 

that science has become more and more specialized and therefore more topics are needed to 

understand the breadth of scientific disciplines. I suspect that this might be happening due to the 

method they chose to find topics. One possible control would be to analyze the PACS codes in 

more detail. While the authors analyzed how these codes correlated with the communities, they 

did not use them as a control for corroborating the claim that topics have remained nearly fixed. It 

is therefore unclear whether their results is an artifact of their way of defining topics. Moreover, I 

am surprised that the authors do not mention the rich literature on language-based topic modeling 

at all. Perhaps comparing these techniques to their findings would serve as a useful control. I can 

think of a couple of papers and techniques specifically meant to model author topics (e.g., 

Rosen-Zvi et al., The author-topic model for authors and documents, 2004) and dynamic topic 



models (e.g., Wang et al., Continuous Time Dynamic Topic Models, 2012). 

Reply: This is a very important comment. We thank the referee for the excellent idea for testing 

our finding regarding the almost unchanged number of topics, and also for recommending the 

literature on language-based topic modeling. Among these methods, the Latent Dirichlet 

Allocation (LDA) is a widely used topic model for papers in which each topic is considered as a 

probability distribution over words. The ref. [Rosen-Zvi et al., 2004] extends LDA to include 

authorship information for detecting topics for individual authors. The ref. [Wang et al., 2012] 

includes timestamps in the analysis of topics of authors. We agree with the referee that these 

language-based topic models are powerful in detecting topics for scientists, yet the computational 

complexity is much higher than the community detection method which only uses the topological 

information of networks. For completeness, we have added some discussion in the introduction 

section mentioning the language-based method for topic detection and referring to the papers 

suggested by the referee. 

 

To address the concern raised above regarding the unchanged number of communities in the last 

century, we tested our conclusions by applying two additional simple methods. The first one is a 

community detection algorithm called Infomap which is independent of modularity maximization 

[PNAS 105, 1118 (2008)]. It is found that the resolution limit is orders of magnitudes smaller for 

Infomap than for modularity [Phys. Rev. E 91, 012809 (2015)]. We re-analyzed the APS data with 

Infomap and compared it with the results based on modularity maximization. For each scientist' 

co-citing network, we calculate the Normalized Mutual Information (NMI) between the 

communities detected based Infomap and modularity. NMI score is between 0 (no correlation) and 

1 (perfect correlation). The right skewed distribution if NMI presented in Fig R5a suggests that the 

communities detected based on Infomap and modularity are highly similar. In addition, we show 

in Fig. R5b the distribution of the number of communities detected with Infomap for all scientists. 

The number of communities is seemingly broadly distributed, yet the distribution becomes narrow 

after filtering small clusters. Fig. R5c shows the fraction of papers in each community sorted by 

size. Several major communities comprise most of the nodes. In Fig. R5d, we show the evolution 

of the mean switching probability in different career years. We also find that high overall 

productivity is associated with low switching probability in the early career yet in later career 

stage high productivity is associated with high switching probability. However, high average 

citation per paper in all career periods is associated with low switching probability. In Figs. R5ef, 

we find, as requested by the referee, that the number of major communities of individual scientists 

stays almost stable yet the switching probability tends to increase over the years. These results are 

all consistent with those observed when using the modularity maximization. 



 

Fig. R5, The figure summarizes the results based on the Infomap method. (a) The distribution of NMI 

between the communities detected based Infomap and modularity. For comparison, we reshuffled the nodes 

between the communities detected by Infomap, and present also the distribution of NMI between the 

reshuffled communities and the communities detected by modularity maximization. (b) The distribution of the 

number of communities for all scientists. Small communities with less than 3 nodes are eliminated (legend as 

“size>2”), and small communities with less than 6 nodes are eliminated (legend as “size>5”). (c) Fraction of 

papers in different communities. (d) The switching probability of scientists in different career years. The 

switching probability of the 10% most productive scientists and 10% scientists who has the highest mean 

citation per paper are shown for comparison. (e) The mean number of communities (size>2) of scientists who 

started their career in different years. (f) The average switching probability of scientists who started their 

career in different years. For fair comparison of scientists from different years, we only consider scientists’ 

first y career years. Here, y=10, 20 and 30. 

 

Furthermore, we tried a second method (suggested by the referee, thanks!) which is completely 

independent of community detection. The method is based on PACS codes which are filed 

classification codes enforced by APS from 1985 to 2015. Usually, a paper may have several 

PACS codes (typically 3). Here, we select the first 4 digits of the primary PACS codes (the first 

one in a paper) to identify the field of a paper. For a scientist, if two of his/her papers share the 

same first 4 digits of the primary PACS codes, we consider these two papers to belong to the same 

topic. We considered the scientists who published their first paper in APS after 1985. Similar to 

the analysis of the Infomap method, we first calculate the NMI between the topics detected based 

on PACS codes and modularity maximization. In Fig. R6a, we find that the distribution of NMI 

peaks around 0.5, indicating the similarity between topics detected by these two methods. For 

comparison, we reshuffle the primary PACS codes of each scientist’s papers and calculate the 

NMI between the topics detected based on reshuffled PACS codes and modularity maximization. 

The distribution of NMI in this case peaks around 0.25, much smaller than that of the real PACS 

codes (p value of the Kolmogorov-Smirnov test of these two distributions is          ). The 

results in Figs. R6bcd exhibit the same patterns as those of the modularity maximization (see Fig. 

2 and Fig. 3). As the papers before 1985 have no PACS codes, we can only study the evolution of 



the number of major topics and switching probability for the scientists who started their career 

after 1985. The results in Fig. R6ef indicate that the number of major topics stays almost 

unchanged (the exact test requested by the referee, thanks!), yet the switching probability tends to 

increase even in this relative short period.  

 

Fig. R6, The figure summarizes the results based on the PACS codes. (a) The distribution of NMI between 

the topics detected based PACS codes and modularity method. For comparison, we show also the 

distribution of NMI between the topics detected based reshuffled PACS codes and modularity method. (b) 

The distribution of the number of topics for all scientists. Small topics with less than 3 papers are eliminated 

(legend as “size>2”), and small topics with less than 6 papers are eliminated (legend as “size>5”). (c) 

Fraction of papers in different topics. (d) The switching probability of scientists in different career years. The 

switching probability of the 10% most productive scientists and 10% scientists who has the highest mean 

citation per paper are shown for comparison. (e) The mean number of topics (size>2) of scientists who 

started their career in different years. The p value is 0.053 for the Kolmogorov-Smirnov test of the topic 

number distributions in 1985-1990 and 1995-2000. (f) The average switching probability of scientists who 

started their career in different years. The p value is          for the Kolmogorov-Smirnov test of the 

switching probability distributions in 1985-1990 and 1995-2000. For fair comparison of scientists from 

different years, in (e) and (f) we only consider scientists’ first 10 career years.  

 

To sum up, the patterns observed when using Infomap and PACS codes are consistent with those 

based on modularity maximization, supporting the validity of our findings. The above results have 

been added to the SI (see Figs. S21 and S22) and a brief discussion of these results have been 

added to the revised manuscript (see page 10). 

 

Another shortcoming is that they are using a dataset of Physics and Computer Science, which may 

have substantial differences compared to other disciplines. Since the co-citation network is very 

important for learning the topics, the varying discipline-specific citation behavior may affect their 

findings dramatically While the author acknowledged that their framework was applied only to 

“physicists and computer scientists”, they make claims about how their findings apply to all of 



science. More worryingly, their analysis is based on what appears to be very productive set of 

scientists (50+ papers in APS). Perhaps changing the title or analyzing other fields with different 

citation behavior may alleviate some of these issues. 

Reply: We thank the referee for this comment. Although we presented our main results in the 

manuscript for the scientists with at least 50 papers, we actually also analyzed the scientists with 

at least 20 papers and reported the results in the supplementary materials (see Fig. S17 and S18). 

We find that the results for these scientists with fewer papers (at least 20 papers) are similar to the 

results of the very productive scientists (at least 50 papers). In the revised manuscript we mention 

this point more clearly (see page 4). 

 

We analyzed APS data and computer science data because these two datasets have been made 

freely accessible. For the moment, we do not have data from other disciplines. In the introduction 

section, we did not claim that our findings apply to all scientific fields. Instead, we emphasized 

that our method was general and applicable to analyzing scientists from any discipline. We have 

added now the following sentences in the introduction section to clarify this point.  

 

“The findings in this paper have been revealed for physicists and computer scientists. However, 

our method is general and not restricted to availability of field classification codes, so it can be 

applied to analyzing scientists from any discipline.” 

 

In general, I found that the authors allude to statistical significance in important parts of the 

manuscript without providing enough evidence that that was the case. For example, they mention 

that, “All points are located under the diagonal line, indicating that the community structure in real 

CCN is truly significant.” but it is unclear what constitutes a “truly significant” community 

structure.  

Reply: We thank the referee for finding this error. The same comment was given by referee 1, and 

for convenience we repeat it here. For each scientist’s co-citing network, we generated 100 

random counterparts. See Fig. R7a for the modularity of the co-citing network of a randomly 

selected scientist as well as the distribution of the modularity of the random counterparts. The 

modularity of the counterparts in Fig. 2b was averaged over these 100 random counterparts. 

 

In order to measure the significance of the difference between modularity of detected communities 

and their random counterparts, we conducted the one sample t-test of the modularity of each 

scientist’s co-citing network and its 100 random counterparts. After obtaining the p value for each 

scientist, we find that all p values are significantly smaller than 0.01 (the largest p value is 

       , see distribution in Fig. R7b). The results indicate that the modularity of the co-citing 

networks is significantly larger than their random counterparts. The above information has been 

added to the revised manuscript (see page 5). Fig. R7a is now included in the revised SI (see Fig. 

S5). 



 

Fig. R7, (a) The modularity of the co-citing network of a typical scientist compared to the distribution of the 

modularity of its random counterparts. (b) For each scientist, we conducted the one sample t-test of the 

modularity of the real co-citing network and its random counterparts. We further plot the distribution of the p 

values for all scientists. All p values are significantly smaller than 0.01, indicating that the modularity of the 

co-citing network is significantly larger than its random counterparts. 

 

Similarly, the authors claim that the switching probability has increase over the last century, but an 

examination of Fig. 4b shows enormous error bars that I am sure render the trend non-significant. 

The authors did compare, however, two periods that are significantly different but failed to explain 

why they chose 1940 to 1950 and 1970 and 1980 as points of comparison. Would these findings 

translate continuously across time? 

Reply：Thanks for this comment. The error bars in Fig. 4b are the standard deviation of the 

switching probability. The large error bars in Fig. 4b are due to the heterogeneity of scientists in 

switching probability, yet we show that the mean switching probability of the scientists shows a 

clear trend of increasing. We clarify this point (regarding to mean) in the revised manuscript (see 

page 8). In order to further support the increasing trend of the switching probability, we calculate 

the standard error of the switching probability which estimates the standard deviation of the error 

in the sample mean with respect to the true mean. We present the standard error of the mean as the 

error bars in Figs. R8ab. The small error bars indicate indeed a very small uncertainty in these 

mean values.  

 

In Fig. 4d, we only chose 1940 to 1950 and 1970 and 1980 as points of comparison due to the 

constraint of the data. Scientists that started before 1940 are too few to obtain a meaningful 

average. The reason for ending at 1970-1980 is that we are considering scientists’ first 30 years 

career. As our data ends at 2010, the scientists starting later than 1980 do not have 30 years career 

yet. To understand better the change of the switching probability across time, we show in Figs. 

R8cd the distribution of scientists’ community number and switching probability in each adjacent 

ten years, e.g. 1940-1950, 1950-1960, 1960-1970, 1970-1980. In addition, we compute the p 

values of the Kolmogorov-Smirnov test of the distribution of scientists’ community number as 

well as the distribution of scientists’ switching probability (see Table R1). The p values are all 

larger than 0.2 when comparing the distribution of scientists’ community number in different year 



periods, supporting the assumption that these data follow similar distributions. However, the p 

values are all smaller than 0.04 when comparing the distribution of scientists’ switching 

probability in different year periods, suggesting significant differences between these distributions. 

The results of Table R1 and Fig. R8 have been added to the SI (see Table S1 and Fig. S14). A 

brief discussion of these results have been added to the revised manuscript (see page 9). 

              

Fig. R8, (a) The mean number of communities of scientists who started their career in different years. (b) The 

average switching probability of scientists who started their career in different years. The error bars are the 

standard error of the mean. (c) Distributions of the number of communities for scientists who started their 

career between 1940 and 1950, for those between 1950 and 1960, for those between 1960 and 1970, and 

for those between 1970 and 1980. (d) Distributions of the switching probability for scientists who started their 

career between 1940 and 1950, for those between 1950 and 1960, for those between 1960 and 1970, and 

for those between 1970 and 1980. 

 

Table R1, (left) p value of the Kolmogorov-Smirnov test of the distribution of scientists’ number of 

communities in different year periods. (right) p value of the Kolmogorov-Smirnov test of the distribution of 

scientists’ switching probability in different year periods. 

 

 

Finally, the authors seem to equate switching behavior with explore-exploit. For example, they 

seem to suggests that authors increasingly switch topics throughout their careers -- explore. This 

seems to go against the usual findings in optimal adaptive control and optimal foraging behavior 



whereas organisms tend to explore at the beginning (i.e., start with high topic switching) and then 

they become significantly more exploitative at the end (i.e., then do not switch topics at all). Also, 

the model they propose, EEM, seems to be one in which the authors are following a modified 

random walk with a probability of staying and a probability of switching. This is a very peculiar 

way of thinking about exploration and exploration. There is a rich literature in stay/switch models 

for exploration/exploitation (and similarly the matching law) -- see THE STAY/SWITCH MODEL 

OF CONCURRENT CHOICE -- but these models depend on a reward signal. I failed to find any 

reference to this rich literature in the manuscript. Moreover, I did not see any discussion of what 

would constitute a “reward” or “reinforcement” signal - I presume such signal could be citations, 

publications, or collaborations. Perhaps this is a matter of renaming their model or discussing its 

differences to classic optimal control literature. 

Reply: We thank the referee for this comment and for bringing the stay/switch literature to our 

attention. We are referring, in the revised manuscript, to these models. We note that the differences 

between our findings and the optimal adaptive control as well as the optimal foraging behavior 

actually shows the importance of our findings. In our empirical analysis, we find that scientists are 

not following the optimal foraging behavior but they are probably driven by other factors. 

Specifically, scientists probably aim to minimize failure probability in the early career, so they 

switch less in this period. Then they become riskier by switching more frequently in their later 

career. The related discussion has been added to the revised manuscript (see page 7). 

 

In our model, we aim to reproduce and therefore understand the structure of the co-citing network 

and the dynamics of the topic switching. We introduce the restart mechanism and long-jump 

mechanism into the random walk process. When a scientist restarts the random walk from one of 

the previously activated nodes, we interpret it as making exploitation by investigating the topics 

that he/she has already worked on. When a scientist makes long jumps in the random walk, we 

interpret it as making exploration by investigating topics largely different from the topics he/she is 

working on now.   

   

We are thankful to the referee for bringing to our attention the literature about the models taking 

into account a reward or reinforcement signal. We agree that adding these mechanisms would 

result in a model capturing more real behavioral patterns in scientific research. However, as the 

main focus of this paper is to model and understand the topic switching behavior observed in real 

data, we decided to keep our model simple and include in the revised manuscript (see page 14) a 

discussion pointing out the possibility (suggested by the referee, thanks!) of improving our model 

by adding a reward or reinforcement mechanism.  

 

Another minor (or perhaps major for people who do not like citations or productivity as a measure 

of impact!) is the issue of linking low productivity with something negative. I would adventure 

that if a scientist switches her area a great deal, it might be because the area of research is not 

interesting or it is too difficult to do anything productive in it - productivity therefore drives 



switching behavior rather than the other way around! This is a perfectly rational and not at all 

negative process. A discussion of this issue could be added. 

Reply: Thanks for this interesting comment. Actually, we did not intend to connect low 

productivity with anything negative. The reason why we use citations and number of publications 

as measures of research performance is that these two are widely used metrics for this purpose. In 

addition, we have to emphasize that we focus only on correlations, not on causality. Therefore, we 

did not interpret as a cause the relation between productivity and switching behavior. Following 

the referee's suggestion, the following discussion has been added to the revised manuscript (see 

page 7). 

 

“In the early career stage (<12y) high overall productivity is associated with low switching 

probability yet in later career stage high productivity is associated with higher switching 

probability. There might be multiple reasons leading to this phenomenon. A possible one causing 

the negative correlation between productivity and switching probability in the early career is that a 

scientist frequently switches the topics because the area of research is not interesting, or it is too 

difficult to do anything productive in it.” 

 

Other points: 

How are the authors controlling for the fact that an author is contributing to papers with multiple 

other authors? I can image an scenario in which a scientist is an expert in a particular method but 

collaborates with several other scientists. As the expert gets more senior, she will probably 

collaborate with more scientists, inflating the “switching probability” of her articles but in reality 

it has not switched topics at all! 

Reply: Collaboration indeed affects the switching probability. However, in our paper we only 

consider the switching probability between major communities (size>2). If a scientist rarely 

collaborates with other scientists in another field, it is not regarded as a switching. Once the 

frequency of the collaboration to scientists from a field is substantial and forms a major 

community in the co-citing network, the collaboration will result in an actual switching. 

 

In order to further test, as suggested by the referee, whether and how much, our findings are 

impacted by collaborative effects, we analyzed the data as follows. We assign a paper impact 

among authors in the case of multi-authored papers, using the collective credit allocation approach 

[PNAS 111, 12325 (2014)]. This method assign credits based on the community perception, i.e., 

each citing paper expresses its perception of the scientific impact of a paper’s coauthors by citing 

other papers published by the same authors on the same subject. We thus filter out a scientist’s 

papers in which the credit share of the scientist is lower than a certain value \epsilon (e.g. 

\epsilon=0.2 or \epsilon=0.4). After filtering out these papers, we re-analyze the individual and 

collective switching patterns of scientists. The results are shown in Fig. R9. Although the results 

are noisier due to the smaller sample size after data filtering, we find no qualitative difference with 

our previous results presented in the manuscript (Figs. 3cd and 4ab), suggesting that our findings 



are robust to co-authorship effects. Fig. R9 has been added to SI (see Fig. S16) and the results are 

brief discussed in the revised manuscript (see page 9). 

 

Fig. R9, (a)(b) Comparison of the overall switching probability (all scientists) with the switching probability of 

the 10% most influential scientists in different career years. The influence of scientists is respectively 

measured as number of publications and citations per paper. (c)(d) The average switching probability of 

scientists who started their career in different years. For each scientist, we only consider the first y career 

years in order to perform a fairer comparison of scientists with different career length. To reduce the effect of 

multi-authored papers, we filter out a scientist’s papers in which the credit share of the scientist is lower than 

a certain value \epsilon. The parameter \epsilon is 0.2 in (a)(c), and 0.4 in (b)(d). 

  

The correlation between citation and switching probability seems to be very small. Since you are 

dealing with a large number of cases, this can give you significance but with an irrelevant effect 

size. 

Reply: Thanks for this comment. Indeed, the overall correlation between citation and switching 

probability is close to -0.1 (Fig. S12b). However, as we further analyzed, the correlations are high 

for specific groups of scientists. We compute here, the correlation between mean citations per 

paper and mean switching probability (averaged over one’s whole career) for the scientists with 

similar number of papers, aiming to remove the productivity factor affecting this correlation. We 

observe in Fig. R10a, indeed, a significantly stronger (anti-)correlation between mean citation per 

paper and mean switching probability, especially for the very productive scientists. Similarly, we 

fixed the mean citation per paper, and compute the correlation between productivity (number of 

papers) and mean switching probability (averaged over one’s whole career). As the relation 

between productivity and switching probability changes from negative to positive over the career, 

we compute an early career correlation (<5 y) and a later career correlation (>30 y). We find that 

the correlations between productivity and switching probability are stronger for the scientists with 

relatively low mean citations (below 20 but above 5). These results have been added to the revised 

supplementary materials (see Fig. S9). 



 

Fig. R10, (a) Pearson correlation between mean citation per paper and mean switching probability for 

scientists with similar number of papers. (b) Pearson correlation between productivity and mean switching 

probability. The results of early career correlation (<5 y) and later career correlation (>30 y) are presented. 

The insets are the number of scientists in each bin for calculating the correlation coefficient. 

 

  



----------------------------------------------------- 

Response to reviewer #3 

----------------------------------------------------- 

In this interesting and well-written manuscript, the authors aim to quantify topic switching 

dynamics of physicists by using the APS dataset. They used a community detection method to 

classify various topics a scientist typically engages in. Empirically, they found that within a career, 

the probability to switch topics tends to increase in early career stage, and decrease at later career 

stage. Overall across physicists, researchers seem to switch topics at an increasing frequency over 

time. The authors further proposed a random-walk based model to incorporate the competing 

dynamics of exploration vs exploitation, attempting to reproduce the observed patterns. I like the 

paper, and think that it addresses a timely and important question, which could be informative for 

funders and science decision makers. I have several comments on the technical aspects of the 

paper, which need to be addressed before the paper can be considered for publication.  

 

1. Results shown in Fig 1 are great. The network visualization is impressive, and convincing. I can 

see that detecting communities using such a network approach can be useful, and complement 

existing approaches which mainly rely on PACS codes. However, I don’t think the authors have 

done full justice to prior papers in this domain. Take for example the Jia et al 2017 paper. While 

that paper uses a different way of classifying topics (PACS code), it did offer several observations 

on the topic switching behavior, some of which seem consistent with the findings reported here. 

For example, Jia et al found heterogeneity in topic engagements which are consistent with 

findings in Fig 2c & 2f. It also proposed a random-walk based model to capture the exploration vs 

exploitation processes, which also resembles at a high level the model proposed here. I think the 

authors need to offer a more clear articulation of differentiation between this work and prior 

scholarship, especially given that the present work uses the same data with a similar theoretical 

framework. Otherwise it feels results reported in Fig 2 can be largely anticipated by prior work in 

this area. And if it’s indeed the case, it should be clearly noted in the paper.  

Reply: We thank the referee for this important suggestion. Jia et. al [24] (now ref. [27] in the 

revised manuscript) indeed made an important step towards understanding the "macroscopic" 

patterns that underlie the research-interest evolution of the overall scientists career. The key 

finding in [24] is that research interest distance between the earliest and the latest stages of 

scientists’ career follow an exponential distribution. They finally proposed a “seashore walk” 

model which successfully reproduced this empirical observation. Some of our empirical findings 

are indeed consistent with those presented in ref. [24] as stated better now in the revised 

manuscript. However, as the analysis in ref. [24] is focused on the overall change of the research 

interests over scientists’ whole careers, still very little is known about the "microscopic" dynamics 

of the short time (paper by paper) topic switching within the individual career. Our paper aims to 

address this issue. The novelty of our work can be further summarized in the following three 

aspects. 

 



(1) One of the novelty issues in our paper is the applying of community detection algorithms for 

each individual scientist’s co-citing network to identify his/her major research topics. 

Comparing the ref. [24] which relies on PACS code (only enforced from 1985 to 2015), our 

methodology is more general and not restricted to availability of field classification codes. 

Thus, it can be applied also to the time periods when the PACS code did not exist, and 

therefore revealing the increasing trend of scientists to switch between topics over the past 

100 years. 

 

(2) Instead of the overall change of the research interests between the beginning and the end of 

careers studied in ref. [24], the focus of our paper is on the microscopic dynamics of the topic 

switching, paper by paper, within each research career. This difference results in a series of 

novel findings. We find that scientists tend to be involved in very small number of topics 

during their early career, while the change of interest happens in the more mature stages of 

scientists’ careers. We also reveal how switching topics in different career stages is associated 

with scientists’ research performance (productivity and impact).  

 

(3) Despite that both the seashore walk model in ref. [24] and our Exploitation-Exploration model 

are random-walk-based, yet they are essentially different in the design and the results. In ref. 

[24], the main purpose of the seashore walk model is to capture the exponential distribution of 

the overall change of the research interests, so it incorporates three key features (i.e. 

heterogeneity, subject proximity, and recency) to modify the standard random walk process. 

The model in ref. [24] assumes that a scientist always walks to the neighboring location, and 

two neighboring locations have highly similar topics. So this model assumes scientists change 

research interest gradually. It cannot capture the dramatic topic switching behavior (switching 

to a very different topic) in two adjacent publications, which is observed in our empirical 

analysis. In our model, we aim to reproduce the structure of the co-citing network and the 

microscopic dynamics of the topic switching. We thus introduce the restart mechanism and 

long-jump mechanism to the random walk process.  

 

Thanks to the referee's comment, we have added in the revised manuscript a paragraph in the 

discussion section that summarizes the important findings in ref. [24], and also highlights the 

novelty of our paper by discussing in detail the differences between our work and ref. [24].    

   

2. I believe Fig 3 offers new empirical observations which look at the dynamics of topic switching 

along a career. I think the pattern is intriguing and value adding to the literature, but I don’t think 

there’s enough evidence in the main text or SI to support the conclusion of this rise-and-fall 

pattern. The main reason is that Fig 3a is strongly influenced by the typical career length within 

the sample of scientists studied, as well as their productivity profiles (how productivity changes 

over a career). The authors attempted to account for these confounds using Fig 3b, but in my view, 

it doesn’t eliminate at all these concerns, as Fig 3b could hold independent of these 



productivity/career longevity factors. Given the importance of this result to carry the paper, I think 

it’s important to rule out these confounding factors, and I suggest two ways to examine it further. 

First, instead of plotting as a function of year, the authors should plot it as a function of the 

number of papers published in a career, which would eliminate the varied productivity intensity 

over a career. Second, one should repeat these results by using different career length. For 

example, there are only few scientists with career length 40 year (evidence from Fig. S1), which 

means the sample size is substantially different for 10-year or 40-year career length. It is necessary 

to control for career length so that the measurements do not mix different scientists with different 

career age. Another possible way to solve this issue is to focus on the normalized career age (i.e., 

from 0 to 1).  

Reply: We thank the referee for these excellent suggestions for removing the effect of career 

length and productivity profiles in studying the topic switching behavior during different career 

stages. Accordingly, we have tried both. In Fig. R11a, we plot the switching probability as a 

function of the number of papers published in a career. As we consider scientists who published at 

least 50 papers, we present the switching probability until the number of papers reaches 50. The 

switching probability afterwards becomes extremely noisy because fewer and fewer scientists are 

taken into account when averaging the switching probability. In Fig. R11b, we plot, as suggested 

by the referee, the switching probability as a function of year for only the scientists with career 

length exactly equal to 40 years (85 scientists in total). This figure becomes noisier because the 

curve obtained by averaging over a small number of scientists. In Fig. R11c, we plot the switching 

probability as a function of the normalized career age. In all Figs. R11abc, the rise-and-fall pattern 

of the switching probability still exists. In particular, the switching probability peaks around 15th 

career year in Fig. 3b in the manuscript and it peaks around 30 papers in Fig. R11a. Indeed, we 

find that the average number of papers that scientists published in their first 15 career years is 31.7, 

indicating that the peaking positions are consistent in these two figures. We have added Fig. R11a 

to the revised manuscript (see Fig. 3b) and the corresponding discussion has been added to the 

revised manuscript (see page 6). 

  

Fig. R11, (a) The switching probability as a function of the number of papers published in a career. (b) The 

switching probability as a function of year for only the scientists with career length 40 years. (c) The 

switching probability as a function of the normalized career age. 

 

3. In fig 3cd, the authors go beyond the average effect and look at tails (top 10%). But top 10% is 

a rather odd choice. I’d suggest top 5% or even 1% as alternatives and also controlling for its 



career stage and topic areas when computing the percentiles. Similarly, for measurements related 

to average citations, it is necessary to control for different subfields. One way to do this is to use 

Radicchi et al 2008 methodology.  

Reply: We appreciate this suggestion. When we analyze the relation between the yearly switching 

probability and scientists’ research performance, the number of scientists taken into account is 

3420 (the scientists with at least 50 papers to ensure meaningful community detection results). 

Considering taking the top-5% or 2% will result in a very small number of scientist (171 for top-5% 

and 68 for 2%), we choose top-10% (342) scientists with the highest performance in order to 

obtain a smoother curve with clearer trend. However, we remark that although noisier, the trend 

for 5% or 2% is the same as that for 10%, see Fig. R12 below. The analysis of the scientists with 

at least 20 papers in the supplementary materials includes 15373 scientists. In this case, we choose 

top-2% (307) scientists with the highest performance (see Fig. S17 in SI).  

  

Fig. R12, (a) Comparison of the overall switching probability (all scientists) with the switching probability of 

the 2%, or 5% or 10% most productive scientists in different career years. (b) Comparison of the overall 

switching probability (all scientists) with the switching probability of the 2%, or 5% or 10% scientists who has 

the highest mean citation per paper. 

 

We next analyze the productivity and mean citation per paper in scientists’ early career and later 

career. In Fig. R13, we find that both quantities are highly correlated in scientists’ early career and 

late career. The Pearson correlation is 0.42 for the productivity, and 0.27 for mean citation per 

paper. Therefore, the top productive scientists we considered in Fig. R12 are in general productive 

in both stages of their careers. Similarly, the top scientists with highest mean citation per paper 

tend to have high citation per paper in each stage of their careers. 



         

Fig. R13, (a) Scatter plot of the productivity in scientists’ first 20 career years and after scientists’ 20 career 

years (Pearson correlation is 0.42). (b) Scatter plot of the mean citation per paper in scientists’ first 20 career 

years and after scientists’ 20 career years (Pearson correlation is 0.27). 

 

Following the referee’s suggestion, we also re-analyzed the switching probability by controlling 

the topic areas when computing the percentiles. Here, we use PACS codes to identify the general 

topic area of scientists. This classification uses four digits and an extra identifier. The 1-digit 

identifies 10 different physics subfields. As PACS codes are only enforced in APS journals from 

1985 to 2015, a large number of papers do not have such codes. Among the scientists with at least 

50 papers, we select those who have at least 70% papers with PACS codes, resulting in 2210 

scientists. In order to control topic areas when computing the percentiles of best performing 

scientists, we assign each scientist to only one subfield (according to the first digit of the PACS 

code). Scientists may have papers belonging to multiple subfields, but some of these might not be 

significant. Here, we use the Revealed Comparative Advantage (RCA) index to assign each 

scientist only to the subfield on which their engagement is most significant. Mathematically, the 

index can be expressed as 

       
         

            
, 

where     is an integer corresponding to the number of publications of author i in subfield  . 

Each scientist is assigned to a subfield in which he/she has the highest RCA value. The 

distribution of these scientists in each subfield (according to the first digit of the PACS code) is 

presented in Fig. R14a.  

 

We thank the referee and agree that Radicchi et al 2008 methodology is a useful tool for fair 

comparison of scientists and citations of papers from different subfields. Following the same 

principle, we use an alternative way to control different subfields when selecting top performing 

scientists. We take the top 10% most productive scientists from each subfield, forming one group 

of scientists (we also study top 2% and 5%, see Fig. R14). We find in Fig. R14b that the switching 

probability of the top productive scientists show consistent trend as that presented in Fig. 3c in the 

manuscript. High switching probability in early career is associated with low overall productivity, 

while it is correlated with high overall productivity in latter career. Moreover, we take the top 10% 



(or 5%, or 2%) scientists in each subfield whose publications has highest mean c10. In Fig. R14c, 

we find that the switching probability of these highly cited scientists have always lower switching 

probability than average, consistent with our observation in the scientists with high overall mean 

c10 per paper (see Fig. 3d in the manuscript). Fig. R14 has been added to the SI (see Fig. S11) and 

discussed in the revised manuscript (see page 8). 

 

Fig. R14, (a)The distribution of the scientists in each subfield (according to the first digit of the PACS codes). 

(b) Comparison of the overall switching probability (all scientists) with the switching probability of the 2%, or 5% 

or 10% most productive scientists in different career years. (c) Comparison of the overall switching 

probability (all scientists) with the switching probability of the 2%, or 5% or 10% scientists who has the 

highest mean citation per paper. In this figure, the topic areas are controlled when computing the percentiles.  

 

4. Figure 4 reports another key finding of the paper, but there are key confounding factors left 

unaddressed. For example, the number of papers and scientists grow exponentially (Fig. S1), how 

would this growth affect results in Fig. 4? For example, to answer this question, one may consider 

to construct a null model to eliminate this effect. And more importantly, what’s the effect of 

collaborations in the topic switching behavior? We know that teams are on the rise, and 

collaboration is an important means for scientists to engage in a new topic. To what degree can Fig 

4b & 4d be explained by the increasing trends of collaborations? More generally, using the 

methodology presented here, how do you account for the fact that some topic switching may 

simply reflect the expertise of other collaborators, rather than an endogenous process as proposed 

in the model?  

Reply: Thanks for this comment. To remove the effect of increasing number of papers and 

scientists, we construct a null model in which we preserve the published papers for each scientist, 

yet we reshuffled the time order of these papers. Thus, the detected communities in each scientists’ 

co-citing network is kept unchanged while the switching probability over his/her career will be 

altered. We compute in this null model the average switching probability of scientists who started 

their career in different years. As shown in Fig. R15, the switching probability is stable over the 

years, different from the increasing trend observed in the real data. In this null model, the number 

of papers and scientists grows exponentially the same as for the real data. Therefore, the results 

suggest that the increasing trend of switching probability in real data is not caused by the 

increasing number of papers and scientists. We include this test in the revised SI (see Fig. S15) 

and add a discussion of the results in the revised manuscript (see page 9). 

 



 

Fig. R15, (a) The average switching probability of scientists in the null model who started their career in 

different years. For each scientist, we only consider the first y career years to obtain a fairer comparison of 

scientists with different career length. (b) Distributions of the switching probability for scientists in the null 

model who started their career between 1940 and 1950, for those between 1950 and 1960, for those 

between 1960 and 1970, and for those between 1970 and 1980. 

 

Collaboration indeed affects the switching probability. However, in our paper we only consider the 

switching probability between major communities (size>2). If a scientist rarely collaborates with 

others in another field, it is not regarded as a switching. Once the frequency of collaboration to 

scientists from a field is substantial and forms a major community in the co-citing network, the 

collaboration will result in higher switching probability. In this case, the scientist can be 

considered to have switched topics.  

 

In order to test, as suggested by the referee, whether and how much our findings are impacted by 

collaborative effects, we analyzed the data as follows. We assign a paper impact among authors in 

the case of multi-authored papers, using the collective credit allocation approach [PNAS 111, 

12325 (2014)]. This method assigns credits based on the community perception, i.e., each citing 

paper expresses its perception of the scientific impact of a paper’s coauthors by citing other papers 

published by the same authors on the same subject. We thus filter out a scientist’ papers in which 

the credit share of the scientist is lower than a certain value \epsilon (e.g. \epsilon=0.2 or 

\epsilon=0.4). After filtering out these papers, we re-analyze the individual and collective 

switching patterns of scientists. The results are shown in Fig. R16. Although the results are noisier 

due to the smaller sample size after data filtering, we find no qualitative difference compared to 

our previous results presented in the manuscript (Figs. 3cd and 4ab), suggesting that our findings 

are robust to co-authorship effects. Fig. R16 has been added to SI (see Fig. S16) and the results are 

brief discussed in the revised manuscript (see page 9). 

 



 

Fig. R16, (a)(b) Comparison of the overall switching probability (all scientists) with the switching probability of 

the 10% most influential scientists in different career years. The influence of scientists is respectively 

measured as number of publications and citations per paper. (c)(d) The average switching probability of 

scientists who started their career in different years. For each scientist, we only consider the first y career 

years in order to perform a fairer comparison of scientists with different career length. To reduce the effect of 

multi-authored papers, we filter out a scientist’s papers in which the credit share of the scientist is lower than 

a certain value \epsilon. The parameter \epsilon is 0.2 in (a)(c), and 0.4 in (b)(d). 

 

5. The main question is the validity of the model. I think the modeling aspect of the paper is what 

makes it a strong paper, and I appreciate the generative nature of the model. But it’s not clear that 

the model actually captures the (interesting) empirical observations made in the paper. For 

example, it’s not clear to me how a random walk with restart can account for topic heterogeneity – 

the fact that scientists engage disproportionately in different topics. What’s the model prediction 

for quantities measured in Fig 2d, e, f? Does the model recover the same results? For the network 

predicted by the model (Fig 5b), does it resemble those observed in real data (fig. 1b)? Does the 

predicted network have hubs? Do they have the same degree distribution as networks constructed 

from real careers? Quantitative answers to these questions are critical to establish the validity and 

boundary of the model. They will help us understand what does the model capture? What does it 

not capture? And If not, why?  

Reply: Thanks for this very constructive comment. We studied in the revised manuscript, as 

suggested by the referee, the statistics of the generated scientists’ co-citing networks (CCNs) 

based on our model with parameters p=0.6 and q=0.2. Specifically, we compute the quantities 

measured in Figs. 2a, b, d, e, f as well as the degree of the hub (maximum degree) in scientists’ 

CCNs (see results in Fig. R17).  

 

In Fig. R17a, we study the size of giant component (GC) of the modeled CCNs and study their 

correlation with the network size. Similar to the results of real data in Fig. 2a, most of the points 



are located close to the diagonal line, indicating that modeled CCNs are also well connected and 

have relatively large GCs. In Fig. R17b, we plot the maximized modularity, Qmodel, in the modeled 

CCNs and the maximized modularity, Qrand, in their degree-preserved reshuffled counterparts. All 

points are located under the diagonal line, consistent with the results of real data in Fig. 2b. In Fig 

R17c, we show the Gini coefficient of the distribution of PACS codes in different communities of 

the modeled CCNs. The results are compared with random counterparts where the PACS codes are 

reshuffled among each individual scientist’s papers while the community structure is preserved. 

Similar to the results of real data in Fig. 2f, we observe that the mean Gini coefficient in the 

modeled data is higher than that in the random counterpart, suggesting that papers in a community 

of the modeled CCNs tend to share the same PACS codes.  

 

In Fig. R17d, we compare the fraction of papers in different communities of real data and model 

data. One can see that topic heterogeneity exists in both cases, i.e. scientists engage 

disproportionately in different topics. However, there are still some quantitative difference 

between the real data and model data. Similar differences are observed in Fig. R17e when we 

study the inverse cumulative probability of fraction of nodes in the three largest communities. In 

Fig. R17f, we present the distribution of the maximum degree in scientists’ real CCNs and 

modeled CCNs. In both distributions, exponential tails can be observed, while the tail of real data 

is fatter than that of the model data, indicating that the hubs in real CCNs have larger degree. 

 

Thus, the above results are actually qualitatively predictable from the mechanism of our model. As 

described in the manuscript, we model the research activities of scientists as discovery process in 

the knowledge space. The knowledge space is represented as a network consisting of all the APS 

papers, with any two nodes (papers) linked if they share at least one reference. Therefore, the 

underlying network has already community structure with heterogeneous size and meaningful 

representation of topics. The sub-network activated by this scientist during her career forms a 

personal network recording all her papers as well as the links. The resultant sub-network sampled 

from this complete network will also have community structure with heterogeneous size, and 

papers in a community will tend to share the same PACS codes. The topic heterogeneity of 

scientists can thus be naturally generated. As the random walk (even with restart) tend to visit 

large degree nodes, the resultant network will also include some hubs. The main contribution of 

our model is that it captures the main mechanisms (i.e. restart and long-jump) leading to the topic 

switching behavior observed in real data, including the high switching probability (switching back 

to old topics) as well as small isolated communities (switching to very dissimilar topics). These 

two mechanisms were not discussed in the earlier studies modeling the evolution of researchers’ 

interest. 

 

In fact, the real discovery process of a scientist in the knowledge space is a complex behavior, 

driving by multiple factors, such as collaboration, equipment constraints, funding. Our model 

cannot take into account all these factors; thus, this could yield some quantitative differences 



between the modeled CCNs and the real CCNs (Figs. R17 d-f). Also, despite that the network 

predicted by the model (Fig 5b) has qualitatively similar structural and temporal features to real 

data, one would still see large difference if comparing the papers one by one to the real data. 

Finally, we remark that our model provides a general framework for modeling the microscopic 

research patterns of scientists. With more future effort made to enrich this model by incorporating 

more factors, the difference between the model data and real data can be largely reduced. The 

above discussion has been added to the revised manuscript (see page 12). Fig. R17 has been added 

to SI (see Fig. S23). 

 

 

Fig. R17, (a) The size of the modeled co-citing network (CCN) versus the size of CCN’s giant component 

(GC). Each point represents a scientist. (b) The maximized modularity in the modeled CCNs and the 

maximized modularity in their degree-preserved reshuffled counterparts. (c) The Gini coefficient of the 

distribution of PACS codes in different communities. The model data is compared with a random counterpart 

where the PACS codes are reshuffled. (d) The fraction of papers in different communities of real data and 

model data. (e) The inverse cumulative probability of fraction of nodes in the three largest communities for 

real data and model data. (f) The distribution of the maximum degree in scientists’ real CCNs and modeled 

CCNs. 

 

6. Also is the underlying knowledge space a lattice? If not, presenting it as lattice in Fig 5a would 

be misleading.  

Reply: Thanks for this comment. Indeed, the underlying knowledge space is not a lattice. It is 

represented as a network consisting of all the APS papers, with any two nodes (papers) linked if 

they share at least one reference. Following the referee’s suggestion, we have modified the 

underlying lattice network to a random network with more complex structure in Fig. 5a, see also 

below. 



 

Fig. R18, Illustration of the Exploitation-Exploration model (EEM). The research activity is modeled as a node 

activation process in the knowledge space. For more information for this model, see the caption in Fig. 5 in 

the revised manuscript. 

 

7. For discussion part, I think the authors should be more specific about potential implications of 

their results. If these results are true, what do they mean for funders or decision makers?  

Reply: Thanks. According to the referee's suggestion, the following discussion about potential 

implications of our results has been added in the discussion section. 

 

“One of the main findings in this paper is that frequent topic switching in the early career is 

adverse to the success of a scientist’s career. Therefore, our results suggest that funders and 

decision makers should encourage young scientists to concentrate on their current topics. For 

instance, more follow-up grants can be given to young scientists for studying topics that they have 

already studied. Another possible way is to introduce long term performance appraisal for young 

scientists so that they can devote themselves to study longer a topic, instead of struggling for 

finding many easy and quick topics.” 

 

I hope these comments are helpful in thinking about how to revise the piece.  

Reply: Thank you very much for the very constructive comments. 



Reviewers' Comments:  

 

Reviewer #1:  

Remarks to the Author:  

The authors completely addressed my concerns, and the paper in the current form is deserving 

publication, so I recommend acceptance.  

 

 

 

Reviewer #2:  

Remarks to the Author:  

The authors have addressed all my concerns.  

 

 

 

Reviewer #3:  

Remarks to the Author:  

I continue to love the paper. The authors did a good job responding to various comments raised by 

me and other reviewers, and in doing so, the paper has improved even further. I believe the paper is 

novel, and deserves to be published. The methodology of using co-citation network to quantify 

research interest shifts is simple but generalizable, and has the potential to become a widely used 

method with a substantial amount of follow ups.  

 

That being said, I recommend the authors to take into account my comments below when preparing 

the paper for publication:  

 

Fig R11a is helpful, and has now been included in Fig 3b inset. It adjusts for productivity and tells a 

more intuitive story about switching behavior. On the other hand, however, it seems the pattern is not 

quite rise-and-fall any more, but can be described as rise-and-level-off. I wonder if the discussions 

around this result should be adjusted accordingly. Right now, it’s framed as the conclusions don’t 

change when accounting for productivity, but is it really true? Also, I wonder if one should do the 

same adjustment for Fig 3cd when plotting for top productivity/impact cohorts, especially that they 

also tend to follow a rise-and-level-off pattern.  

 

I appreciate the additional analyses and stress tests for the model. As I mentioned in my previous 

comment, I think the model is an important contribution. Being a simple model, no one expects it to 

capture every aspect of data, and I feel the model is good enough to capture the key properties being 

discussed in this paper. But, I also feel it’s important to discuss its limitations, and I believe being 

more explicit about what’s not yet captured can actually help the paper, as future works will build on 

the paper and model. Which makes me wonder if the authors should incorporate Fig R17 into the main 

text. Right now, this part is buried in the supplement. But given the empirical insights presented in Fig 

1 & Fig 2, I imagine many readers would wonder what the model predicts for these quantities.  

 

Lastly, adding the implications strengthened the discussion part of the paper. But I suggest the 

authors use more suggestive language in these remarks. For example “is adverse to the success… ” 

can be changed to “may be adverse to the success…”.  

 

I trust the authors make these changes. Congratulations on a strong piece!  



---------------------------------------------------------- 

Response to Reviewer #3  

---------------------------------------------------------- 

I continue to love the paper. The authors did a good job responding to various comments raised by 

me and other reviewers, and in doing so, the paper has improved even further. I believe the paper is 

novel, and deserves to be published. The methodology of using co-citation network to quantify 

research interest shifts is simple but generalizable, and has the potential to become a widely used 

method with a substantial amount of follow ups.  

 

That being said, I recommend the authors to take into account my comments below when preparing 

the paper for publication: 

 

Fig R11a is helpful, and has now been included in Fig 3b inset. It adjusts for productivity and tells 

a more intuitive story about switching behavior. On the other hand, however, it seems the pattern is 

not quite rise-and-fall any more, but can be described as rise-and-level-off. I wonder if the 

discussions around this result should be adjusted accordingly. Right now, it’s framed as the 

conclusions don’t change when accounting for productivity, but is it really true? Also, I wonder if 

one should do the same adjustment for Fig 3cd when plotting for top productivity/impact cohorts, 

especially that they also tend to follow a rise-and-level-off pattern.  

Reply: We thank the reviewer for loving the paper and his/her good suggestion. As suggested, we 

have changed the description of the evolution pattern of switching behavior from “rise-and-fall” to 

“rise-and-level-off” in the revised manuscript. However, regarding plotting the switching 

probability versus the number of publications in Fig. 3cd, it might not be best for illustrating the 

different topic switching behavior between top productivity/impact cohorts and ordinary scientists. 

This is because the top productive cohorts have much more papers than ordinary scientists and this 

will result in comparing a longer curve with a shorter curve in same figure (if x-axis is chosen as 

the number of publications). We thus keep the original Fig. 3cd (the switching probability versus 

career years) in the revised manuscript for better illustrating the topic switching behavior of top 

productivity/impact cohorts. 

 

I appreciate the additional analyses and stress tests for the model. As I mentioned in my previous 

comment, I think the model is an important contribution. Being a simple model, no one expects it 

to capture every aspect of data, and I feel the model is good enough to capture the key properties 

being discussed in this paper. But, I also feel it’s important to discuss its limitations, and I believe 

being more explicit about what’s not yet captured can actually help the paper, as future works will 

build on the paper and model. Which makes me wonder if the authors should incorporate Fig R17 

into the main text. Right now, this part is buried in the supplement. But given the empirical insights 

presented in Fig 1 & Fig 2, I imagine many readers would wonder what the model predicts for these 

quantities.  

Reply: Thanks for the appreciation of the new tests we added for our model and for this good 

comment. Following the referee’s suggestion, we have moved Fig. R17 to the revised manuscript, 

accompanied with a discussion of the results in the main text.  

 

Lastly, adding the implications strengthened the discussion part of the paper. But I suggest the 



authors use more suggestive language in these remarks. For example “is adverse to the success… ” 

can be changed to “may be adverse to the success…”.  

Reply: Thanks for this suggestion. In the revised manuscript, we have modified the phrase “is 

adverse to the success” to “may be adverse to the success”. 

 

I trust the authors make these changes. Congratulations on a strong piece!  

Reply: We thank the referee for congratulating us and in particular for helping us to significantly 

improve the manuscript. 
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