
BASALT refines binning from metagenomic data and increases resolution of 

genome-resolved metagenomic analysis 

Supplementary Note 1 

BASALT improves recognition of non-redundant bins. 

BASALT platform recognizes and accepts various types of metagenomic sequence data as initial input 

files, including short read sequences (SRS), long read sequences (LRS) and hybrid sequences to be 

used in different assembly strategies. The advantage of input with multiple files is not limited to the 

reduction of computational time (i.e., process all datasets with binning together other than individually) 

but could also generate more bins than individually assembled samples. For example, using SRS, 

binning using multiplexed samples generated 16.3%, 14.2% and 11.1% more non-redundant MAGs 

than single-assembled samples when using DASTool (MCM), VAMB and metaWRAP (MCM), 

respectively on CAMI-medium dataset (Supplementary Figure 4, Supplementary Data 3). Such 

increasing rate on CAMI-high dataset were 8.2%, 11.0% and 9.0%, respectively (Supplementary 

Figure 3, Supplementary Data 3). 

Despite the advantage above, a major drawback using multiplexed samples was the generation of 

replicated bins (or pseudo-genomes), which is wasteful of computing power. To address this issue, the 

Bin Selection Module includes a bin dereplication function to facilitate identification of redundant bins 

generated by co-assembled contigs in SRS data 1. After processing with the BASALT Bin Selection 

module, no redundant bins were found among bin sets of CAMI-medium or CAMI-high datasets 

assembled with SPAdes, whereas VAMB, DASTool, and metaWRAP, respectively generated 77.1%, 

85.9%, and 95.0% redundant bins in CAMI-medium reads data, and 52.3%, 84.8%, and 72.7% 

redundant MAGs in the CAMI-high dataset (Supplementary Figure 3D, 4D, Supplementary Data 3).  

On the other hand, no redundancy was found in BASALT produced MAGs. In comparison of MAGs 

(Quality score ≥ 50) obtained via different toolkits, BASALT resulted in 27.1%, 7.0%, 1.7% (CAMI-



medium) and 50.9%, 50%, 11.7% (CAMI-high) more non-redundant MAGs than DASTool, VAMB 

and metaWRAP, respectively (Supplementary Figure 4D, Supplementary Data 3). Moreover, in top-

qualitied CAMI-high MAGs (Quality score ≥ 90), BASALT obtained 38%, 47.7% and 17.6% more 

non-redundant MAGs than DASTool, VAMB and metaWRAP, respectively (Supplementary Figure 

3D, Supplementary Data 3). MAGs recovered from SPAdes assembled contigs on CAMI-medium 

dataset, as well as MAGs recovered from MEGAHIT assembled contigs on CAMI-medium and -high 

datasets showed similar trends and significance in comparison between BASALT and other tools 

(Supplementary Data 3). These results indicated that BASALT could be used to eliminate redundant 

bins from data processed by other tools. 

 

Supplementary Note 2 

BASALT optimizes bins from lower-performance options and other pipelines. 

In BASALT, each module can be applied independently, consequently enabling refinement of user 

binsets with optimal parameters appropriate with their specific data, and improving the quality of bins 

acquired from other tools, especially existing binsets or assemblies of publicly available data. In 

addition to eliminating bin redundancy in co-assembled datasets, post-binning refinement modules 

(i.e., Bin Selection, Refinement, and Gap Filling Modules) can also remove redundant bins generated 

by other tools to improve bin Quality. In CAMI-high binsets assembled by SPAdes with VAMB, 

DASTool, or metaWRAP, refinement with BASALT respectively increased the number of high-quality 

MAGs (Quality ≥ 80) by 12.6%, 11.7%, and 13.0% (Supplementary Figure 6A & B). In MEGAHIT-

assembled datasets, the number of high-quality MAGs were increased by 17.0%, 31.4%, and 18.0% 

compared to VAMB, DASTool, and metaWRAP outputs, respectively (Supplementary Figure 6C & 

D). Moreover, BASALT can also directly integrate LRS assemblies with the Gap Filling module to 

elongate contigs and fill gaps in bins without conducting hybrid assembly (Supplementary Figure 6, 

Supplementary Data 3), which can also improve bin Quality and continuity. This improvement resulted 



in 11.2%, 11.2% and 12.4% more top-qualitied (Quality score ≥ 80) and non-redundant MAGs 

retrieved using SPAdes, and 9.0%, 25.0% and 10.1% using MEGAHIT via VAMB, DASTool, and 

metaWRAP, respectively on CAMI-high dataset (Supplementary Data 3). Less improvement was 

found on CAMI-medium dataset (Supplementary Data 3), suggested that BASALT with better 

performance on datasets with higher complexity. Overall, BASALT could be integrated into other 

binning tools for higher MAG number and qualities, especially in the presence of long sequence reads 

to largely augment MAG integrity and qualities. 

 

Supplementary Note 3 

Better performance of BASALT than metaWRAP and MAG-HiFi pipeline on real samples. 

To enhance the assessment the performance of BASALT across diverse sample types in addition to 

saline lake sediment samples, we further compared the metagenome-assembled genomes (MAGs) 

produced by BASALT against those generated by metaWRAP from same assemblies from nine sample 

sources. These samples included marine, human gut (Dataset 1), activated sludge, and Antarctic soil, 

where both short-read sequences (SRS) and long-read sequences (LRS) are available. Moreover, we 

also compared BASALT-generated MAGs with those from the MAG-HiFi pipeline (v2.1.0, 

https://github.com/PacificBiosciences/pb-metagenomics-tools) using identical assemblies from 

samples sequenced with PacBio HiFi, including human gut (Dataset 2, a different study from Dataset 

1), chicken gut, sheep gut, hot spring sediments, and anerobic digesters.  

Results showed that in SRS+LRS datasets, BASALT consistently outperformed metaWRAP by 

generating 9-42% more MAGs. In PacBio HiFi datasets, BASALT obtained 7-28% more MAGs 

compared to MAG-HiFi pipeline (Supplementary Figure 7, Supplementary Data 10). This was 

particularly conspicuous in high-quality MAGs, where BASALT retrieved 26-96% and 18-46% more 

MAGs than metaWRAP and the MAG-HiFi pipeline, respectively (Supplementary Figure 7, 

https://github.com/PacificBiosciences/pb-metagenomics-tools


Supplementary Data 10). A quality assessment revealed that MAGs obtained by BASALT had 

significantly better quality than the same MAGs acquired via metaWRAP (ANI ≥ 99%, AF ≥ 60%, 

hereafter shared MAGs) across all sample types except the Antarctic soil sample (one-way ANOVA, 

P < 0.01, Supplementary Figure 8A). The above data in conjunction with the results from Aiding Lake 

samples suggested that BASALT is capable of recovering more MAGs from different types of datasets. 

Furthermore, owing to the implementation of LRS, we evaluated the N50 value of shared MAGs 

generated by both BASALT and metaWRAP, as well as between BASALT and the MAG-HiFi pipeline. 

Results showed that MAGs from BASALT yielded in a higher N50 value from SRS+LRS samples 

compared to metaWRAP (Supplementary Figure 8B), while merely no difference was found from HiFi 

samples when compared to MAGs obtained by MAG-HiFi pipeline (Supplementary Figure 8C), 

suggesting that BASALT has better performance of obtaining longer contigs in these SRS+LRS 

samples. 

To further assess the MAGs from marine and human gut samples, we compared the average coverage 

of each MAG across these sample types. Results showed that MAGs uniquely derived from BASALT 

had a lower average coverage than that of metaWRAP in both marine and human gut samples 

(Supplementary Figure 9A). Particularly, the difference was statistically significant in marine samples 

(one-way ANOVA, P < 0.05). An ORF annotation revealed that BASALT MAGs contained more ORF 

than metaWRAP, regardless of the MAGs being classified or unclassified against NCBI RefSeq 

database (Supplementary Figure 9B). In conclusion, the results suggested that BASALT outperformed 

metaWRAP in generating more and better-quality MAGs across various sample types. 

 

Supplementary Methods 

Architecture of neural networks. 

To identify the redundant bins produced by Automated Binning Module from co-assembly datasets, a 



total of 20 neural networks were ensembled, each of them consists of multiple Fully-Connected (FC) 

layers trained on the data with different hyper-parameters. each neural network has three blocks with 

multiple Feed-Forward Network (FFN) modules in first two block and one FC classifier to classify 

‘redundant’ or ‘non-redundant’ in the last block. The FFN module comprises two FC layers as two 

linear transformations, each with a ReLU as activation function and followed by a Batch Normalization 

(BN) 2. The FFN value is calculated by Supplementary Equation (1): 

 Supplementary Equation (1) 

𝐹𝐹𝑁(𝑥) = 𝐵𝑁(max(0, 𝑥	𝑊! + 𝑏!)𝑊" + 𝑏")	, 

in which 𝑥 is the data feature, 𝑊! and 𝑊" are parameters of the first and second layer, respectively, 

while 𝑏! and 𝑏" represent the biases of the two FC layers, respectively. 𝐵𝑁 assists to normalize the 

data distribution in each layer, which is formulated as Supplementary Equation (2): 

 Supplementary Equation (2) 

𝐵𝑁(𝑥) = 𝛾 #$%[#]
()*+[#],-

+ 	𝛽	, 

where 𝐸[𝑥] and V𝑎𝑟[𝑥] are the mean and variances of input feature, 𝛾 and 𝛽 are learnable parameters 

to finetune the data distribution. 𝜖 is infinitesimal for stable division operations. 

To make each network can be trained deeply, we also apply residual connection 3 in the first two blocks, 

with the whole computation process in the neural networks as Supplementary Equation (3): 

 Supplementary Equation (3) 

𝑥. = 𝑥 + 𝐹𝐹𝑁(𝑥 + 𝐹𝐹𝑁(𝑥)), 

𝑦 = 𝑥.𝑊/0 + 𝑏/0, 

where  𝑊/0 and 𝑏/0 are the parameters of final classifier layer. 

In addition, we also apply feature engineering on the input dataset. In the training stage, the labelled 

data was split as training sets and testing sets, with the mean and maximized value of the data 



normalized in each input dataset. Then, the original input data with 10 dimensions was concatenated 

with 15 additional feature dimensions in the time frequency domain, including means, variance, square 

root amplitude, margin index, etc. Finally, the 40-dimension data features were generated as the final 

input data 𝑥 for neural networks. 

 

Loss function 

As we formulate this problem as a binary classification problem, cross entropy loss was directly used 

in training, formulated as Supplementary Equation (4): 

Supplementary Equation (4) 

𝑙𝑜𝑠𝑠 = −∑ 𝑤0log	
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∑ 123	(#")#
"

8
09! 𝑦0, 

where 𝑥 was used as the input, 𝑥 as the target, and 𝑤 represents the weight, 𝐶 represents the number 

of classes. Here, we set 𝐶 = 2 in the binary classification problem. The Formula S4 as cross entropy 

loss was used to train each neural network. 

 

Implementations 

Neural networks were trained using batch size 1024 with 1 NVIDIA 3090 GPUs. Pytorch 4 library was 

adopted to implement models and conduct all experiments. These models were trained for 100 epochs 

using AdamW 5 as the optimizer and cosine learning rate decay. 

 

Supplementary Figures 



 

Supplementary Figure 1. Location of Aiding Lake indicated with the red pin on the map. The map was generated 

by Google Map (Map data ©2024 Google). 

 

 



Supplementary Figure 2. Evaluation of Binning Efficiency on Opera-MS assembled CAMI-high dataset. a) 

Computation time of Binning based on CAMI-high hybrid assemblies using BASALT (red), DASTool (green), 

metaWRAP (cyan) and VAMB (purple). The x axis indicates time effort (hours), and y axis indicates summed 

Quality (Completeness – 5*Contamination) of filtered bins (completeness ≥ 35 and contamination < 20). 

BASALT results were showed finishing Bin Selection, Refinement, and Gap Filling Modules, respectively. b) 

Reads usage efficiency of BASALT (red), DASTool (green), metaWRAP (cyan) and VAMB (purple). 

 

 

Supplementary Figure 3. Comparison of BASALT with other binning tools/pipelines on SPAdes assembled 

CAMI-high dataset. a) Venn diagram showing number of MAGs recovered using different tools. There were 

142 MAGs found shared across all tools, while 28, 13, 4 and 10 MAGs were uniquely recovered using BASALT 

(red), metaWRAP (cyan), DASTool (green) and VAMB (purple) pipelines, respectively. b) Completeness, 

Contamination, and Quality of 142 shared MAGs recovered using VAMB (V, purple), DASTool (D, green), 

metaWRAP (M, cyan), and BASALT (B, red). MAGs recovered using BASALT had higher completeness and 

lower contamination, resulting in significant higher Quality value compared to VAMB, DASTool, and 

metaWRAP (Tukey test, Benjamini–Hochberg adjusted P < 1 ́  10-7). The boxplot shows the distribution of data, 

the central dot in the box represents the median, the box bounds represent the 25th and 75th percentiles, and 



whiskers represent the minima to maxima values. c) Pairwise comparison of MAGs shared by VAMB (purple, 

200 MAGs), DASTool (green, 163 MAGs), and metaWRAP (cyan, 211 MAGs), respectively. Overall, BASALT 

was superior in obtaining higher qualitied MAGs compared to other tools. The number of MAGs that BASALT 

gained higher quality value (bars in light green) was much more than the number of MAGs that other tools 

gained higher quality value (bars in light red) or had similar quality value (difference of value ≤ 1, bars in light 

blue). The boxplot shows the distribution of data, the central dot in the box represents the median, the box 

bounds represent the 25th and 75th percentiles, and whiskers represent the minima to maxima values. d) Number 

of MAGs recovered from CAMI-high dataset using DASTool, VAMB, metaWRAP and BASALT. In the first 

three tools, Co-assembly (CA) resulted in higher number of non-redundant MAGs compare to single assembly 

(SA) approach, while BASALT generated the highest quality and number of MAGs compared to other 

approaches. Color of bars indicated the quality of MAGs (50-100, from light to dark). 

 

 

Supplementary Figure 4. Comparison of BASALT with other binning tools/pipelines on MEGAHIT assembled 

CAMI-high dataset. a) Venn diagram showing number of MAGs recovered using different tools. There were 89 

MAGs found shared across all tools, while 16, 8, 4 and 2 MAGs were uniquely recovered using BASALT (red), 

metaWRAP (cyan), DASTool (green) and VAMB (purple) pipelines, respectively. b) Completeness, 

Contamination, and Quality of 89 shared MAGs recovered using VAMB (V, purple), DASTool (D, green), 



metaWRAP (M, cyan), and BASALT (B, red). MAGs recovered using BASALT had higher completeness and 

lower contamination, resulting in higher Quality value compared to VAMB, DASTool, and metaWRAP. The 

boxplot shows the distribution of data, the central dot in the box represents the median, the box bounds represent 

the 25th and 75th percentiles, and whiskers represent the minima to maxima values. c) Pairwise comparison of 

MAGs shared by VAMB (purple, 119 MAGs), DASTool (green, 108 MAGs), and metaWRAP (cyan, 152 

MAGs), respectively. Overall, BASALT was superior in obtaining higher qualitied MAGs compared to other 

tools. The number of MAGs that BASALT gained higher quality value (bars in light green) was much more 

than the number of MAGs that other tools gained higher quality value (bars in light red) or had similar quality 

value (difference of value ≤ 1, bars in light blue). The boxplot shows the distribution of data, the central dot in 

the box represents the median, the box bounds represent the 25th and 75th percentiles, and whiskers represent 

the minima to maxima values. d) Number of MAGs recovered from CAMI-high dataset using DASTool, VAMB, 

metaWRAP and BASALT. In the first three tools, Co-assembly (CA) resulted in higher number of non-

redundant MAGs compare to single assembly (SA) approach, while BASALT generated the highest quality and 

number of MAGs compared to other approaches. Color of bars indicated the quality of MAGs (50-100, from 

light to dark). 

 

 

Supplementary Figure 5. Estimation of microbial diversity on CAMI medium (green), CAMI high (blue), CAMI 

II challenge (navy – marine, violet – gi, purple – airway, pink – urog), Aiding Lake sediment, soil and 

rhizosphere samples using Nonpareil. Top broken lines indicate 95% and 100% sequence coverage, respectively, 



hallowed circles on the curves indicate the actual sample size, and arrows at the bottom indicate the sequencing 

effort at 50% sequence coverage. 

 

 

Supplementary Figure 6. Evaluation of BASALT refinement modules of genomes recovered by other binning 

tools/pipelines on CAMI-high dataset. Average length per contig of MAGs obtained via VAMB (purple), 

DASTool (DAS, green), metaWRAP (MWP, cyan) and BASALT (BST, red) were assessed based on a) SPAdes 

and c) MEGAHIT assemblers before (DAS, VAMB and MWP) and after BASALT refinement using short reads 

only (DAS+B, VAMB+B, MWP +B and BST) or combined short/long reads (DAS+BL, VAMB+BL, MWP+BL 

and BST+L). The sample size was shown on top of each tool group. The boxplot shows the distribution of data, 

the central dot in the box represents the median, the box bounds represent the 25th and 75th percentiles, and 

whiskers represent the minima to maxima values. Number of non-redundant and redundant MAGs obtained via 

different tools were summarized based on b) SPAdes and d) MEGAHIT assemblers before (DAS, VAMB and 

MWP) and after (DAS+B, DAS+BL, VAMB+B, VAMB+BL, MWP +B, MWP+BL, BST and BST+L) 

BASALT refinement. Color of bars indicated the quality of MAGs (50-100, from light to dark). 



 

Supplementary Figure 7. Comparison of MAGs obtained by BASALT and metaWRAP on metagenomic 

datasets from lake sediments, human gut (Dataset 1, SRS+LRS), marine water, Antarctic soil, activated sludge 

(AS), human gut (Dataset 2, PacBio HiFi LRS), chicken gut, hot spring sediments, and anerobic digesters (AD). 

Colors of bars indicate tools (cyan: metaWRAP, red: BASALT, green: MAG-HiFi pipeline) used to retrieve 

MAGs. Light colors indicate medium-quality MAGs (completeness ≥ 50% and ≤ 90 %, contamination ≥ 5% 

and ≤ 10 %), and dark colors indicate high-quality MAGs (completeness ≥ 90 %, contamination ≤ 5 %). There 

were more BASALT MAGs recovered across various datasets than other tools, especially in high-quality MAGs. 

 



 

Supplementary Figure 8. Comparison of shared MAGs (ANI ≥ 99%, AF ≥ 60%) obtained by BASALT, 

metaWRAP, and MAG-HiFi pipeline on metagenomic dataset of lake sediments, human gut (Dataset 1, 

SRS+LRS, n = 140), marine water (n = 77), Antarctic soil (n = 58), activated sludge (AS, n = 338), human gut 

(Dataset 2, PacBio HiFi LRS, n = 119), chicken gut (n = 107), sheep gut (n = 166), hot spring sediments (n = 

34), and anerobic digesters (AD, n = 69) real samples. a) MAG qualities of ten real samples. BASALT MAGs 

(red) had significant higher quality score (P < 0.05) than metaWRAP MAGs (cyan) in lake sediment (one-way 

ANOVA, P = 1.76 × 10-12), human gut Dataset 1 (one-way ANOVA, P = 0.0026), marine (one-way ANOVA, P 

= 0.0053), and AS (one-way ANOVA, P = 0.0039) samples. b) N50 value of shared MAGs retrieved by 

metaWRAP (cyan) and BASALT (red) from human gut Dataset 1, marine, Antarctic soil, and AS samples. 

Shared MAGs retrieved by BASALT had slightly higher N50 value than metaWRAP across all SRS+LRS 

samples except AS sample. c) N50 value of shared MAGs retrieved by MAG-HiFi pipeline (green) and 



BASALT (red) from human gut Dataset 2, chicken gut, hot spring, and AD samples. There were nearly no 

difference of N50 values between shared MAGs retrieved by BASALT and MAG-HiFi pipeline. The boxplot 

shows the distribution of data, the central dot in the box represents the median, the box bounds represent the 

25th and 75th percentiles, and whiskers represent the minima to maxima values. 

 

 

Supplementary Figure 9. Comparison of MAGs obtained by BASALT vs. metaWRAP from marine (n = 77) 

and human gut Dataset 1 (n = 140) samples. a) Boxplot of average bin coverage. Significant differences between 

MAGs unique to BASALT (red) and MAGs unique to metaWRAP (cyan) were determined by P < 0.05 in marine 

dataset (Kruskal-Wallis test, P = 0.015), while no significant difference was found in human gut dataset 

(Kruskal-Wallis test, P = 0.13). The boxplot shows the distribution of data, the central dot in the box represents 

the median, the box bounds represent the 25th and 75th percentiles, and whiskers represent the minima to maxima 

values. b) Summary of ORFs predicted in MAGs obtained by BASALT (red) or metaWRAP (cyan) from marine 

and human gut datasets. There were more classified and unclassified ORFs found in BASALT MAGs than 

metaWRAP MAGs in both unique and shared MAGs. 

 



 

Supplementary Figure 10. Phylogenetic tree of bacterial MAGs recovered from marine samples based on 120 

concatenated marker genes. Mid-point rooted phylogenetic tree was constructed using IQ-TREE with 1,000 

bootstraps and best fit models LG+F+R9. Blocks in the outer circles indicate corresponding MAGs recovered 

by BASALT (red) or metaWRAP (cyan). Black dots in the middle of branches indicate >50% bootstrap support, 

and branches highlighted in red indicate unique lineages at phylum level obtained by BASALT. 

 



 

Supplementary Figure 11. Phylogenetic tree of bacterial MAGs recovered from human gut samples based on 

120 concatenated marker genes. Mid-point rooted phylogenetic tree was constructed using IQ-TREE with 1,000 

bootstraps and best fit models LG+ R8. Blocks in the outer circles indicate corresponding MAGs recovered by 

BASALT (red) or metaWRAP (cyan). Black dots in the middle of branches indicate >50% bootstrap support.  

 

Supplementary References 

1. Stewart, R.D. et al. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome 
biology and enzyme discovery. Nat. Biotechnol. 37, 953-961 (2019). 

2. Ioffe, S. & Szegedy, C. in International conference on machine learning 448-456 (pmlr, 2015). 
3. He, K., Zhang, X., Ren, S. & Sun, J. in Proceedings of the IEEE conference on computer vision and pattern 

recognition 770-778 (2016). 
4. Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning library. Advances in neural 

information processing systems 32 (2019). 
5. Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017). 

 


