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Estimation of incubation period

All incubation period observations were treated as single interval-censored data, which means that intervals

of possible incubation periods were observed rather than exact values (1). The data used for these analyses

are publicly available at https://github.com/reichlab/activemonitr (current version of code), or at https:

//doi.org/10.5281/zenodo.260135 (static release as of 26 January 2017).

We fitted the observed data for each disease to a gamma probability distribution using Bayesian Markov

Chain Monte Carlo (MCMC) methods with the Metropolis-Hastings algorithm. The gamma distribution

is one of several “heavy-tailed” distributions often used to describe incubation periods, and aligns with

assumptions made by previous researchers. (2) We assumed uninformative, flat priors on the shape and scale

parameters of the gamma distribution.

We used a standard procedure to evaluate MCMC convergence for each of the pathogens. First, we adjusted

the size of the proposal distributions to obtain acceptance rates between 30% and 40%. Second, we visually

inspected the resulting chains to assess convergence. Third, we thinned the posterior samples to reduce

auto-correlation between observations. Fourth, we computed the Gelman and Rubin R̂ multiple sequence

diagnostic to assess convergence across chains (3). Fifth, we specified the appropriate number of samples,

burn-in, and thinning rates to obtain 1 million posterior samples for smallpox and MERS-CoV and 3 million

for Ebola.

For smallpox, we ran 20 parallel MCMC chains each with 320,000 samples. We discarded the first 20,000

iterations as burn-in and removed every sixth sample. This procedure yielded 1 million samples from the

posterior distribution.

For MERS-CoV, we ran 20 parallel MCMC chains each with 120,000 samples, discarding the first 20,000

iterations as burn-in and thinned every other sample. This procedure yielded 1 million samples from the
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posterior distribution.

For Ebola, the data structure was different. Rather than having a unique single interval censored observation

for every case, we had 300 draws from the posterior distribtion of incubation periods for each individual in the

transmission tree. We ran a single parallel MCMC chain for each of the 300 posterior samples. Each chain

had 110,000 samples, we discarded the first 100,000 as burn-in and did not thin. This procedure yielded 3

million samples from the posterior distribution. We chose to retain more samples for this analysis to account

for the greater number of chains being run.

Two-dimensional credible regions were estimated using kernel density estimation on the joint posterior

distribution of gamma parameters with flexible bandwidth matrices estimated by multivariate smooth

cross-validation.(4,5)

Missing data had limited impact on our analysis because reported cases typically have known possible times

of infection. There were no missing data for either MERS or smallpox. Seven index cases out of 152 total

cases from the Ebola outbreak in Guinea did not have known possible times of infection. Incubation periods

were not estimated for these individuals in the original manuscript describing this outbreak(6), and these

seven observations were excluded from our analysis, leaving 145 observations of the incubation period for

Ebola. We note that there may be biased sampling of incubation periods as typically only more severe cases

may be reported or observed, and these cases may have different incubation periods than cases with less

severe symptoms.

Estimates of probabilities of infection

To provide first approximations of the probabilities of infection associated with each exposure risk category,

we used available data on cases diagnosed in the United States (as the numerator) and number of individuals

monitored in the United States (as the denominator). Because no cases were diagnosed in the United States

after monitoring programs were implemented, we extrapolated the number of monitored individuals to cover

the entire duration of the outbreak.

We used public data on the four cases diagnosed in the United States to classify these cases into appropriate

exposure-risk categories.(7,8) Although some news reports have indicated that the Dallas index case may

have had direct exposure to infected individuals, reports of initial statements made by the index case do not

cite this known exposure, therefore he would have likely been classified as being at low (but not zero) risk.

The two Dallas healthcare workers, per CDC exposure risk definitions, would also have been considered low
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(but not zero) risk.(9) The New York City case would have been classified as some risk, due to his recent

work in an Ebola treatment center abroad.(10)

Supplemental Table 1: List of known Ebola cases diagnosed in the U.S.

case date of symptom onset exposure risk category

Dallas index case Sept 25, 2014 low (but not zero)

Dallas healthcare worker 1 Oct 11, 2014 low (but not zero)

Dallas healthcare worker 2 Oct 11, 2014 low (but not zero)

NYC doctor Oct 23, 2014 some risk

Stehling-Ariza et al.(11) reported 10039 monitored low but not zero risk individuals and 315 some or high

risk individuals over a four month period (November 3, 2014 through March 8, 2015). Based on World Health

Organization case report data downloaded from the CDC website (12), we estimate that 39% of all reported

Ebola cases in Guinea, Liberia, and Sierra Leone through February 2016 occurred during this four month

period.

From these numbers, we extrapolate that 10039/ 0.39 or roughly 26000 individuals at low (but not zero) risk

could have been eligible for monitoring over the course of the entire outbreak. Similarly, we extrapolate that

1000 some or high risk individuals could have been eligible for monitoring in the United States over the entire

course of the outbreak. Both extrapolations have been rounded to the nearest thousand.

Supplemental Table 2: Relevant data for estimating the probabilities of developing Ebola for each CDC

exposure-risk level.

CDC risk level

Number of cases

reported in the US

Estimated denominator

for whole outbreak

Estimated probability of

developing Ebola (φ)

“Low (but not zero) risk” 3 26,000 1/10,000

“Some risk or high risk” 1 1,000 1/1,000

Estimates of probability of developing an unrelated infection

There were 5,379 non-unique persons who underwent active monitoring by DOHMH during October 25, 2014

to November 7, 2015. This represented 5,025 unique persons, some of whom were monitored on more than
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one occasion. During the course of these individuals being actively monitored by DOHMH, some individuals

developed symptoms that could possibly have indicated the onset of Ebola. Specifically, there were 122

occasions of an individual experiencing fever, diarrhea, vomiting, or unexplained bleeding/bruising. These

symptomatic individuals were evaluated by DOHMH staff, and 39 were referred for follow-up testing for

Ebola at a hospital or other medical facility. We assumed that 30 of those seeking care sought care at a

hospital, representing 1% of the total number of monitored individuals. Subsequent analyses showed little

sensitivity to this assumption, as the overall proportion was so small. Specifically, for the Ebola case study,

increasing the hospitalization rate by a factor of 15 decreased by 1 day the duration of active monitoring that

minimizes the expected cost.

Our aim was to develop a simple model for the rate at which individuals were falling ill from causes other

than Ebola. To do this, we performed a simple discrete-time survival analysis, assuming that the hazard of

developing symptoms from other sources was constant over time. We observed a single aggregated datapoint,

that after 21 days of monitoring, only a small fraction of individuals had reported symptoms that required

hospitalization: 30 / 5379 = 0.0056. Assuming that every day during a monitoring period had the same risk

of developing symptoms, we can write the survival function, the probability that an individual would be

symptom free after t days, as

S(t) = (1 − λ)t

By plugging in S(21) = 1- 0.0056, we solve for λ, the constant per-day hazard, and obtain the estimate λ̂

= 0.27/1000. This translates into one hospitalized case per every 3755 person-days of active monitoring.

Therefore, for the model below we estimate the probability of a monitored individual developing Ebola-like

symptoms during a d day monitoring period as rd = 1 − (1 − λ̂)d.

Probabilistic model

We developed a probabilistic model for evaluating the likelihood that a monitored individual would develop

symptoms at different stages of monitoring. This model is based on five key parameters: the probability of

a monitored individual developing symptomatic infection (φ), two parameters that define the distribution

of incubation periods (T denotes the random variable for incubation periods), probability of a monitored

individual developing symptoms like the disease of interest during a d day monitoring period (rd from above),

and either a fixed or random duration of time between the time of infecting exposure and the onset of active

monitoring (u).
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The model-based probabilities for the disease of concern (see Figure 1, main text) are shown in Table 3.

Supplemental Table 3: Outcomes and associated probabilities for model

outcome probability

does not develop disease of concern p1 = 1 − φ

does not develop disease of concern &

not hospitalized for other symptoms

p1(1 − rd)

does not develop disease of concern &

hospitalized for other symptoms

p1rd

develops disease of concern during active monitoring p2 = φ · Pr(T ≤ d+ u)

develops disease of concern after active monitoring p3 = φ · Pr(T > d+ u)

We quantified the uncertainty about the probability for each outcome scenario attributable to parameter

uncertainty (in our estimates of the incubation period distribution) and to uncertainty associated with not

knowing the time between infection and the beginning of active monitoring. For parameter uncertainty,

we computed each outcome scenario probability from a sample of the posterior distribution of gamma

parameters for a fixed u. For uncertainty in the infection time, we assumed that u was distributed uniformly,

and calculated outcome probabilities for a set of random samples from this distribution while holding the

gamma parameters fixed at their posterior median values. To account for both uncertainties, we sampled

simultaneously from both distributions.

We chose the maximum u value such that max(u)/2 +m = 90th percentile of T. This implies that for Ebola

max(u) = 16.8 days.

While our model explicitly propagates uncertainty in the incubation period distribution, a formal, data-driven

understanding of the uncertainty for other model parameters is not likely to be available to public health

practitioners in practice. For one of the most critical model parameters, the probability that a monitored

individual is infected with the disease of interest, our model can assess several different plausible values at

a single time. Four model parameters (reproductive rate of the disease, cost of a false positive, cost per

person-day of monitoring, and cost per case) are each specified to lie within a fixed range. A single parameter,

the per-day risk of acquiring an unrelated infection, is assumed to be a single fixed value.
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Sensitivity analyses: model assumptions about risk

We conducted sensitivity analyses to calculate the duration of active monitoring that minimized the maximum

expected cost for a range of different probabilities of developing symptomatic disease. Assuming the same cost

structure for active monitoring, we used our model to estimate a cost range of monitoring for each pathogen.

Table 4: Supplemental Table 4: Results of sensitivity analysis

testing the impact of varying probabilities of symptomatic illness

(phi) with the duration of active monitoring that minimizes the

maximum expected cost.

disease phi optimal_duration

Ebola 1/10 48.0

Ebola 1/100 40.0

Ebola 1/1000 31.1

Ebola 1/10000 21.3

MERS-CoV 1/10 29.0

MERS-CoV 1/100 24.9

MERS-CoV 1/1000 20.0

MERS-CoV 1/10000 15.2

Smallpox 1/10 23.2

Smallpox 1/100 22.0

Smallpox 1/1000 19.5

Smallpox 1/10000 17.1

Sensitivity analysis: outlying Ebola incubation periods

We ran a sensitivity analysis on our incubation period estimation. We left out the two observations that had

a mean incubation period (across the posterior estimates provided as raw data) of greater than or equal to 25

days. One observation had a mean incubation period of 34.4 days and another of 29.5 days. Leaving these

observations out did not have a substantial impact on the estimated parameters. The estimated median

incubation period decreased by about 0.2 days and the estimated 95th percentile of the incubation period
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Figure 1: Estimated cost ranges of actively monitoring 100 individuals for Ebola, calculated separately for
some or high risk individuals and low (but not zero) risk individuals. The dashed lines intersect at the
minimum point for the upper limit of each cost range. This figure is a comparison to Figure 4 in the main
text, but uses different parameters, specifically, it assumes that a case gives rise to at most one secondary
infection, that the cost is a fixed $4 million per case, and that the cost per monitored-person day is $20
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Figure 2: Estimates and credible regions for incubation period distributions for Ebola, MERS-CoV and
smallpox. The second plot for Ebola shows the posterior distribution leaving out the two observations that
had incubation periods above 25 days. The shaded elliptical areas represent regions that contain 95% of the
estimated posterior distributions for each of the three diseases. The disease-specific curves plotted on the
right show the estimated distribution for the incubation period for each disease (dark line). To show some of
the uncertainty associated with these estimates, a random selection of density functions sampled from the
joint posterior are represented by colored transparent lines around the heavy lines. Shaded vertical bands
indicate the marginal credible regions for the median and 95th percentile.

decreased by 1 day (Figure 1).
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