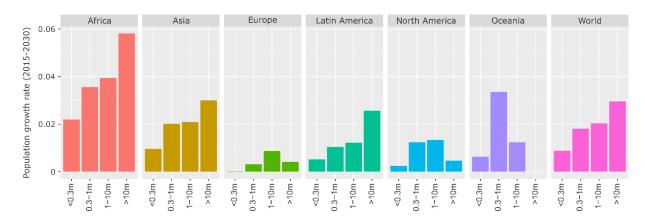


SUPPLEMENTARY INFORMATION

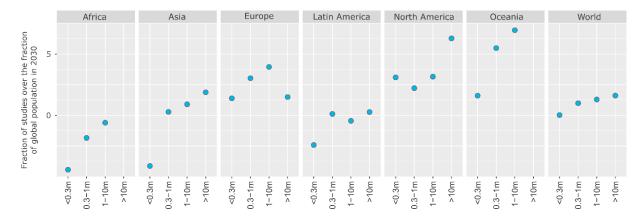
https://doi.org/10.1038/s41558-019-0440-x

In the format provided by the authors and unedited.

Learning about urban climate solutions from case studies


William F. Lamb 1.2*, Felix Creutzig 1.3, Max W. Callaghan 1.2 and Jan C. Minx 1.2

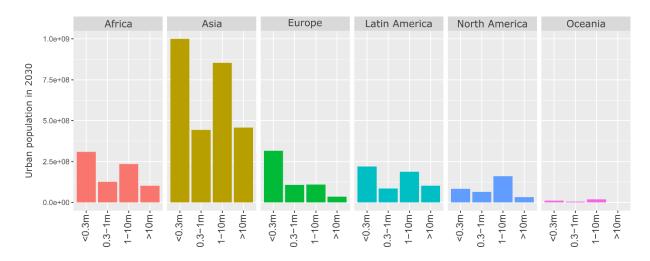
¹Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany. ²School of Earth and Environment, University of Leeds, Leeds, UK. ³Technische Universität Berlin, Berlin, Germany. *e-mail: lamb@mcc-berlin.net


Learning about urban climate solutions

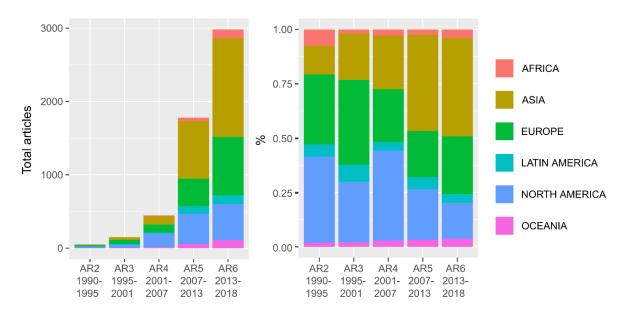
William F. Lamb^{1,2*}, Felix Creutzig^{1,3}, Max W. Callaghan^{1,2}, Jan C. Minx^{1,2}

Supplementary Figures

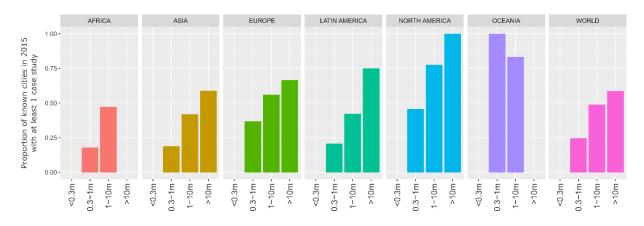
Supplementary Figure 1: Projected population growth rate by region and city size, 2015-2030. Population data from ref ¹, using agglomeration data where available.

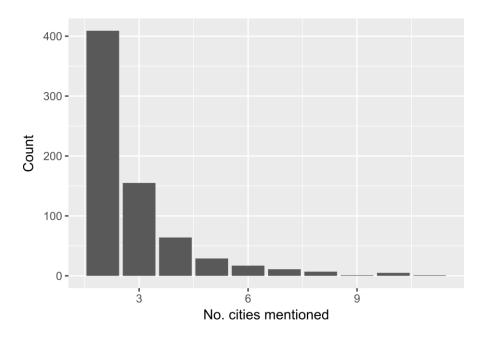

Supplementary Figure 2: The global distribution of urban case studies versus population size. To normalise, where the numerator (% of global population in a region & city size) exceeds the denominator (% of case studies in a region & city size), we subtract the fraction from 2. Population data from ref ¹, using agglomeration data where available.

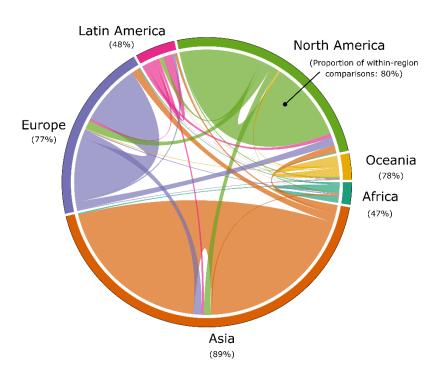
¹ Mercator Research Institute on Global Commons and Climate Change, Torgauer Straße 12-15, EUREF Campus #19, 10829 Berlin, Germany


² School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK

³ Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany


^{*} lamb@mcc-berlin.net


Supplementary Figure 3: Total urban population in 2030 by region and city size. Population data from ref ¹, using agglomeration data where available.


Supplementary Figure 4: Total articles and regional proportions of case study literature by IPCC Assessment Period

Supplementary Figure 5: Direct coverage of case studies. Missing values due to absent data (small cities) and because there are no mega-cities in Africa and Oceania as of 2015. Population data from ref 1 , using agglomeration data where available.

Supplementary Figure 6: Number of cities mentioned in comparative studies

Supplementary Figure 7: Inter and intra-regional comparative research on urban climate mitigation. Each link in the chord diagram is based on the pairwise coupling of two cities within a document. Documents where more than one city is mentioned in the abstract are used, totalling 699 studies. The proportion of regional couplings that pair with other regions (i.e. inter-regional urban comparisons) are indicated as percentages.

Supplementary Tables

ID Topic Name St		Stemmed Keywords	Marginal Topic Distribution (%)	
1	Climate governance	climat; chang; polici; local; govern	8.9	
2	Energy use	energi; consumpt; effici; sector; renew	8.0	
3	Energy systems	system; electr; power; cost; generat	7.4	
4	Urban form	urban; land; area; model; ecolog	7.3	
5	Buildings	build; energi; design; residenti; perform	6.8	
6	CO2 emissions	carbon; emiss; industri; low; intens	6.7	
7	GHG emissions	emiss; ghg; reduct; greenhous; gas	6.3	
8	Cooling demand	air; temperatur; cool; roof; climat	6.3	
9	Transportation	transport; traffic; travel; public; car	5.8	
10	Vehicles	vehicl; fuel; electr; charg; drive	5.0	
11	Households	household; incom; behavior; survey; resid	4.7	
12	Waste management	wast; landfil; solid; recycl; manag	4.7	
13	Heat demand	heat; district; thermal; pump; network	4.6	
14	Water demand	water; suppli; treatment; manag; wastewat	4.3	
15	Renewable energy	solar; radiat; energi; photovolta; collector	3.8	
16	Urban ecology	tree; forest; benefit; speci; plant	3.4	

Supplementary Table 1: List of topics and their keywords. Topic names are manually coded by the authors based on a review of the stemmed keywords and associated documents. The marginal topic distribution denotes the percentage of the document set where this topic is found. One topic was manually removed (keywords: lowcarbon; develop; industri; economi; citi) as this is largely synonymous in content with 'CO2 emissions' and is only relevant for a specific (but large) subset of studies in China.

Authors	Year	Title	Topics
Khalil,	2009	Energy efficiency strategies in urban	Buildings; Climate
H.A.E.E.		planning of cites	governance; energy use;
			urban form

A11:- C 0 D	2010	August and a service Charles and a service and a service and	B. S.B
Attia, S & De	2010	Active solar retrofit of a residential house,	Buildings; Heat demand;
Herde, A		A case study in Egypt	Cooling demand;
			Renewable energy
Fahmy, M &	2011	Urban form, thermal comfort and building	Buildings; GHG emissions;
Sharples, S		CO2 emissions - a numerical analysis in	Cooling demand; Urban
		Cairo	form
El-Deeb, K,	2012	Effect of building form and urban pattern :	Buildings; Urban form
El-Zafarany,		On energy consumption of residential	
A & Sherif, A		buildings in different desert climates	
Verdeil, E,	2015	Governing the transition to natural gas in	Climate governance;
Arik, E,		Mediterranean Metropolis: The case of	Energy use; Heat
Bolzon, H &		Cairo, Istanbul and Sfax (Tunisia)	demand; Renewable
Markoum, J			energy; Urban form
Dabaieh, M,	2015	Reducing cooling demands in a hot dry	Buildings; Cooling
Wanas, O,		climate: A simulation study for non-	demand
Hegazy, MA		insulated passive cool roof thermal	
& Johansson,		performance in residential buildings	
Е			
Kares, M &	2016	Assessment of building integrated	Buildings; Energy use;
Singh, P		photovoltaics for the residential section in	Households; Renewable
		representative Urban areas in Egypt	energy; Urban form
Aboulnaga,	2016	High-rise buildings in context of	Buildings
M.		sustainability; urban metaphors of greater	
		Cairo, Egypt: A case study on sustainability	
		and strategic environmental assessment	
Chen, H &	2017	Land-use planning for zero-energy-	Energy use; Urban form
Dietrich, U		buildings: Comparison of four high-density	
		cities	

Title	Method	Ref
The neglected social dimensions to a vehicle-to-grid (V2G)	Systematic review	2
transition: a critical and systematic review		
Interdependence between Urban Processes and Energy	Case meta-analysis	3
Transitions: The Urban Energy Transitions (DUET)		
Framework		
Decarbonising transport to achieve Paris Agreement	Quantitative synthesis	4
targets		
Green roofs against pollution and climate change. A review	Narrative review	5
Urban and peri-urban agriculture and forestry:	Narrative review	6
Transcending poverty alleviation to climate change		
mitigation and adaptation		
Prospects and challenges for sustainable sanitation in	Narrative review	7
developed nations: a critical review		
A meta-analysis of urban and peri-urban agriculture and	Narrative review	8
forestry in mediating climate change		
A review on co-benefits of mass public transportation in	Narrative review	9
climate change mitigation		
What do we know about the study of distributed	Bibliometric study	10
generation policies and regulations in the Americas? A		
systematic review of literature		
Co-benefits of greenhouse gas mitigation: a review and	Bibliometric study &	11
classification by type, mitigation sector, and geography	narrative review	
Benefits of green roofs: A systematic review of the	Quantitative synthesis	12
evidence for three ecosystem services		

Assessing the success of electricity demand response	Meta-analysis	13
programs: A meta-analysis		
The economic benefits and costs of trees in urban forest	Bibliometric study,	14
stewardship: A systematic review	quantitative synthesis &	
	narrative review	

Supplementary Table 3: Systematic reviews of urban climate change mitigation. The minimum criteria for a 'systematic review' here is the formal selection of literature via a database search query. Some reviews (10,11,13) focus on non-urban issues, but derive important conclusions for scientific learning at urban scale, and thus should be included in the relevant literature base on urban-scale climate change mitigation. See methods for our identification procedure.

Topic	Proportion (%)	Topic	Proportion
GHG emissions	9.6	Waste management	5.5
Climate governance	8.9	Vehicles	4.3
Energy consumption	8.3	Heat demand	3.9
Transportation	7.5	Renewable energy	3.8
Air pollution	7.5	Water demand	3.5
CO2 emissions	6.9	Urban ecology	2.9
Buildings	5.8	Cooling demand	2.7
Urban form	5.7	Households	2.6

Supplementary Table 4: Topic proportions of 'forward-looking' case studies

Region	No. case studies	No. 'forward-looking'	Proportion (%)
		studies	
Africa	158	12	8
Asia	1934	335	17
Europe	1145	227	19
Latin America	206	37	18
North America	1054	131	12
Oceania	151	23	15

Supplementary Table 5: Regional coverage of 'forward-looking' case studies

Supplementary references

- 1. UN DESA. *World Urbanization Prospects: The 2018 Revision*. (United Nations, Department of Economic and Social Affairs, Population Division, 2018).
- 2. Sovacool, B. K., Noel, L., Axsen, J. & Kempton, W. The neglected social dimensions to a vehicle-to-grid (V2G) transition: A critical and systematic review. *Environ. Res. Lett.* **13**, (2018).
- 3. Huang, P. & Castán Broto, V. Interdependence between Urban Processes and Energy Transitions: The Urban Energy Transitions (DUET) Framework. *Environ. Innov. Soc. Transitions* **28**, 35–45 (2018).
- 4. Gota, S., Huizenga, C., Peet, K., Medimorec, N. & Bakker, S. Decarbonising transport to achieve Paris Agreement targets. *Energy Effic.* 1–24 (2018). doi:10.1007/s12053-018-9671-3
- 5. Li, Y. & Babcock, R. W. Green roofs against pollution and climate change. A review. *Agron. Sustain. Dev.* **34**, 695–705 (2014).
- 6. Lwasa, S. *et al.* Urban and peri-urban agriculture and forestry: Transcending poverty alleviation to climate change mitigation and adaptation. *Urban Clim.* **7**, 92–106 (2014).
- 7. Brands, E. Prospects and challenges for sustainable sanitation in developed nations: a critical review. *Environ. Rev.* **22**, 346–363 (2014).
- 8. Lwasa, S. *et al.* A meta-analysis of urban and peri-urban agriculture and forestry in mediating climate change. *Curr. Opin. Environ. Sustain.* **13,** 68–73 (2015).
- 9. Kwan, S. C. & Hashim, J. H. A review on co-benefits of mass public transportation in climate change mitigation. *Sustain. Cities Soc.* **22**, 11–18 (2016).
- 10. Garcez, C. A. G. What do we know about the study of distributed generation policies and regulations in the Americas? A systematic review of literature. *Renew. Sustain. Energy Rev.* **75**, 1404–1416 (2017).
- 11. Deng, H.-M., Liang, Q.-M., Liu, L.-J. & Anadon, L. D. Co-benefits of greenhouse gas mitigation: a review and classification by type, mitigation sector, and geography. *Environ. Res. Lett.* **12**, (2018).
- 12. Francis, L. F. M. & Jensen, M. B. Benefits of green roofs: A systematic review of the evidence for three ecosystem services. *Urban For. Urban Green.* **28**, 167–176 (2017).
- 13. Srivastava, A., Van Passel, S. & Laes, E. Assessing the success of electricity demand response programs: A meta-analysis. *Energy Res. Soc. Sci.* **40**, 110–117 (2018).
- 14. Song, X. P., Tan, P. Y., Edwards, P. & Richards, D. The economic benefits and costs of trees in urban forest stewardship: A systematic review. *Urban For. Urban Green.* **29,** 162–170 (2018).