In the format provided by the authors and unedited.

Age-dependent effects in the transmission and control of COVID-19 epidemics

Nicholas G. Davies¹[™], Petra Klepac^{1,2}, Yang Liu^{1,2}, Kiesha Prem¹, Mark Jit¹, CMMID COVID-19 working group and Rosalind M. Eggo¹[™]

¹Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK. ²These authors contributed equally: Petra Klepac, Yang Liu. ^{Se}e-mail: nicholas.davies@lshtm.ac.uk; r.eggo@lshtm.ac.uk

Age-dependent effects in the transmission and control of COVID-19 epidemics

Authors: Nicholas G. Davies^{1*}, Petra Klepac^{1^}, Yang Liu^{1^}, Kiesha Prem¹, Mark Jit¹, CMMID COVID-19 working group, Rosalind M Eggo^{1*}

The CMMID COVID-19 working group¹ is: Carl A B Pearson, Billy J Quilty, Adam J Kucharski, Hamish Gibbs, Samuel Clifford, Amy Gimma, Kevin van Zandvoort, James D Munday, Charlie Diamond, W John Edmunds, Rein MGJ Houben, Joel Hellewell, Timothy W Russell, Sam Abbott, Sebastian Funk, Nikos I Bosse, Fiona Sun, Stefan Flasche, Alicia Rosello & Christopher I Jarvis. Order of working group determined at random.

¹Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT

^ these authors contributed equally

* correspondence to Rosalind M Eggo <u>r.eggo@lshtm.ac.uk</u> or Nicholas G Davies <u>nicholas.davies@lshtm.ac.uk</u>

Parame ter	Description	Applies in fits	Value	Reference
d_E	Incubation period (E to I _P and E to I _s ; days)	All	$\sim gamma(\mu = 3.0, k = 4)$	Derived from refs. 1,2
d_P	Duration of preclinical infectiousness (days)	All	\sim gamma(μ = 2.1, k = 4)	Derived from ref. 2
d _c	Duration of clinical infectiousness (Ic to R; days)	All	\sim gamma(μ = 2.9, k = 4)	Ref. 3
d _s	Duration of subclinical infectiousness (days)	All	\sim gamma(μ = 5, k = 4)	Assumed
u _i	Susceptibility for age group <i>i</i>	Varies by age in Wuhan hypothesis 2, otherwise all ages equal	Estimated	
Уі	Probability of clinical infection for age group <i>i</i>	Varies by age in Wuhan hypothesis 3, otherwise all ages equal	Either fixed (50%) or estimated	Ref. 4
f	Relative infectiousness of subclinical cases	All	50% (0% and 100% in sensitivity analysis)	Assumed
C _{ij}	Number of age- <i>j</i> individuals contacted by an age- <i>i</i> individual per day	All	Country-specific contact matrix.	China⁵; UK ⁶ ; Zimbabwe ⁷
N _i	Number of age- <i>i</i> individuals	All	Demographic data	Ref. 8
Δt	Time step for discrete-time simulation	All	0.25 days	
A _{min} , A _{max}	Age range of seed cases	Wuhan	Estimated	
t _{seed}	Day upon which seeding of infections starts	All	Estimated	
q_H	Relative change in non-school contacts during lunar new year holidays	Wuhan	Estimated	
q_L	Relative change in non-school contacts following large-scale restrictions	Wuhan, South Korea, Shanghai, Beijing, Italy	Estimated	
t_L	Day upon which large-scale restrictions start	Wuhan, South Korea, Shanghai, Beijing, Italy	Fixed to January 23 for Wuhan; estimated for other settings	

Supplementary Table 1. Model parameters.

Parameter	Description	Prior
u _i	Susceptibility to infection upon contact with an infectious person	Non-age-varying: $u_i \sim normal(\mu = 0.1, \sigma = 0.025, min = 0)$ Age-varying: young, middle, and old age fit as $a_y \sim normal(\mu = 15, \sigma = 15, min = 0, max = 30)$ $a_m \sim normal(\mu = 45, \sigma = 15, min = 30, max = 60)$ $a_o \sim normal(\mu = 75, \sigma = 15, min = 60, max = 90)$ Susceptibility for young, middle, and old age fit as $u_y \sim normal(\mu = 0.1, \sigma = 0.025, min = 0)$ $u_m \sim normal(\mu = 0.1, \sigma = 0.025, min = 0)$ $u_o \sim normal(\mu = 0.1, \sigma = 0.025, min = 0)$ Then $u_i = coss(i a_y, b_y, a_m, b_m, a_o, b_o)$ (see final row)
Уi	Clinical fraction on infection	Non-age-varying: $y_i = 0.5$ Age-varying: young, middle, and old age fit as $a_y \sim normal(\mu = 15, \sigma = 15, min = 0, max = 30)$ $a_m \sim normal(\mu = 45, \sigma = 15, min = 30, max = 60)$ $a_o \sim normal(\mu = 75, \sigma = 15, min = 60, max = 90)$ Susceptibility for young, middle, and old age fit as $y_y \sim normal(\mu = 0.5, \sigma = 0.1, min = 0, max = 0.5)$ $y_m = 0.5$ $y_o \sim normal(\mu = 0.5, \sigma = 0.1, min = 0.5, max = 1)$ Then $y_i = coss(i a_y, y_y, a_m, y_m, a_o, y_o)$ (see below)
t_{seed}	Timing of introduction of cases	$t_{seed} \sim normal(\mu = 15, \sigma = 30, min = 0, max = 30)$
q_H	Multiplicative factor for transmission during holiday period	$q_H \sim beta(\alpha = 2, \beta = 2)$ scaled to $0 - 2$
q_L	Multiplicative factor for transmission during large-scale restrictions	$q_L \sim beta(\alpha = 2, \beta = 2)$
A _{min} , A _{max}	Age bounds for introduced cases	$\begin{array}{l} A \sim normal(\mu = 60, \sigma = 20, min = 40, max = 80) \\ A_{range} \sim beta(\alpha = 2, \beta = 2) \ scaled \ to \ 0 - 10 \\ A_{min} = A - A_{range} \\ A_{max} = A + A_{range} \end{array}$
coss(a x ₁ , y ₁ , x ₂ , y ₂ , x ₃ , y ₃)	Cosine-smoothing function	For a given age <i>a</i> (the midpoint age of age group <i>i</i>) the function evaluates to y_1 for $a \le x_1$, to y_2 for $a = x_2$, and to y_3 for $a \ge x_3$. Values of <i>a</i> between x_1 and x_2 are interpolated between y_1 and y_2 , and values of <i>a</i> between x_2 and x_3 are interpolated between y_2 and y_3 , where the interpolation takes the shape of a cosine curve between $-\pi$ and π .

Supplementary Table 2. Details of model fitting.

Location	Mixing matrix details	
Wuhan City, China	We used mixing matrices measured in Shanghai in 2017/2018 ⁵ , adapted to the demographics of Wuhan prefecture. This implicitly assumes that Shanghai mixing patterns are representative of large cities in China.	
Regions of China: Anhui, Guangdong, Guangxi, Hubei, Hunan, Jiangsu, Jiangxi, Jilin Shaanxi, Shandong, Sichuan, Tianjin, Zheijiang provinces; Beijing, Shanghai.	We used mixing matrices measured in Shanghai in 2017/2018 ⁵ , adapted to the demographics of each province / city.	
Regions of Italy: Lombardia, Piemonte, Trento Veneto, Friulli Venezia Giulia, Liguria, Emilia- Romagna, Toscana, Marche, Lazio, Campania, Puglia regions; Milan.	We used mixing matrices measured in Italy in 2005/2006 ⁶ , adapted to the demographics of each region / city. This assumes that these contact patterns will still be representative of contact patterns in 2020.	
Ontario, Canada	We used synthetic contact matrices, generated based on demographic information about the country ⁹ .	
Japan	We used synthetic contact matrices, generated based on demographic information about the country ⁹ .	
Singapore	We used synthetic contact matrices based on demographic information about the country ⁹ .	
South Korea	We used synthetic contact matrices based on demographic information about the country ⁹ .	
Birmingham, UK	We used mixing matrices measured in the UK in 2005/2006 ⁶ , adapted to the demographics of Birmingham. This assumes that these contact patterns will still be representative of contact patterns in 2020.	
Bulawayo, Zimbabwe	We used mixing matrices measured in Manicaland, Zimbabwe in 2013 ⁷ , adapted to the demographics of Bulawayo. This implicitly assumes that Manicaland mixing patterns are representative of Bulawayo.	
146 capital cities	We used synthetic contact matrices, generated based on demographic information about each country ⁹ .	

Supplementary Table 3. Details on mixing matrices used in the study.

Wuhan: Model 1		
age y	6	(4.2-7.2)
age m	55	(46-60)
age o	64	(60-68)
susc v	0.003	(0.00014-0.0076)
susc m	0.044	(0.032-0.054)
susc o	0.084	(0.079-0.09)
seed start	19	(16-22)
seed age	61	(42-79)
seed age range	4.9	(1.5-8.9)
uH	1.4	(1 3-1 5)
al	0.41	(0.3-0.56)
<u> </u>	0	
Wuhan: Model 2		
age v	19	(14-29)
age m	50	(40-60)
age o	68	(60-79)
susc	0.055	(0.052-0.059)
symp v	0.037	(0.0051-0.062)
symn m	0.007	(0 19-0 42)
symp_in symp_o	0.3	(0.52-0.77)
symp_0	0.05	(0.52 - 0.77)
seed are	10	(14-20)
seeu_age	40	(0510)
seeu_age_range	1.3	(0.5-1.9)
qH	1.3	(1.2-1.4)
qL	0.43	(0.31-0.56)
Wuhan: Model 3		
	0.046	(0.045-0.048)
sood start	0.040	(0.043-0.048)
seed_start	20 64	(17-21)
seeu_age	4 2	(57-60)
seed_age_range	4.2	(0.93-8.7)
q⊓ al	1.4	(1.3-1.5)
qL	0.33	(0.21-0.42)
Beijing Shanghai		
susc	0 074	(0.055-0.1)
B seed to	20	(15-25)
S seed to	20	(15-25)
seed d	20	(1 4-6 2)
lockdown t	5.8	(53-56)
	1 0	(0.71-1.7)
al	0.16	(0.11_0.22)
<u>Ч</u> -	0.10	(0.11-0.22)
South Korea	0.074	(0.033-0.1)
	0 000 D	(0.089-0.11)
seed th	Q 2	(5-12)
seed d	2.2	(0.79-6.2)
lockdown t	5.5	(52-54)
	0.047	(0 0041-0 095)
ч -	5.047	(0.0011 0.000)
Lombardy		
susc	0.084	(0.075-0.096)
conf mean	7.6	(2.7-13)
conf shape	11	(3.7-20)
onset known	0.36	(0.061-0.62)
seed t0	15	(11-20)
seed d	12	(0.83-6.3)
lockdown t	5.0	(47-54)
	0.49	(+)-3+) (0.28-0.72)
Ч	0.48	(0.20-0.72)

Supplementary Table 4. Posterior means and 95% HDIs from fitting the dynamic transmission model (Figs. 1 and 2, main text).

Supplementary references

1. Lauer, S. A. et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann. Intern. Med. (2020) doi:10.7326/M20-0504.

2. Backer, J. A., Klinkenberg, D. & Wallinga, J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 2020. Eurosurveillance 25, (2020).

3. Kucharski, A. J. et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect. Dis. S1473309920301444 (2020) doi:10.1016/S1473-3099(20)30144-4.

4. Nishiura, H. et al. The Rate of Underascertainment of Novel Coronavirus (2019nCoV) Infection: Estimation Using Japanese Passengers Data on Evacuation Flights. J. Clin. Med. 9, 419 (2020).

5. Zhang, J. et al. Patterns of human social contact and contact with animals in Shanghai, China. Sci. Rep. 9, 1–11 (2019).

6. Mossong, J. et al. Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases. PLOS Med. 5, e74 (2008).

7. Melegaro, A. et al. Social Contact Structures and Time Use Patterns in the Manicaland Province of Zimbabwe. PLOS ONE 12, e0170459 (2017).

8. World Population Prospects - Population Division - United Nations. https://population.un.org/wpp/.

9. Prem, K., Cook, A. R. & Jit, M. Projecting social contact matrices in 152 countries using contact surveys and demographic data. PLOS Comput. Biol. 13, e1005697 (2017).