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1. Examples of syntrophy 

Table S1. Examples of prokaryotic and eukaryotic syntrophies. Column 𝑁 indicates the number of species involved 
in the interaction (species count within the community). Column N/E indicates if the interaction is naturally 
appearing (N) or engineered (E). Interaction type can be cross-feeding (CF) or cross-facilitation (CX) or hybrid, 
that is, both cross-feeding and cross-facilitation are present. 

Description of the interaction 𝑵 N/E Type Ref. 

Cross-feeding between auxotrophic E. coli knock-out mutants lacking genes required for the biosynthesis of 
amino acids, nucleotides, and cofactors, as well as genes involved in glycolysis and respiration. In an 
experiment, 17% of random pairings out of 1035 combinations showed synergetic growth in co-culture of 
such mutants. 

2 E 
CF flow-
through 

1 

Multi-member cross-feeding between engineered amino-acid auxotroph E. coli mutants. Biosynthetically 
costly amino acids tend to promote stronger cooperative interactions than cheaper ones. The evolved cross-
feeding pair was also resistant against the invading autotroph wild-type strain. Besides pairwise, three-
member communities (with double-auxotrophs) also showed synergistic growth when all three members 
were present. In another experiment, an initially 14-member systems undergo a drastic population shift 
toward a consortium dominated by four members, hence showing that microbes with multi-auxotrophic 
phenotypes can stably evolve, but only up to a limited size of the interaction network. 

2…14 E 
CF flow-
through 

2–4 

Laboratory-evolved cooperation between Salmonella enterica and an auxotrophic E. coli strain. Salmonella 
consumes metabolic waste from E. coli, while E. coli relies on Salmonella to synthesize the essential amino 
acid methionine. 

2 E 
CF flow-
through 

5 

Anaerobic methanotrophic archaea in a syntrophic relationship with sulfate-reducing bacteria. The partners 
rely on an efficient electron exchange via reducing equivalents or direct, tubular cell–to-cell connections. 

2 N 
CF 

recycle 
6,7 

Successional colonization dynamics is often driven by cross-feeding where pioneer primary degraders enable 
late colonizers to feed on their by-products. For example, in particle-attached biofilms that degrade insoluble 
forms of organic matter concentrated on particles, community assembly is driven by a functional 
characteristic-based trophic structure: from narrow-range degraders to broad-range consumers, via 
resultant by-products of the degradation process. 

2+ N 
CF flow-
through 

8–10 

The majority of bacterial species produce siderophores, a central component in the mechanism of iron 
scavenging. Siderophores are costly products secreted to make iron acquisition possible, yet the iron made 
available can be taken up by non-producers as well. After the iron is imported to the cell, the extracellular 
siderophore can be recycled (salvaged) or undergo hydrolysis. 

2+ N CX 11 

Collective resistance can emerge in a community if an individual strain provides resistance for all members. 
It does so either by secreting extracellular enzymes to neutralize antibiotics (e.g. β-lactamase) or by 
neutralizing them intracellularly hence removing them from the environment. A particular form is the so-
called cross-protection mutualism, in which sensitive and resistant strains in coculture can protect each other 
in a multidrug environment. 

2+ N CX 12–15 

The yeast Saccharomyces cerevisiae secretes invertase enzyme to hydrolyze sucrose. Almost 99% of the end 
products, the monosaccharides, diffuse away benefiting other species nearby. 

2+ N CX 16 

The biofilm can provide protection against antibiotics originating from outside of the community, due to 
complex tolerance and resistance mechanisms, that may be more effective than resistance due to 
extracellular enzymes. The physical separation of the cells within the biofilm matrix from the external 
environment provides efficient protection against predation, invasion, bacteriophages, antibiotics, etc. 

2+ N CX 17–19 

Surfactin bolsters surface spreading by reducing surface tension and promoting filamentous growth, 
benefiting all cells in the vicinity. It is costly to produce, hence acts like a common good, exploitable by 
cheaters. 

2+ 
N, 
E 

CX 20 

Pathogenicity in microbes is most often carried out by the secretion and acquisition of extracellular 
molecules that help to subvert the immune response of the host or facilitate the access to host nutrients, for 
example by triggering the outflow from the host. These products enable surrounding microbes to get access 
to energy rich nutrients of the host, acting as public goods that facilitate higher nutrient uptake for 
beneficiaries. 

2+ N CX 21,22 

Most bacterial species depend on cofactors acquired from the environment via cross-feeding, which they are 
incapable of producing due to their costly and complicated synthesis. It is predicted that the majority of 
bacteria harbor enzymes dependent on the cofactor corrinoid, which they have to acquire via cross-feeding, 
and which that enable pathways that significantly enhance their metabolic capacity. 

2+ N CX 23 
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Rhodococcus species can degrade recalcitrant toxic pollutants in diverse environments, but their degrading 
efficiency is severely reduced by various environmental stress. Bacillus cereus exhibits strong stress 
resistance and can regulate pH. For example, Rhodococus ruber degrades a tetrahydrofuran providing acidic 
metabolites to B.  cereus, which, in return, regulates pH and secretes nutrients essential for R. ruber. 

2 N 
hybrid, 
flow-

through 

24 

Up to five-membered cellulose-degrading community of various strains coexist stably under laboratory 
conditions exhibiting a complex, intertwined interaction network with mutualistic or commensalistic 
(syntrophy), inhibitory (as the accumulating intermediary product inhibits the catalytic activity of species), 
and competitive relationships. Both cross-feeding and cross-facilitative interactions are at play. 

5 E 
hybrid, 
flow-

through 

25 

Certain bacteria (e.g. Bacteroidales) live in the human intestine capable of breaking down polysaccharides 
extracellularly using glycoside hydrolases that in some cases are secreted outside of the cell. This breaking 
down is costly and results in diffusible public goods that benefit other species. For example, Bacteroides 
ovatus digests polysaccharides extracellularly, apparently benefiting only other species, and hence can be 
seen as an altruist act. The benefit of this act is enjoyed by nearby species, such as Bacteroides vulgatus, 
which reciprocates in various ways, including detoxification of inhibitory substances, or production of a 
growth promoting factor, initiating defense mechanisms and metabolism. This implies that this naturally 
evolved system involves both cross-feeding (by B. ovatus) and cross-facilitative interactions (by B. vulgatus). 

2+ N 
hybrid, 
flow-

through 

26–35 

The bacteria Dehalococcoides mccartyi is the only known species that can completely degrade 
trichloroethene (TCE) from contaminated groundwater, but it depends on other species for a variety of 
exogenous compounds, such as hydrogen, acetate, corrinoids, biotin, and thiamine. Several other 
compounds, including hydrogen and CO, is hypothesized to take part in the syntrophic interactions. 

2+ N 
hybrid, 
flow-

through 

36 

The consortium Chlorochromatium aggregatum consists of a motile central betaproteobacterium which 
transports its non-motile photosynthetic epibionts (Chlorobium) towards light while the epibionts provide 
energy for the host. Several other consortia are described with similar structures. These examples are the 
closest to syntrophic endosymbiosis and demonstrate the most sophisticated forms of pairwise prokaryotic 
ectosymbioses. 

2 N 
hybrid, 
flow-

through 

37–39 

In a metal working fluid-degrading community of low diversity (consisting of Agrobacterium tumefaciens, 
Comamonas testosteroni, Microbacterium saperdae, and Ochrobactrum anthropi), facilitative or neutral 
interactions dominate in a toxic environment. M. saperdae is highly dependent on by-products of other 
community members (cross-feeding), whereas cross-facilitative interactions arose by the other species 
removing toxic compounds initially present in the environment, enabling growth for the others. 

4 N hybrid 40 

Anammox communities mediate anaerobic ammonium oxidation (anammox) via complex interaction 
networks. Anammox granules consist of a mixture of cell aggregates and abiotic particles embedded within 
a matrix of organic extracellular polymeric substances (EPS). Within this medium, metabolite exchange takes 
place between heterotrophic and anammox bacteria. These include the products of anaerobic ammonium 
oxidation, nitrite loop as well as vitamins, and extracellularly degraded proteins. In particular, a Brocadia 
species demonstrating increased expression of genes involved in pathways for B1, B7 and B12 synthesis may 
indicate that this strain provides the above vitamins for the whole community. 

5+ N 
hybrid, 
recycle 

41–43 
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2. Model parameters 

Table S2. Parameters of the models with some default values. Note that cross-feeding and cross-facilitation 
models use slightly different sets of parameters. All parameters are non-negative, by definition. 

cross-feeding  cross-facilitation 

resource (𝑹) properties 

density of resource 𝑅𝑖 𝜌𝑖 density of resource 𝑅𝑖 

maximum, unconsumed equilibrium density of 
resource 𝑅𝑖 

𝑟𝑖 
maximum, unconsumed equilibrium 
density of resource 𝑅𝑖 

ratio of resource 𝑅𝑖 locked up in the biomass 𝑐𝑖  
ratio of resource 𝑅𝑖 locked up in the 
biomass 

species (𝑵) properties 

density of species 𝑁𝑖 𝑛𝑖 density of species 𝑁𝑖 

conversion constant of resource 𝑅𝑖 into 
reproduction of species 𝑁𝑖 

𝑏𝑖 
conversion constant of resource 𝑅𝑖 into 
reproduction of species 𝑁𝑖  

spontaneous death rate of species 𝑁𝑖 𝑑𝑖 spontaneous death rate of species 𝑁𝑖 

conversion efficiency of byproduct 𝑋𝑗  by 

species 𝑁𝑖 
𝑔𝑖 – 

strength of inhibition on species 𝑁𝑖 by the 
byproduct 𝑋𝑖 

ℎ𝑖 – 

consumption rate of any byproduct by species 
𝑁𝑖 (uniform for all byproducts) 

𝑤𝑖 – 

– 𝑚𝑖 
amount of enzyme where the reaction rate 
is at half-maximum of species 𝑁𝑖 (Michaelis 
constant) 

– 𝑠𝑖𝑗 
maximum rate of conversion of metabolite 
𝑋𝑗  to reproduction of species 𝑁𝑖 

evolutionary trait of species 𝑁𝑖, defining 𝑑𝑖 
and 𝑘𝑖, being in trade-off 

𝑧𝑖 
evolutionary trait of species 𝑁𝑖, defining 𝑑𝑖 
and 𝑘𝑖, being in trade-off 

production rate of metabolite 𝑋𝑖 by species 𝑁𝑖 𝑘𝑖 production rate of enzyme 𝑋𝑖 by species 𝑁𝑖 

product (𝑿) properties 

density of metabolite𝑋𝑖 𝑥𝑖 density of enzyme 𝑋𝑖 

decomposition rate of metabolite 𝑋𝑖 𝛿𝑖 decomposition rate of enzyme 𝑋𝑖 

adaptive dynamics 

mutant invasion density 𝑛𝑖𝑛𝑣 = 1 mutant invasion density 

mutant invasion time 
(after last equilibrium) 

𝑡𝑖𝑛𝑣 = 104 
mutant invasion time 
(after last equilibrium) 

SD of normal distribution 
centred at trait when mutating 

𝜇𝑆𝐷 = 10−2 
SD of normal distribution 
centred at trait when mutating 

extinction density threshold 𝑛𝜃 = 10−3 extinction density threshold 

iteration count 𝐺 = 300 iteration count 

trade-off 

expected mean of trait 𝑧 𝑧̅ = 0.5 expected mean of trait 𝑧 

steepness of the sigmoid transition curve 𝜎 = 1 5⁄  steepness of the sigmoid transition curve 

scaling factor 𝜂 = 0.1 scaling factor 
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3. Existence of a single, globally stable internal fixed point for cross-feeding without 

inhibition 
We assume that the inhibitory effect of externalized waste product 𝑋𝑖  over the producer species 𝑖 (or 

anyone) can be neglected in the system described by (Eq. 4) in the main text. That is ℎ𝑖 = 0 for all 

species 𝑖 (see Figure S1). The internal fixed points can be calculated analytically for two species (1 and 

2), but their complexity prevents effective analysis of the system. Therefore, we rely on other means 

to ascertain that there is a single internal fixed point which always exists, and that it is stable. 

 
Figure S1. Model of cross-feeding without self-inhibition, with mutant species 𝑁3. Arrows indicate consumption 
and production. 

Without species 3, the system simplifies to: 

d𝑛1

d𝑡
= 𝑛1 ((𝑏1𝑟1 − 𝑑1) + 𝑔1

𝑘2𝑛2

𝑤1𝑛1 + 𝛿2
− 𝑏1𝑐1𝑛1) , 

d𝑛2

d𝑡
= 𝑛2 ((𝑏2𝑟2 − 𝑑2) + 𝑔2

𝑘1𝑛1

𝑤2𝑛2 + 𝛿1
− 𝑏2𝑐2𝑛2). 

(Eq. S1) 

The per capita growth rates 𝐺𝑖  are: 

𝐺1 = (𝑏1𝑟1 − 𝑑1) + 𝑔1

𝑘2𝑛2

𝑤1𝑛1 + 𝛿2
− 𝑏1𝑐1𝑛1 

𝐺2 = (𝑏2𝑟2 − 𝑑2) + 𝑔2

𝑘1𝑛1

𝑤2𝑛2 + 𝛿1
− 𝑏2𝑐2𝑛2. 

(Eq. S2) 

When 
d𝑛𝑖

d𝑡
= 0, we get the zero net growth isoclines (ZNGI) from 𝐺1, 𝐺2 respectively, depending on 𝑛1: 

𝑛2 =
(𝑑1 − 𝑏1𝑟1 + 𝑏1𝑐1𝑛1)(𝛿2 + 𝑤1𝑛1)

𝑔1𝑘2
, 

𝑛2 =
−𝑑2𝑤2 + 𝑏2𝑟2𝑤2 − 𝑏2𝑐2𝛿1 + √(−𝑑2𝑤2 + 𝑏2𝑟2𝑤2 + 𝑏2𝑐2𝛿1)2 + 4𝑏2𝑐2𝑔2𝑘1𝑤2𝑛1

2𝑏2𝑐2𝑤2
, 

where we have ignored the irrelevant negative branch for the second isocline. The first ZNGI has the 

following structure: 𝑛2 = −𝐴2 + 𝐵 𝑛1 + 𝐶2𝑛1
2, where 𝐴, 𝐵, and 𝐶 are (combinations of) constants. 

Squaring them indicates when one is guaranteed to be positive. In turn, the second ZNGI has the form 

𝑛2 = −𝐷 + √𝐸2𝑛1 + 𝐹2, which is qualitatively the same as the first one, just mirrored along the 𝑛1 =

𝑛2 identity line. That is, 𝐺1 = 0 and 𝐺2 = 0 defines convex and concave strictly monotonous curves in 
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the 𝑛1, 𝑛2 plane. Thus, they intersect each other at most in two points, of which at most one can be 

stable. The isoclines are depicted in Figure S2A. 

A 

 

B 

 
 C 

 

Figure S2. Zero net growth isoclines (blue for species 𝑁1, yellow for 𝑁2) over the phase plot of species 1 and 2 in 
the model of cross-feeding without inhibition. A: A single internal fixed point exists whenever species have 
positive growth rates when the partner is missing. The crossing of isoclines around {2, 2} indicates the stable 
internal fixed point, where species 1 and 2 can stably coexist. Parameters are {𝑏1 = 𝑏2 = 1, 𝑟1 = 𝑟2 = 1, 𝑑1 =
𝑑2 = 0.1, 𝑐1 = 𝑐2 = 1, 𝑔1 =, 𝑔2 = 1, ℎ1 = ℎ2 = 0, 𝛿1 = 𝛿2 = 0.1, 𝑘1 = 𝑘2 = 1, 𝑤1 = 𝑤2 = 1}. B: If species 
cannot grow without each other, that is 𝑟𝑖𝑏𝑖 < 𝑑𝑖, two internal fixed points may exist of which one is stable only. 
However, such a case would imply that partners are obligately dependent on each other as they cannot grow 
without the partner. Parameters are the same as for panel A, with the following differences: {𝑏1 = 𝑏2 =
0.01, 𝛿2 = 5, 𝑔1 = 𝑔2 = 0.1, 𝑤1 = 𝑤2 = 0.1}. C: When the zero net growth isocline of 𝑛1 crosses the 𝑛2 = 0 line 
earlier than the zero net growth isocline of 𝑛2, no internal fixed point exists (no crossing of the isoclines in the 
positive quadrant). Parameters are the same as for panel A, with the following differences: {𝑑1 = 0.5, 𝑑2 = 10 }. 

We now see that there is at most one internal fixed point. If this fixed point exists, then it is locally 

stable, due to the geometric arrangement of the ZNGIs (𝑛1 increases to the left of the blue curve and 

decreases to the right of it; conversely, 𝑛2 increases below the yellow curve and decreases above). 

Assuming unrealistic parameter combinations, one can have two internal fixed points, of which only 

one would be stable (see Figure S2B). However, these cases imply that the per capita death rates are 

higher than the birth rates 𝑟𝑖𝑏𝑖 < 𝑑𝑖 (meaning that species are obligately dependent on each other), 

and/or an unrealistically high degradation rate of one of the byproducts. 

Global stability can also be proved, using the Bendixson-Dulac criterion. This criterion states that, given 

some domain 𝒟 in the phase plane, the system 𝑛1
′ = 𝑓(𝑛1, 𝑛2), 𝑛2

′ = 𝑔(𝑛1, 𝑛2), and an arbitrary 

function ℎ(𝑛1, 𝑛2), if the divergence 𝜕𝑛1
(ℎ𝑓) + 𝜕𝑛2

(ℎ𝑔) is of the same sign everywhere in 𝒟, then 

there can be no periodic orbits in that region. In this case, we can choose ℎ(𝑛1, 𝑛2) = 1/(𝑛1 𝑛2) to 

immediately prove the impossibility of cycles for the whole positive quadrant: 

∇𝑛1,𝑛2
. {ℎ𝑓, ℎ𝑔} = 𝜕𝑛1

(ℎ𝑓) + 𝜕𝑛2
(ℎ𝑔) = −

𝑏2𝑐2

𝑛1
−

𝑔1𝑘2𝑤1

(𝛿2 + 𝑤1𝑛1)2
−

𝑏1𝑐1

𝑛2
−

𝑔2𝑘1𝑤2

(𝛿1 + 𝑤2𝑛2)2
. 

Since all parameters are positive, this expression is always negative in the whole positive quadrant. 

Thus, equating 𝒟 with this region, periodic solutions are impossible wherever 𝑛1 > 0 and 𝑛2 > 0. 
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Adding to this the fact that a two-dimensional differential equation system can never produce chaos, 

the only option left is that the locally stable fixed point must also be globally stable. 

When does the fixed point exist? Nonexistence happens when the first isocline crosses the 𝑛2 = 0 line 

earlier than the second isocline (for an example, see Figure S2C). In the biological context, this means 

that species 2 has too great of a mortality to persist, and only species 1 prevails. 

4. Numerical investigation of stable fixed points for cross-feeding with inhibition 
We examine the fixed point distribution for a large number of random parameter combinations for 

the equation system (Eq. 4) in the main text. For each combination, we perturb the parameter values 

{𝑟1 = 𝑟2 = 1, 𝛿1 = 𝛿2 = 0.1, 𝑐1 = 𝑐2 = 1, 𝑏1 = 𝑏2 = 1, 𝑑1 = 𝑑2 = 0.01, 𝑘1 = 𝑘2 = 0.1, 𝑔1 = 𝑔2 =

0.1, ℎ1 = ℎ2 = 0.5, 𝑤1 = 𝑤2 = 1} independently by adding a random value drawn from the normal 

distribution with mean 0 and standard deviation 0.5, ensuring that actual parameter values do not go 

below 10-3. We calculate the numerical Jacobian of the system with the given parameters, substituting 

in the numerically calculated fixed points as the densities. For each fixed point, we check whether the 

eigen values of the Jacobian are all negatives. After extensive numerical testing (more than 100 000 

independent random parameter combinations), we have not found a parameter combination which 

has more than 1 internal stable fixed point. 

5. Existence of a single, globally stable internal fixed point for cross-feeding with 

inhibition 
We now include self-inhibition of waste materials 𝑋𝑖  on species 𝑁𝑖  into the dynamics (see Figure S3). 

 
Figure S3. Model of cross-feeding with self-inhibition with mutant species 𝑁3. Dashed arrows indicate self-
inhibitory effect of produced metabolites. The mutant 𝑁3 inherits the property of being inhibited by 𝑋2 while it 
does not secrete it. 

We follow the same analysis as before, in SI 3. The per-capita growth rates of the subsystem of species 

1 and 2 are: 

𝐺1 = 𝑏1𝑟1 − 𝑏1𝑐1𝑛1 + 𝑔1

𝑘2𝑛2

𝛿2 + 𝑤1𝑛1
− ℎ1

𝑘1𝑛1

𝛿1 + 𝑤2𝑛2
− 𝑑1, 

𝐺2 = 𝑏2𝑟2 − 𝑏2𝑐2𝑛2 + 𝑔2

𝑘1𝑛1

𝛿1 + 𝑤2𝑛2
− ℎ2

𝑘2𝑛2

𝛿2 + 𝑤1𝑛1
− 𝑑2. 

At the internal fixed point, where 𝑛1, 𝑛2 > 0: 

𝐺1 = 𝐺2 = 0. 

Due to the complexities of the dynamics with self-inhibition, we cannot analytically or geometrically 

prove the existence of a single globally stable internal fixed point. However, based on the extensive 
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numerical investigations we have performed (see above), it is strongly believed that there is at most 

one internal stable fixed point of the 2-species system. 

The same divergence formula can be used as before, to prove the impossibility of cycles for the whole 

positive quadrant (𝑛1, 𝑛2 > 0), according to the Bendixson-Dulac criterion, assuming 𝑛1
′ =

𝑓(𝑛1, 𝑛2), 𝑛2
′ = 𝑔(𝑛1, 𝑛2): 

𝜕𝑛1
(ℎ𝑓) + 𝜕𝑛2

(ℎ𝑔) = − (
𝑔1𝑘2𝑤1

(𝛿2 + 𝑤1𝑛1)2
) −

𝑏2𝑐2 +
ℎ2𝑘2

𝛿2 + 𝑤1𝑛1

𝑛1

−
𝑔2𝑘1𝑤2

(𝛿1 + 𝑤2𝑛2)2
−

𝑏1𝑐1 +
ℎ1𝑘1

𝛿1 + 𝑤2𝑛2

𝑛2

. 

Since all parameters are positive, this expression is always negative in the whole positive quadrant. 

Thus, periodic solutions are impossible wherever 𝑛1, 𝑛2 > 0. Therefore, the locally stable fixed point 

must also be globally stable. 

The zero net growth isoclines behave similarly to the system without self-inhibition, depicted in 

Figure S4. Again, biologically unrealistic parameters may result in the disappearance of the internal 

fixed point or the appearance of a second, instable internal fixed point, like without inhibition. 

 
Figure S4. Zero net growth isoclines (blue and yellow) over the phase plot of species 1 and 2 in the model of cross-
feeding with inhibition by the 𝑋𝑖. A: If species can grow without each other, that is 𝑟𝑖𝑏𝑖 > 𝑑𝑖, a single internal 
fixed point exists. The crossing of isoclines around {2, 2} is the stable internal fixed point, where species 1 and 2 
can stably coexist. Isoclines at the boundaries 𝑛1 = 0 and 𝑛2 = 0 are not shown but indicate trivial solutions 
where one or both species are extinct. Parameters are {𝑏1 = 𝑏2 = 1, 𝑟1 = 𝑟2 = 1, 𝑑1 = 𝑑2 = 0.1, 𝑐1 = 𝑐2 =
1, 𝑔1 = 𝑔2 = 1, 𝛿1 = 𝛿2 = 0.1, 𝑘1 = 𝑘2 = 1, 𝑤1 = 𝑤2 = 1, ℎ1 = ℎ2 = 1}. 

6. Condition of invasion for a third species for cross-feeding 
We would like to know whether a mutant species can invade a presumably ecologically stable pair of 

cross-feeding species in case there is no inhibition by the products 𝑋𝑖. Therefore, we analyse the 

invasion dynamics of the model. We assume that species 1 and species 2 are present initially (Eq. S1), 

and we ignore self-inhibition of metabolites (ℎ𝑖 = 0, ∀𝑖). 

Above we have proven that there is only one stable positive fixed point of this system. Let us denote 

the fixed points of species 1 and 2 as �̂�1 and �̂�2, respectively. Because of the definition of fixed points, 

it is true that: 
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𝑟2𝑏2 − 𝑑2 + 𝑔2

𝑘1�̂�1

𝛿1 + 𝑤2�̂�2
− 𝑏2𝑐2�̂�2 = 0. 

(Eq. S3) 

Let us use the following notations: 𝑏3 = 𝑏2 + ∆𝑏, 𝑑3 = 𝑑2 + ∆𝑑, 𝑔3 = 𝑔2 + ∆𝑔, where the 

differences between the parameters 𝑏, 𝑑 and 𝑔 (∆𝑏, ∆𝑑 and ∆𝑔 respectively), can be negative positive 

or zero. Substituting (Eq. S3) into the dynamical equation of 𝑛3 and taking the linear approximation of 

it by assuming that 𝑛3 ≪ 1: 

𝑑𝑛3

𝑑𝑡
= (𝑟2∆𝑏 − ∆𝑑 + ∆𝑔

�̂�1

𝛿1 + 𝑤2�̂�2
− ∆𝑏𝑐2�̂�2) 𝑛3. 

(Eq. S4) 

The growth of species 3 is positive (𝑑𝑛3/𝑑𝑡 > 0), that is, species 3 can invade successfully if 𝑟2∆𝑏 −

∆𝑑 + ∆𝑔
�̂�1

𝛿1+𝑤2�̂�2
− ∆𝑏𝑐2�̂�2 > 0. Special cases, when one or two of the deltas are zero, render the 

analysis simpler. For example, if ∆𝑔 = ∆𝑏 = 0, and ∆𝑑 > 0 (per capita birth rates and efficiency of 

using 𝑋1 do not change, while withholding 𝑋2 increases death rate since it needs extra energy to 

decompose within the cell), then species 3 cannot invade (𝑑𝑁3/𝑑𝑡 <  0 if 𝑛3 ≈ 0). 

Now we consider the case when species 1 and 3 are present initially, and we are interested in condition 

of the invasion of species 2. The abundances of species 1 and 3 at the fixed point of this subsystem 

are denoted as �̂�1
∗ and �̂�3, respectively. The method is similar to the one used above. The dynamics of 

𝑛2 in the linear approximation is: 

𝑑𝑛2

𝑑𝑡
= (−𝑟2∆𝑏 + ∆𝑑 − ∆𝑔

�̂�1
∗

𝛿1 + 𝑤2�̂�3
+ ∆𝑏𝑐3�̂�3) 𝑛2. 

(Eq. S5) 

In case of ∆𝑔 = ∆𝑏 = 0, and ∆𝑑 > 0 that is when withholding 𝑋2 increases death rate of species 3 

comparing to species 2, then species 2 can invade in the species 1, 3 subsystem. That is, species 2 and 

3 cannot coexist. 

Another interesting case is when ∆𝑔, ∆𝑑 > 0 at the same time. In this case, not secreting the 

byproduct 𝑋2 means extra cost for the mutant species 3. However, it utilizes the byproduct 𝑋1 of 

species 1 more effectively than species 2. According to (Eq. S4), species 3 can spread if: 

−∆𝑑 + ∆𝑔
�̂�1

𝛿1 + 𝑤2�̂�2
> 0, 

(Eq. S6) 

and similarly, species 2 spreads in the species 1, 3 subsystem if: 

∆𝑑 − ∆𝑔
�̂�1

∗

𝛿1 + 𝑤2�̂�3
> 0. 

(Eq. S7) 

It is easy to show that �̂�1
∗ <  �̂�1and assume that �̂�3 ≥ �̂�2 (which, depending on the parameters can be 

valid or not), then the relations (Eq. S6) and (Eq. S7) can be satisfied simultaneously. In this case, 

species 2 and 3 mutually invade each other, thus all three species will be in coexistence. If only (Eq. S6) 

is true and (Eq. S7) is not, then the cheater mutant excludes the cooperator one. However, the 

evolutionary history depends on the trade-off between 𝑔 and 𝑑. It is natural to assume that an 

increased efficiency in consumption entails an increase in death rate, so these two variables are in 

positive trade-off. This is a reasonable assumption, as the increased performance of any metabolic 

machinery of incurs an energetic cost that either decreases reproduction or growth rate or increases 
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the death rate. The evolution of these correlated traits via adaptive dynamics is discussed in SI 6 and 

SI 8. 

In turn, we examine the invasion dynamics of a third species when there is self-inhibition of products 

(ℎ𝑖 > 0, ∀𝑖). Since there is only one positive stable fixed point in the model of cross-feeding with self-

inhibition (SI 5), we can use the same analysis as we did for the case without inhibition. Again, we 

consider the species 1, 2 subsystem. From the definition of fixed point, it follows that 

𝑟2𝑏2 − 𝑑2 + 𝑔2

𝑘1�̂�1

𝛿1 + 𝑤2�̂�2
− 𝑏2𝑐2�̂�2 − ℎ2

𝑘2�̂�2

𝛿1 + 𝑤1�̂�1
= 0, 

where �̂�1 and �̂�2 are the positive fixed point of the dynamics. Using the similar notations as above and 

denote ℎ3 = ℎ2 + ∆ℎ, we receive that the in the linear limit the mutant species 3 dynamics is: 

𝑑𝑛3

𝑑𝑡
= (𝑟2∆𝑏 − ∆𝑑 + ∆𝑔

�̂�1

𝛿1 + 𝑤2�̂�2
− ∆𝑏𝑐2�̂�2 − ∆ℎ

𝑘2�̂�2

𝛿1 + 𝑤1�̂�1
) 𝑛3. 

So rare species 3 can invade successfully if 𝑟2∆𝑏 − ∆𝑑 + ∆𝑔
�̂�1

𝛿1+𝑤2�̂�2
− ∆𝑏𝑐2�̂�2 − ∆ℎ

𝑘2�̂�2

𝛿1+𝑤1�̂�1
> 0, and 

practically the whole analysis remains identical with that presented previously, if ∆ℎ = 0 (ℎ3 = ℎ2). 

7. Adaptive dynamics for cross-feeding without inhibition 
We assume the following trade-off between the efficiency of consumption of the byproduct (𝑔) and 

mortality (𝑑): 

𝑔𝑖(𝑧𝑖) =
1

2
(1 + tanh (

𝑧𝑖 − 𝑧̅

𝜎
)) , 

𝑑𝑖(𝑧𝑖) = 𝜂 max(0, 𝑧𝑖). 

(Eq. S8) 

where 𝜎 is the steepness of the sigmoid transition, 𝑧̅ is the expected mean of the trait value 𝑧, and 𝜂 

is a scaling factor for positive values of 𝑧. 

We assume that the underlying trait, 𝑧, can have any value, even negative, but as 𝑧 increases, both 

dependent traits 𝑔 and 𝑑 increase. For a visual explanation of the trade-off, see Figure S5. 

 
Figure S5. Relation of the trait value 𝑧 to model parameters {𝑔, 𝑑}. Note the logarithmic y scale. Parameters are 
𝑧̅ = 0.5, 𝜎 = 0.2, 𝜂 = 0.1. 

The modified rate equations are: 
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d𝑛1

d𝑡
= 𝑛1 ((𝑏1𝑟1 − 𝑑1) − 𝑏1𝑐1𝑛1 + 𝑔1

𝑘2 ∑ 𝑛𝑗
𝑎
𝑗=2

𝛿2 + 𝑤1𝑛1
) , 

d𝑛𝑖

d𝑡
= 𝑛𝑖 ((𝑏𝑖𝑟𝑖 − 𝑑𝑖) − 𝑏𝑖 ∑ 𝑐𝑙𝑛𝑙

𝑎

𝑙=1

+ 𝑔𝑖

𝑘1𝑛1

𝛿1 + 𝑤2 ∑ 𝑛𝑗
𝑎
𝑗=2

)  (∀𝑖 ≥ 2), 

where the growth of species 1 (the unchanging resident) is governed by the first equation, while the 

second equation describes the growth of any mutant of species 2 (itself included), and 𝑎 is the total 

number of species in the system. 

First, we examine the system when species 1 is not allowed to mutate, only species 2 (see Figure S6). 

A B 

  

Figure S6. Adaptive dynamics within the model of cross-feeding without self-inhibition (ℎ𝑖 = 0, ∀𝑖). A: Trait value 
against generations; colours correspond to trait values. B: Time evolution of the invading mutant’s trait-
dependent parameter values {𝑔𝑚𝑢𝑡 , 𝑑𝑚𝑢𝑡}; colours correspond to mutation events. Parameters are {𝑡𝑖𝑛𝑣 =
104, 𝑛𝑖𝑛𝑣 = 0.01, 𝜇𝑆𝐷 = 10−2, 𝑛𝜃 = 10−3, 𝐺 = 200, 𝑧1 = 𝑧2 = 0.2, 𝑏1 = 𝑏2 = 1, 𝑐1 = 𝑐2 = 1, 𝑘1 = 𝑘2 =
1, 𝑟1 = 𝑟2 = 1, 𝛿1 = 𝛿2 = 0.1, 𝑤1 = 𝑤2 = 1, 𝑧̅ = 0.5, 𝜎 = 0.2, 𝜂 = 0.1}. 

Starting each simulation from a different initial trait value for species 2 shows the different 

evolutionary trajectories that lead to one of two equilibrium trait values (see Figure S7). 
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Figure S7. Dependence of adaptive dynamics outcome on initial mutant trait value z, iterated over the range 
𝑧𝑚𝑢𝑡 1 = {−0.2,1.0}. Colour corresponds to trait value. Parameters are {𝑡𝑖𝑛𝑣 = 104, 𝑛𝑖𝑛𝑣 = 0.01, 𝜇𝑆𝐷 =
10−2, 𝑛𝜃 = 10−3, 𝐺 = 200, 𝑧1 = 0.2, 𝑏1 = 1, 𝑏2 = 0.1, 𝑟1 = 𝑟2 = 1, 𝑐1 = 1, 𝑐2 = 0.1, 𝛿1 = 𝛿2 = 0.1, 𝑘1 =
1, 𝑘2 = 0.1, 𝑤1 = 𝑤2 = 1, 𝑧̅ = 0.5, 𝜎 = 0.2, 𝜂 = 0.1}. Note that parameters are not the same for static and 
mutant lineages. The static resident species (species 1) remains unchanged (yellow line at 𝑧 = 0.2). Below a 
certain initial 𝑧, cheating mutants can invade only (settling at the equilibrium trait value �̂� = 0). If a mutation 
large enough pushes the mutant above the separatrix around 𝑧 ≈ 0.26, the positive equilibrium 𝑧 becomes the 
attractor, settling at 𝑧∗ ≈ 0.7. Both equilibria are stable against invading mutants. 

We use the per capita growth rates of species 1 and 2 (Eq. S2) to check if at the equilibrium, no mutant 

of species 2 can invade the system. The invasion growth rate 𝐺2
∗ of a mutant of species 2 with trait 𝑧2

∗ 

is: 

𝐺2
∗ = 𝑏2𝑟2 − 𝑑2(𝑧2

∗) + 𝑔2(𝑧2
∗)

𝑘1�̂�1

𝑤2�̂�2 + 𝛿1
− 𝑏2𝑐2�̂�2. 

At equilibrium, 
d𝑛𝑖

d𝑡
= 0 and 

d𝐺𝑖

d𝑧𝑖
= 0 for both species, with equilibrium value 𝑛𝑖 = �̂�𝑖. Analysis reveals 

that the growth rate is always negative for a mutant when species 1 and 2 are in equilibrium (see 

Figure S8). Note that species 1 is not stable evolutionary in this case but is kept fixed. 
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Figure S8. Invasion growth rate 𝐺2

∗ of the mutant with trait 𝑧2
∗ in equilibrium at different 𝑧1 values (differently 

coloured curves). Note that the mutant growth rate is never positive, indicating that mutants cannot invade the 
system of species 1, 2 when they are in equilibrium. The root around 𝑧 = 0.7 indicates the equilibrium value of 
𝑧2. Parameters are {𝑏1 = 1, 𝑏2 = 0.1, 𝑟1 = 𝑟2 = 1, 𝑐1 = 1, 𝑐2 = 0.1, 𝛿1 = 𝛿2 = 0.1, 𝑘1 = 1, 𝑘2 = 0.1, 𝑤1 =
𝑤2 = 1, 𝑧̅ = 0.5, 𝜎 = 0.2, 𝜂 = 0.1}. 

In case both species can evolve, we define two general growth equations for the two mutant classes 

with respective abundances 𝑛1 and 𝑛2: 

d𝑛1,𝑖

d𝑡
= 𝑛1,𝑖 ((𝑏1𝑟1 − 𝑑(𝑧1,𝑖)) − 𝑏1𝑐1 ∑ 𝑛1,𝑗

𝑎1

𝑗
+ 𝑔(𝑧1,𝑖)

𝑘2 ∑ 𝑛2,𝑗
𝑎2
𝑗

𝛿2 + 𝑤1 ∑ 𝑛1,𝑗
𝑎1
𝑗

) , 

d𝑛2,𝑖

d𝑡
= 𝑛2,𝑖 ((𝑏2𝑟2 − 𝑑(𝑧2,𝑖)) − 𝑏2𝑐2 ∑ 𝑛2,𝑗

𝑎2

𝑗
+ 𝑔(𝑧2,𝑖)

𝑘1 ∑ 𝑛1,𝑗
𝑎1
𝑗

𝛿1 + 𝑤2 ∑ 𝑛2,𝑗
𝑎2
𝑗

), 

where 𝑎𝑖  is the total number of species belonging to the 𝑖th mutant class. The two class of species, 

when their initial trait values allow, evolve towards better cross-feeders (see Figure S9). 

A B 

  

Figure S9. Adaptive dynamics of the cross-feeding model when both species can mutate and there is no inhibition. 
A: Trait value against generations; colours correspond to trait values. B: Time evolution of the invading mutant’s 
trait-dependent parameter values {𝑔𝑚𝑢𝑡 , 𝑑𝑚𝑢𝑡} for both classes (the trajectory of the second class is slightly 
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offset). Colours correspond to mutation events. Parameters are different for the two classes {𝑡𝑖𝑛𝑣 = 5 ∙
105, 𝑛𝑖𝑛𝑣 = 0.01, 𝜇𝑆𝐷 = 10−2, 𝑛𝜃 = 10−3, 𝐺 = 1000, 𝑧1 = 0.2, 𝑧2 = 0.3, 𝑏1 = 1, 𝑏2 = 0.1, 𝑐1 = 1, 𝑐2 =
0.1, 𝑘1 = 1, 𝑘2 = 0.1, 𝑟1 = 1, 𝑟2 = 1, 𝛿1 = 𝛿2 = 0.1, 𝑤1 = 1, 𝑤2 = 1, 𝑧̅ = 0.5, 𝜎 = 0.2, 𝜂 = 0.1}. While species 
of 𝑁 have higher birth rates than species of 𝑀, they are present in less amounts at equilibrium (opacity of points 
correspond to relative equilibrium density). Nevertheless, they can evolve to better trait values than species of 
𝑀. 

8. Adaptive dynamics for cross-feeding with inhibition 
We take species 1 to be a static resident and only allow species 2 to mutate: 

d𝑛1

d𝑡
= 𝑛1 ((𝑏1𝑟1 − 𝑑1) − 𝑏1𝑐1𝑛1 + 𝑔1

𝑘2 ∑ 𝑛𝑗
𝑎
𝑗=2

𝛿2 + 𝑤1𝑛1
− ℎ1

𝑘1𝑛1

𝛿1 + 𝑤2 ∑ 𝑛𝑗
𝑎
𝑗=2

) , 

d𝑛𝑖

d𝑡
= 𝑛𝑖 ((𝑏𝑖𝑟𝑖 − 𝑑𝑖) − 𝑏𝑖 ∑ 𝑐𝑙𝑛𝑙

𝑎

𝑙=1

+ 𝑔𝑖

𝑘1𝑛1

𝛿1 + 𝑤2 ∑ 𝑛𝑗
𝑎
𝑗=2

− ℎ2

𝑘2 ∑ 𝑛𝑗
𝑎
𝑗=2

𝛿2 + 𝑤1𝑛1
)  (∀𝑖 ≥ 2), 

where 𝑎 is the total number of species. In case both species can evolve, we define two general growth 

equations for the two mutant classes with respective abundances 𝑛1 and 𝑛2: 

d𝑛1,𝑖

d𝑡
= 𝑛1,𝑖 ((𝑏1𝑟1 − 𝑑(𝑧1,𝑖)) − 𝑏1𝑐1 ∑ 𝑛1,𝑗

𝑎1

𝑗
+ 𝑔(𝑧1,𝑖)

𝑘2 ∑ 𝑛2,𝑗
𝑎2
𝑗

𝛿2 + 𝑤1 ∑ 𝑛1,𝑗
𝑎1
𝑗

− ℎ1

𝑘1 ∑ 𝑛1,𝑗
𝑎1
𝑗

𝛿1 + 𝑤2  ∑ 𝑛2,𝑗
𝑎2
𝑗

) , 

d𝑛2,𝑖

d𝑡
= 𝑛2,𝑖 ((𝑏2𝑟2 − 𝑑(𝑧2,𝑖)) − 𝑏2𝑐2 ∑ 𝑛2,𝑗

𝑎2

𝑗
+ 𝑔(𝑧2,𝑖)

𝑘1 ∑ 𝑛1,𝑗
𝑎1
𝑗

𝛿1 + 𝑤2 ∑ 𝑛2,𝑗
𝑎2
𝑗

− ℎ2

𝑘2 ∑ 𝑛2,𝑗
𝑎2
𝑗

𝛿2 + 𝑤1  ∑ 𝑛1,𝑗
𝑎1
𝑗

), 

where 𝑎𝑖  is the total number of species belonging to the 𝑖th mutant class. 

Simulations where only one or both species can evolve, starting from different initial mutant trait 

values are shown in Figure 4 in the main text. 

9. Coexistence of species 1 and 2 for cross-facilitation 
We study the case when only species 1 and species 2 are present (see Figure S10). 

 
Figure S10. Model for cross-facilitation for two species. Dashed arrows indicate beneficial indirect effects, 
improving the resource consumption of all species 𝑁𝑖. 

The dynamical equations of the concentrations can be estimated below and above by: 

𝐹𝐿(𝑛𝑖) = 𝑛i((𝑟i − 𝑐𝑖𝑛𝑖)𝑏i  − 𝑑i) <
d𝑛i

d𝑡
< 𝑛i((𝑟i − 𝑐𝑖𝑛𝑖)(𝑏i + 𝑠𝑖1 + 𝑠𝑖2) − 𝑑i) = 𝐹𝐻(𝑛𝑖), 
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for 𝑖 = 1,2. If 𝑟𝑖𝑏𝑖 − 𝑑𝑖 > 0,   then 
d𝑛i

d𝑡
> 0 for all 0 < 𝑛𝑖 < 𝑛𝑖𝐿 = (𝑟𝑖𝑏𝑖 − 𝑑𝑖)/(𝑐𝑖𝑏𝑖). That is, the 

densities of the species will increase if 0 < 𝑛𝑖 < 𝑛𝑖𝐿. Contrarily, if 𝑛𝑖 > 𝑛𝑖𝐻 = (
𝑟𝑖((𝑏i+𝑠𝑖1+𝑠𝑖2)−𝑑𝑖)

(𝑐𝑖(𝑏i+𝑠𝑖1+𝑠𝑖2)
) > 0 

then 
d𝑛i

d𝑡
< 0, that is, densities will decrease if this condition is valid. Consequently, after a transient 

time, densities remain in a closed interval (𝑛𝑖 ∈ [𝑛𝑖𝐿 , 𝑛𝑖𝐻]) for all positive initial densities. This means 

that species 1 and species 2 coexist. Naturally, we have no information about the number of fixed 

points and their characteristics by this analysis. 

10. Numerical investigation of stable fixed points for cross-facilitation 
We examine the fixed point distribution for a large number of random parameter combinations for 

the equation system (Eq. 6) in the main text. For each combination, we perturb the parameter values 

{𝑟1 = 𝑟2 = 1, 𝛿1 = 𝛿2 = 0.1, 𝑏1 = 𝑏2 = 1, 𝑐1 = 𝑐2 = 1, 𝑑1 = 𝑑2 = 0.01, 𝑘1 = 𝑘2 = 0.1, 𝑚1 = 𝑚2 =

1, 𝑠11 = 𝑠12 = 𝑠21 = 𝑠22 = 0.1} independently by adding to each parameter a random value drawn 

from the normal distribution with mean 0 and standard deviation 0.5, ensuring that actual parameter 

values do not go below 10-3. We calculate the numerical Jacobian of the system with the given 

parameters, substituting in the numerically calculated fixed points as the densities. For each fixed 

point, we check whether the eigen values of the Jacobian are all negatives. After extensive numerical 

testing (more than 100 000 independent random parameter combinations), we have not found any 

parameter combination which has more than 1 internal stable fixed point. 

11. Existence of a single, globally stable internal fixed point for cross-facilitation 
The per-capita growth rates of the subsystem of species 1 and 2 are: 

𝐺1 = (𝑟1 − 𝑐1𝑛1) (𝑏1 +
𝑠11𝑘1𝑛1

𝑚1𝛿1 + 𝑘1𝑛1
+

𝑠12𝑘2𝑛2

𝑚1𝛿2 + 𝑘2𝑛2
) − 𝑑1, 

𝐺2 = (𝑟2 − 𝑐2𝑛2) (𝑏2 +
𝑠21𝑘1𝑛1

𝑚2𝛿1 + 𝑘1𝑛1
+

𝑠22𝑘2𝑛2

𝑚2𝛿2 + 𝑘2𝑛2
) − 𝑑2. 

At the internal fixed point, where 𝑛1, 𝑛2 > 0: 

𝐺1 = 𝐺2 = 0. 

However, fixed points cannot be analytically calculated and simplified for this equation system. 

Applying the Bendixson-Dulac theorem, where ℎ(𝑛1, 𝑛2) is an arbitrary function, we may prove that 

there are no periodic solutions. Defining ℎ(𝑛1, 𝑛2) =
1

𝑛1𝑛2
 and 𝑓(𝑛1, 𝑛2) = 𝑛1

′ , 𝑔(𝑛1, 𝑛2) = 𝑛2
′  yields: 

𝜕𝑛1
(ℎ𝑓) + 𝜕𝑛2

(ℎ𝑔) = 

= −
𝑏2𝑐2 + 𝑐2𝑠21 + 𝑐2𝑠22

𝑛1

+
𝑐2𝑚2𝑠21𝛿1

𝑛1(𝑚2𝛿1 + 𝑘1𝑛1)
−

𝑏1𝑐1

𝑛2

+
𝑘1𝑚1𝑟1𝑠11𝛿1

(𝑚1𝛿1 + 𝑘1𝑛1)2𝑛2

−
2𝑐1𝑘1𝑚1𝑠11𝛿1𝑛1

(𝑚1𝛿1 + 𝑘1𝑛1)2𝑛2

− 

−
𝑐1𝑘1

2𝑠11𝑛1
2

(𝑚1𝛿1 + 𝑘1𝑛1)2𝑛2

−
𝑐1𝑘2𝑠12

𝑚1𝛿2 + 𝑘2𝑛2

+
𝑘2𝑚2𝑟2𝑠22𝛿2

𝑛1(𝑚2𝛿2 + 𝑘2𝑛2)2
+

𝑐2𝑚2
2𝑠22𝛿2

2

𝑛1(𝑚2𝛿2 + 𝑘2𝑛2)2
, 

which may be negative, depending on a complex combination that cannot be simplified (assuming 

𝑛1, 𝑛2 > 0 and all parameters are positive). 

While we did not manage to prove that only a single internal stable fixed point exists in this system, 

we have never found any other dynamical outcomes despite extensive numerical investigations 

(SI 10). We therefore conclude that even if multiple stable states are a possibility, they are highly 

unlikely to be realized and one can proceed as if the internal equilibrium point was unique. A 

characteristic phase plot is shown in Figure S11. 
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Figure S11. Phase plot of the cross-facilitation model. Parameters are: {𝑏1 = 𝑏2 = 1, 𝑟1 = 𝑟2 = 1, 𝑑1 = 𝑑2 =
0.1, 𝑐1 = 𝑐2, 𝛿1 = 𝛿2 = 0.1, 𝑘1 = 𝑘2 = 1, 𝑤1 = 𝑤2 = 1, 𝑚1 = 𝑚2 = 1, 𝑠11 = 𝑠12 =, 𝑠21 = 𝑠22 = 1}. 

12. Adaptive dynamics for cross-facilitation 
We use the same trade-off functions as before (Eq. S8), now between the traits mortality (𝑑) and 

production rate (𝑘), as we assume that production is costly, and the higher the production rate, the 

higher the death rate is (see Figure S12): 

𝑘𝑖(𝑧𝑖) =
1

2
(1 + tanh (

𝑧𝑖 − 𝑧̅

𝜎
)) , 

𝑑𝑖(𝑧𝑖) = 𝜂 max(0, 𝑧𝑖). 

(Eq. S9) 

 
Figure S12. Relation of the trait value 𝑧 to model parameters {𝑘, 𝑑}. Note the logarithmic y scale. Parameters are 
𝑧̅ = 0.5, 𝜎 = 0.2, 𝜂 = 0.1. 

Assuming that both species can evolve, we define two general growth equations for the two mutant 

classes with respective abundances 𝑛1 and 𝑛2, modifying the dynamical equations of (Eq. 6) in the 

main text: 

d𝑛1,𝑖

d𝑡
= 𝑛1,𝑖 ((𝑟1 − 𝑐1 ∑ 𝑛1,𝑗

𝑎1

𝑗
) (𝑏1 +

𝑠11 ∑ 𝑘(𝑧1,𝑗)𝑛1,𝑗
𝑎1
𝑗

𝛿1𝑚1 + ∑ 𝑘(𝑧1,𝑗)𝑛1,𝑗
𝑎1
𝑗

+
𝑠12 ∑ 𝑘(𝑧2,𝑗)𝑛2,𝑗

𝑎2
𝑗

𝛿2𝑚1 + ∑ 𝑘(𝑧2,𝑗)𝑛2,𝑗 
𝑎2
𝑗

) − 𝑑(𝑧1,𝑖)) , 
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d𝑛2,𝑖

d𝑡
= 𝑛2,𝑖 ((𝑟2 − 𝑐2 ∑ 𝑛2,𝑗

𝑎2

𝑗
) (𝑏2 +

𝑠21 ∑ 𝑘(𝑧1,𝑗)𝑛1,𝑗
𝑎1
𝑗

𝑚21 + ∑ 𝑘(𝑧1,𝑗)𝑛1,𝑗
𝑎1
𝑗

+
𝑠22 ∑ 𝑘(𝑧2,𝑗)𝑛2,𝑗

𝑎2
𝑗

𝑚22 + ∑ 𝑘(𝑧2,𝑗)𝑛2,𝑗 
𝑎2
𝑗

) − 𝑑(𝑧2,𝑖)), 

where 𝑎𝑖  is the total number of species belonging to the 𝑖th mutant class. 

Results for adaptive dynamics when both species can mutate are shown in Figure 5 in the main text. 

If 𝑧 is close to zero (but not identical), several species can live together without exclusion (see 

Figure S13). This is because species with 𝑧 ≤ 0, their mortality is effectively zero (𝑑 ≈ 0), and 

marginally small 𝑘 (having no effect), which leads to a degenerate case where species can coexist in a 

neutral equilibrium. 

A B 

 

Figure S13. Adaptive dynamics of the cross-facilitation model when both species can mutate. A: Trait value 
against generations for both mutant classes; colours correspond to trait values, opacity to relative equilibrium 
density. B: Time evolution of the invading mutant’s trait-dependent parameter values {𝑘𝑚𝑢𝑡 , 𝑑𝑚𝑢𝑡} for both 
mutant classes (the trajectory of the second class is slightly offset); colours correspond to mutation events. 
Parameters are different for the two classes {𝑡𝑖𝑛𝑣 = 5 ∙ 105, 𝑛𝑖𝑛𝑣 = 10−2, 𝜇𝑆𝐷 = 10−2, 𝑛𝜃 = 10−3, 𝐺 =
550, 𝑧1 = 1.0, 𝑧2 = 0.9, 𝑏1 = 1, 𝑏2 = 0.1, 𝑐1 = 1, 𝑐2 = 0.1, 𝑟1 = 𝑟2 = 1, 𝛿1 = 𝛿2 = 0.1, 𝑚1 = 𝑚2 = 1, 𝑠11 =
𝑠12 = 𝑠21 = 𝑠22 = 0.1, 𝑧̅ = 0.5, 𝜎 = 0.2, 𝜂 = 0.1}. Both classes of mutants evolve toward 𝑧 ≈ 0, where 
mortality 𝑑 is minimal but production rate 𝑘 is also reduced. 

13. Adaptive dynamics for another model of cross-facilitation 
In case of cross-facilitation of Figure 1B (and (Eq. 5) in the main text), products 𝑋1 and 𝑋2 have 

identical effects: they both improve the consumption of both resources 𝑅1 and 𝑅2. Accordingly, 𝑋1 

and 𝑋2 can actually represent the same molecule, instead of two different products. Here, we modify 

the cross-facilitation case of (Eq. 5) to model the situation where product 𝑋𝑖  improves the 

consumption of 𝑅𝑖 only, but makes the resource available to any species. In this setup, we effectively 

differentiate between 𝑋1 and 𝑋2, as they cannot be the same molecule (see Figure S14). 
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Figure S14. Model structure of a different type of cross-facilitation in which 𝑋1 and 𝑋2 have different metabolic 
roles, compared to Figure 1B in the main text, where they effectively represent the same molecule. 𝑁3 is the non-
producing mutant. Dashed arrows indicate catalytic aid over resource consumption for all species. 

Ignoring species 3 for the cross-facilitation case, the dynamical equations are: 

d𝑛1

d𝑡
= 𝑛1 (𝜌1𝑏1 + 𝜌1

𝑠11𝑥1

𝑚1 + 𝑥1
+ 𝜌2

𝑠12𝑥2

𝑚1 + 𝑥2
− 𝑑1), 

𝑑𝑛2

𝑑𝑡
= 𝑛2 (𝜌2𝑏2 + 𝜌2

𝑠22𝑥2

𝑚2 + 𝑥2
+ 𝜌1

𝑠21𝑥1

𝑚2 + 𝑥1
− 𝑑2). 

After substitution of fast resource and metabolite dynamics, equations for adaptive dynamics are: 

d𝑛1,𝑖

d𝑡
= 𝑛1,𝑖 ((𝑟1 − 𝑐1 ∑ 𝑛1,𝑗

𝑎1

𝑗
) (𝑟1𝑏1 + 𝑟1

𝑠11 ∑ 𝑘(𝑧1,𝑗)𝑛1,𝑗
𝑎1
𝑗

𝛿1𝑚1 + ∑ 𝑘(𝑧1,𝑗)𝑛1,𝑗
𝑎1
𝑗

+ 𝑟2

𝑠12 ∑ 𝑘(𝑧2,𝑗)𝑛2,𝑗
𝑎2
𝑗

𝛿2𝑚1 + ∑ 𝑘(𝑧2,𝑗)𝑛2,𝑗 
𝑎2
𝑗

) − 𝑑(𝑧1,𝑖)) , 

d𝑛2,𝑖

d𝑡
= 𝑛2,𝑖 ((𝑟2 − 𝑐2 ∑ 𝑛2,𝑗

𝑎2

𝑗
) (𝑟2𝑏2 + 𝑟1

𝑠21 ∑ 𝑘(𝑧1,𝑗)𝑛1,𝑗
𝑎1
𝑗

𝛿1𝑚2 + ∑ 𝑘(𝑧1,𝑗)𝑛1,𝑗
𝑎1
𝑗

+ 𝑟2

𝑠22 ∑ 𝑘(𝑧2,𝑗)𝑛2,𝑗
𝑎2
𝑗

𝛿2𝑚2 + ∑ 𝑘(𝑧2,𝑗)𝑛2,𝑗 
𝑎2
𝑗

) − 𝑑(𝑧2,𝑖)). 

When both species can mutate, results are qualitatively similar to that of the original cross-facilitation 

model (compare Figure S15 to Figure S13). 

A B 

 

Figure S15. Adaptive dynamics of the cross-facilitation model when both species can mutate. A: Trait value 
against generations for both mutant classes; colours correspond to trait values, opacity to relative equilibrium 
density. B: Time evolution of the invading mutant’s trait-dependent parameter values {𝑘𝑚𝑢𝑡 , 𝑑𝑚𝑢𝑡} for both 
mutant classes (the trajectory of the second class is slightly offset); colours correspond to mutation events. 
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Parameters are different for the two mutant classes {𝑛𝑖𝑛𝑣 = 0.01, 𝑡𝑖𝑛𝑣 = 5 ∙ 105, 𝜇𝑆𝐷 = 10−2, 𝑛𝜃 = 10−3, 𝐺 =
450, 𝑟1 = 𝑟2 = 1, 𝛿1 = 𝛿2 = 0.1, 𝑐1 = 1, 𝑐2 = 0.1, 𝑏1 = 1, 𝑏2 = 0.1, 𝑚1 = 𝑚2 = 1, 𝑠11 = 𝑠12 = 𝑠21 = 𝑠22 =
0.1, 𝑧̅ = 0.5, 𝜎 = 0.2, 𝜂 = 0.1}. 

14. Adaptive dynamics for a hybrid cross-feeding, cross-facilitation system 
Next, we investigate the case where one of the species is a cross-feeder and the other is a cross-

facilitator, as depicted in Figure 7.4 in the main text and detailed in Figure S16. 

 
Figure S16. A possible hybrid case of syntrophy in which one species is a cross-feeder, the other is a cross-
facilitator. Species 𝑁3 is a mutant of the cross-facilitating species 𝑁2 that does not produce anything but benefits 
from the catalytic effect of 𝑋2 (dashed arrows). 

Accordingly, species 1 enjoys a benefit of the enzyme of species 2, but plus the benefit of species 2 

consuming its waste. On the other hand, species 2 enjoys the benefit of eating the waste of species 1 

plus the benefit of its own external enzyme. The dynamical equations are as follows: 

d𝑛1

d𝑡
= 𝑛1 (𝑏1𝜌1 + 𝑟1

𝑠12𝑥2

𝑚1 + 𝑥2
− ℎ1𝑥1 − 𝑑1) , 

d𝑛2

d𝑡
= 𝑛2 (𝑏2𝜌2 + 𝑔2𝑥1 + 𝑟2

𝑠22𝑥2

𝑚2 + 𝑥2
− ℎ2𝑥2 − 𝑑2). 

In turn, the metabolite dynamics read: 

d𝑥1

d𝑡
= 𝑘1𝑛1 − 𝑤2𝑛2𝑥1 − 𝛿1𝑥1, 

d𝑥2

d𝑡
= 𝑘2𝑛2 − 𝛿2𝑥2. 

We assume fast dynamics for the 𝑥𝑖 by setting 
d𝑥𝑖

d𝑡
= 0 to get the quasi-equilibrium equations: 

𝑥1 =
𝑘1𝑛1

 𝑤2𝑛2 + 𝛿1
, 

𝑥2 =
𝑘2𝑛2

𝛿2
. 

Substituting fast resource dynamics (of (Eq. 1) in the main text) and fast metabolite dynamics back 

into the dynamical equations yields: 



20 

d𝑛1

d𝑡
= 𝑛1 (𝑏1(𝑟1 − 𝑐1𝑛1) − 𝑑1 − ℎ1

𝑘1𝑛1

𝛿1 + 𝑤2𝑛2
+ (𝑟1 − 𝑐1𝑛1)

𝑠12𝑘2𝑛2

𝑚1𝛿2 + k2𝑛2
) , 

d𝑛2

d𝑡
= 𝑛2 (𝑏2(𝑟2 − 𝑐2𝑛2) − 𝑑2 + 𝑔2

𝑘1𝑛1

𝛿1 + 𝑤2𝑛2
+ (𝑟2 − 𝑐2𝑛2)

𝑠22𝑘2𝑛2

𝑚2𝛿2 + 𝑘2𝑛2
). 

Evolution mutates a unidimensional trait 𝑧 in case of cross-facilitators. Their mortality 𝑑 and enzyme 

production rate 𝑘 depend directly on 𝑧 through the same trade-off as before, as defined in (Eq. S9). 

However, in this setup, waste-consumption efficiency 𝑔2 is also a property of cross-facilitators, and 

not of cross-feeders. We keep it as a static property. As a minor consequence, cross-feeders cannot 

consume the waste of other species hence they only have a single property 𝑑 that could depend on a 

possible evolutionary trait for the cross-feeder class. For sake of simplicity, the cross-feeding species 

𝑁1 is kept as static and only the cross-facilitating species could mutate. 

The dynamical equations prepared for adaptive dynamics are: 

d𝑛1,i

d𝑡
= 𝑛1,i (𝑏1 (𝑟1 − 𝑐1 ∑ 𝑛1,𝑗

𝑎1

𝑗

) − 𝑑1 − ℎ1

𝑘1 ∑ 𝑛1,𝑗
𝑎1

𝑗

𝛿1 + 𝑤2 ∑ 𝑛2,𝑗
𝑎2

𝑗

+ (𝑟1 − 𝑐1 ∑ 𝑛1,𝑗

𝑎1

𝑗

)
𝑠12 ∑ 𝑘(𝑧2,𝑗)𝑛2,𝑗

𝑎2

𝑗

𝑚1𝛿2 + ∑ 𝑘(𝑧2,𝑗)𝑛2,𝑗
𝑎2

𝑗

) , 

d𝑛2,i

d𝑡
= 𝑛2,i (𝑏2 (𝑟2 − 𝑐2 ∑ 𝑛2,𝑗

𝑎2

𝑗

) − d(zi) + 𝑔2

𝑘1 ∑ 𝑛1,𝑗
𝑎1

𝑗

𝛿1 + 𝑤2 ∑ 𝑛2,𝑗
𝑎2

𝑗

+ (𝑟2 − 𝑐2 ∑ 𝑛2,𝑗

𝑎2

𝑗

)
𝑠22 ∑ 𝑘(𝑧2,𝑗)𝑛2,𝑗

𝑎2

𝑗

𝑚2𝛿2 + ∑ 𝑘(𝑧2,𝑗)𝑛2,𝑗
𝑎2

𝑗

). 

Result of a characteristic simulation is shown in Figure S17. 

A B 

 

Figure S17. Adaptive dynamics of the hybrid cross-feeding and cross-facilitation model when only the cross-
facilitating species can mutate. A: Trait value against generations for the cross-facilitating mutant classes (the 
blue line at 𝑧1 = 1 indicates static cross-feeder species); colours correspond to trait values, opacity to relative 
equilibrium density. B: Time evolution of the invading mutant’s trait-dependent parameter values {𝑘𝑚𝑢𝑡 , 𝑑𝑚𝑢𝑡}; 
colours correspond to mutation events. Parameters are {𝑛𝑖𝑛𝑣 = 0.01, 𝑡𝑖𝑛𝑣 = 5 ∙ 105, 𝜇𝑆𝐷 = 0.01, 𝑛𝜃 =
10−3, 𝐺 = 250, 𝑟1 = 1, 𝑟2 = 1, 𝛿1 = 1 10⁄ , 𝛿2 = 1 10⁄ , 𝑐1 = 1, 𝑐2 = 0.1, 𝑏1 = 1, 𝑏2 = 0.1, 𝑚1 = 1, 𝑚2 =
1, 𝑑1 = 0.01, 𝑘1 = 1, ℎ1 = 1, 𝑔2 = 1, 𝑤2 = 1, 𝑠12 = 𝑠22 = 0.1, 𝑧̅ = 0.5, 𝜎 = 0.2, 𝜂 = 0.1}. 
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15. Code to reproduce analyses and figures 
Code files are supplied as separate Supplementary information files with this publication. The 

following Wolfram Mathematica notebooks are included. 

SI Fixed point analysis.nb Code to reproduce the fixed point analysis for cross-feeding (with or 

without inhibition) and cross-facilitation (main text Figures 2, 3 and SI 3-

6, 9-11). 

SI Invasion fitness.nb Code to reproduce invasion fitness calculation for Figure S8. 

SI Adaptive dynamics.nb Code to reproduce adaptive dynamics analyses (main text Figures 4, 5, 

SI 7-8 and SI 12-14). 
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