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Figure S1 | Reversible hydrogenation of esters mediated by M/N–H catalysts. a | A prototypical 

chlorido precatalyst can be converted to a catalytically active hydrido complexes through one of three 

main mechanisms involving a stoichiometric amount of inorganic base (NaOEt or KOtBu). In 

principle b | The chlorohydrido Ru-MACHO precatalyst 6 can be converted to a dihydrido derivative 

that is active for ester hydrogenation1. 

 



 
 

Figure S2 | Reversible hydrogenation of carboxamides mediated by Noyori- type M/N–H 

catalysts. a | Carboxamides typically undergo deaminative hydrogenation to afford primary alcohols 

and amines but can also undergo deoxygenative hydrogenation to afford an amine and water in some 

cases. Speculatively, hemiaminals can also be formed under kinetic control (cf. fluoroester 

hydrogenation)1,2, providing that they are relatively stable and isolable3–6. The reverse reaction, 

catalytic dehydrogenative coupling of primary alcohols with amines, can in addition and/or 

preferentially afford imines, or even amines. b | A simplified catalytic cycle for carboxamide 

(R′C(O)NR1R2) hydrogenation into hemiaminals is postulated in this Perspective. Alternative 

products include primary alcohols (R′CH2OH) and amines HNR1R2, as seem in recent studies7. 

 



Figure S3 | Transfer hydrogenation of acetophenone with a complex lacking an NH 

functionality. The TOF reaches 50 s–1 after 20 s (Refs8,9). 
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