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5Centre de Recerca Ecològica i Aplicacions Forestals (CREAF, Barcelona, Spain)

†These authors contributed equally
∗Corresponding author

Contents

1 A SIR metapopulation model 2

1.1 Random matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Next-generation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Gershgorin and Perron-Frobenius theorems . . . . . . . . . . . . . . . . . . . . . . 12

2 Transmission and disease distribution 14

3 Random mobility networks 18

3.1 Restrictions in commuting flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Perturbed migration scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Generally correlated networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1



1 A SIR metapopulation model

We consider a susceptible-infected-recovered (SIR, [15, 3, 8]) model describing the spread of an

infectious disease over a discrete metapopulation, consisting of N patches connected by a weighted

network. At each patch i, individuals remain at three possible states: susceptible, infected or

recovered (denoted by Si, Ii and Ri respectively). These populations evolve according to the

following system of differential equations

dSi

dt
= ΛiNi − βi

Si

Ni
Ii − diSi + θiRi −

N∑
j=1

βjcji
Si

Ni
Ij −

N∑
j=1

mjiSi +

N∑
j=1

mijSj ,

dIi
dt

= βi
Si

Ni
Ii − (αi + δi + di)Ii +

N∑
j=1

βjcji
Si

Ni
Ij −

N∑
j=1

mjiIi +

N∑
j=1

mijIj ,

dRi

dt
= αiIi − (θi + di)Ri −

N∑
j=1

mjiRi +
N∑
j=1

mijRj ,

(1)

where i ∈ {1, . . . , N} and Ni = Si + Ii + Ri denotes the total population at patch i. Table 1

contains a description of the epidemiological parameters of the system. These parameters model

the usual natural dynamics of human populations (births and deaths), as well as the life cycle of

the disease (infection, recovery, loss of immunity). In addition to these, there are two qualitatively

different terms in Eq. (1) that model the mobility of individuals between patches.

Parameter Description

Λi Birth rate

βi Transmission rate of the disease

di Natural death rate (excluding the modeled disease)

δi Disease-related death rate

θi Rate of loss of immunity to the disease

αi Rate of disease overcome

Table 1: Biological parameters of the model. Rates describing the natural dynamics of the

population and the life cycle of the disease at patch i of the system (Eq. (1)).

The first of these terms corresponds to the short-term mobility between patches, and is la-

belled as commuting throughout the article. It models the infections generated at each patch i

derived from interactions of susceptible individuals from patch i with infected individuals from

other patches j. We assume that these new infections are generated at a rate βjcji, that factors

the transmission rate at patch j and a corrective factor cji. Interactions may occur anywhere in

the network and the corresponding individuals return to their patch of origin. We assume that the

reference transmission rate is the one associated to the patch of origin j of the infected individ-

ual. The second term associated to human mobility concerns movement between patches with no

return, and is labelled as migration. We assume that individuals go from patch j to patch i at a

rate mij and do not go back to their patch of origin. Depending on the chosen timescale for the

system, this could represent daily or seasonal flows between locations in the network, for instance.
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Figure 1: The model. Three different processes may modify the number of infected individuals

at each patch i. First, the natural dynamics of the disease, consisting of contagions of susceptible

from infected individuals from the patch (at a rate βi of transmission of the disease) and depletion

of infected individuals (at a rate γi, that combines the rate of true recovery from the disease

and the natural death rate of the population). Second, contagions of susceptible from infected

individuals from other patches j (at a rate βjcji, that factors the local disease transmission rate

βj and a corrective term cji quantifying the force of infection on patch i generated by interactions

with individuals from patch j). Third, arrivals/departures of infected individuals from/to other

patches j (at rates mij and mji respectively).

As mentioned in the text, both our commuting and migration terms are standard in metapop-

ulation epidemic models [14, 23], and are included to display the potential of RMT techniques

in this context. Our choice of model is particularly suited for including spatial heterogeneities in

transmission, such as disease strains, vaccination, or non-pharmaceutical interventions, but our

methods could be developed analogously for other variations on the modelling of the transmission

events (see for instance [18, 22, 17, 4, 30]).

Rather than choosing specific values for the coefficients cij and mij in Eq. (1), we assume that

these are drawn from probability distributions. More precisely, we assume that every coefficient cij
is a realization of an iid random variable following a certain positive distribution c, with given mean

and variance (µc, σ
2
c ). Analogously, we assume that the coefficients mij are drawn from iid random

variables following another given positive distribution m, with mean and variance (µm, σ2
m). As

we show in Section 1.1 below, these two parameters (mean and variance of the distributions) are

the only ones relevant for the possibility of spread of the disease over the system. No further

constraints are assumed for the distributions, besides their positiveness. From a theoretical point

of view, this flexibility should allow us to capture real-world mobility networks in our model, by

simply computing the mean and variance of the empirically observed connectivity flows between

the locations considered in the system. We incorporate nevertheless in Section 3 some structural

variations in the network and show how these may affect the spread of the disease.
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We will focus on the computation of epidemic thresholds, that determine the initial growth of

the disease. These depend on the transmission and recovery rates of the disease and the mobility

features of the network. Numerical simulations show that the remaining epidemiological and bi-

ological parameters in Eq. (1) influence instead the long-term behaviour of the system (Fig. 2).

For instance, even an unstable scenario in which the infected population grows initially may result

in a non-endemic disease if the disease-related death rate is high enough. In general, increasing

the mortality rates produces an instant decay in the number of infected individuals, while if the

natural death rate is lower than the birth rate and the system is unstable then the number of

infected individuals will grow exponentially. An increase on θ, the rate of loss of immunity, results

in a larger number of infected individuals at the endemic state of the disease. On the contrary,

rising the rate of disease overcome α causes an endemic state with a smaller number of infected

individuals. In both cases, the qualitative behaviour of the outbreak remains the same (Fig. 2).

In the following, we assume that the system in Eq. (1) is closed, that is, that the total population

remains constant over time. This is a standard assumption in epidemic models for diseases with

a relatively low death rate during their initial growth period [10]. This condition is achieved by

assuming equal birth and natural death rates across patches (Λi = di for all i), and no disease-

related mortality (δi = 0 for all i). We denote the resulting recovery rate as γi = αi + di here

and in the main article, combining the true recovery rate and the natural death rate. Under these

hypothesis, the domain R3N
+ is an invariant subspace under the action of the dynamical system

(Eq. (1)), and thus the model is well-defined. This means in particular that if the initial conditions

of the system are biologically feasible, then the system will remain to be such throughout time (see

for instance Proposition 2 in [25] for a similar model).

Another consequence of the closedness of the system is that the disease-free state becomes in

fact an equilibrium point of the dynamical system. The conditions Ii = Ri = 0 for all i characterize

the disease-free equilibrium (DFE) of the system Eq. (1), that takes the form (S∗
1 , 0, 0, S

∗
2 , 0, 0, . . . ).

Its explicit expression can be found by solving the system of equations (see Theorem 3.3 in [4])

−
∑
i

mijS
∗
i +

∑
j

mijS
∗
j = 0, i ∈ {1, . . . , N}. (2)

That is, the distribution of the migration flows determines the distribution of the population over

the patches of the system at the DFE, as the outgoing and incoming flows need to compensate in

order for each local subpopulation to be constant. Note that the system (1) models the simplifying

assumption that migration rates are independent of the state of the individuals.

The rightmost eigenvalue of the Jacobian matrix of the system at the DFE, s(J), governs the

possibility of spread of the disease [9, 10]. As follows from classical dynamical systems theory, if

there is any eigenvalue with real part greater than zero the system is unstable at the DFE, i.e., the

number of infected individuals tends to grow initially. If all the eigenvalues of the Jacobian at the

DFE have negative real part, the system is stable and the disease dies out upon the introduction

of a small number of infected individuals in the network. This behaviour provides the threshold

condition analogous to that of R0 exploited over the text. Moreover, the magnitude of the total
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Figure 2: Rates of recovery, death and loss of immunity. Total number of infected individuals

for a system with β = 0.1 over time for several values of the recovery rate α, the natural death

rate d, the disease-related death rate δ, and the recovery rate θ. All rates are assumed to coincide

across patches and the system is unstable in all cases, verifying s(J) > 0.
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Figure 3: The epidemic threshold s(J) shapes the evolution of the disease. Total number

of infected individuals over the system, maximum of infected individuals at a single patch, and

time when this maximum is attained in terms of the epidemic threshold s(J). Higher values of

s(J) result in an earlier and steeper epidemic.

number of infected individuals over the system, the maximum of infected individuals at a single

patch, and the time to arrive to the epidemic peak also depend non-linearly on the epidemic

threshold s(J) (see Fig. 3 for some examples). Let us note that, unlike for systems modelling

ecological communities [2, 5], the differential equations for the susceptible, infected and recovered

populations in (1) are coupled; it is only due to the known properties of SIR-like models [10] that

the subsequent analysis by means of the Jacobian of the simpler infected subsystem is possible.

1.1 Random matrices

We assume for the moment that the rates of disease transmission and recovery of infected individ-

uals are the same at all the nodes of the network, and denote them by β and γ respectively. Under

these conditions, the Jacobian matrix of the infected subsystem of the model (1) at DFE reads as

follows

J =


β − γ −

∑
j mj1 βc21 +m12 βc31 +m13 . . . βcN1 +m1N

βc12 +m21 β − γ −
∑

j mj2 βc32 +m23 . . . βcN2 +m2N

βc13 +m31 βc23 +m32 β − γ −
∑

j mj3 . . . βcN3 +m3N

...
...

...
...

βc1N +mN1 βc2N +m2N βc3N +mN3 . . . β − γ −
∑

j mjN

 . (3)
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Recall that the commuting and migration coefficients are drawn from random variables with mean

and standard deviation (µc, σc) and (µm, σm), respectively. As we argue below, the asymptotic

eigenvalue distribution of J coincides with that of

J ′ =(βµc + µm)1N︸ ︷︷ ︸
structure matrix

+ GN (0, σ)︸ ︷︷ ︸
centered noise

+ (β − γ − βµc −Nµm)IN︸ ︷︷ ︸
multiple of identity

, (4)

where 1N is a N × N matrix of ones, the N × N matrix GN (0, σ) has iid entries following

a certain distribution with mean zero and standard deviation σ =
√

β2σ2
c + 2βτ + σ2

m (where

τ = σcσmCor(cij ,mij)), and IN denotes the identity matrix of size N . We have chosen the

monikers in Eq. (4) to help identify the role of each matrix in the eigenvalue distribution of J ′:

the structure matrix provides the mean of the off-diagonal entries of J ′, the noise matrix captures

their fluctuations around this mean, and the multiple of identity sets the mean of the diagonal.

We use the low rank perturbation theorem of Tao [26, 21], that generalizes the well-known

circular law from RMT [27], providing the asymptotic eigenvalue distribution of matrices such as

J ′ whenever the structure matrix has low rank. Using this result (we actually use theorem 2.8 in

[21], as we explain below), we find that the eigenvalue distribution of J ′ consists on two regions in

the asymptotic N → ∞ regime. These are a circle on the complex plane on which the majority

of the eigenvalues are uniformly distributed (the bulk), and a single outlier eigenvalue located on

the real axis. After rescaling these distributions in N to match our model (see below for technical

details), we find that the circle has radius σ
√
N and is centered at β(1−µc)− γ −Nµm, and that

the outlier eigenvalue is located at βµc(N − 1) + β − γ.

We now provide technical details that justify why the eigenvalue distribution of the original

Jacobian matrix J given in Eq. (3) coincides in the asymptotic regime with the one of J ′:

• A central phenomenon in RMT is the universality of the asymptotic eigenvalue distributions

of random matrices [27, 12]: eigenvalues of matrices belonging to a large class of distributions

share a common macroscopic behaviour in the large-N limit, that only depends on the mean

and variance of the entries of the random matrix and not on the particular distribution

followed by these. This is true for the circular law and also for the generalizations of it

used throughout the article. As a consequence, the limiting distribution of the eigenvalues

of J coincides with that of matrix J ′ for any choice of noise matrix, as long as its entries

have the same variance σ2. Said differently, the eigenvalues of J follow the same asymptotic

distribution for any choice of mobility coefficients having the same mean and variance and

regardless of their particular values.

• Rigorous statements of the circular law [27], the low-rank perturbation theorem [26] and

theorem 2.8 in [21] involve a different scaling of the random matrix J ′, providing a fixed

limiting distribution for the bulk of the eigenvalues. The matrix J ′ chosen here results

in a rescaling of the distribution given by the low-rank perturbation theorem, after the

substitutions µ →
√
Nµ, σ →

√
Nσ (for example in theorem 2.8 in [21]). The obtained

distributions are also accurate in this case, as has been observed in previous works [2, 1, 13,

24]. One of the advantages of RMT results is that often asymptotic convergence is apparent

already at small values of N , and in particular we observe that is the case after this rescaling.

See Fig. 4 for some examples of this fact, that holds for J as well.

7



−0.05

−0.02

0.00

0.03

0.05

−0.4 −0.2 0.0

−0.05

0.00

0.05

−0.5 0.0 0.5 1.0Im
ag

in
ar

y 
pa

rt

−0.10

−0.05

0.00

0.05

0.10

0 1 2
Real part

Figure 4: Convergence to the circular law for low values of N . The convergence of the

eigenvalue distributions of random matrices to their predicted locations is apparent even for small

values of N . From top to bottom, the plots show the eigenvalues of systems of sizes N = 10, 25, 50.

The off-diagonal entries of the Jacobian have mean βµc + µm = 0.045 and standard deviation

σ = 0.01 and the transmission and recovery rates verify β − γ = −0.4. Note that the predicted

distribution is accurate for the outlier as well, even after the re-scaling in N explained in the text.
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• Another difference between J and J ′ is that their diagonal elements are only equal in mean.

O’Rourke and Renfrew prove [21] that the limiting eigenvalue distribution provided by the

circular law is independent of the variance of the diagonal entries of the matrix, as long as

this is finite. Note, however, that the results of RMT hold asymptotically for matrices with

fixed parameters, and the variance of the diagonal entries of J grows with N . Numerical

experiments show nevertheless a very close resemblance between the empirically computed

eigenvalues of J and their theoretical expected distribution whenever σm is relatively small.

Even for larger values of this parameter, that controls the variance (N−1)σ2
m of the diagonal

entries of J , the location of the outlier eigenvalue seems to be accurately predicted by the

low-rank perturbation theorem, while the circular distribution of the bulk of the eigenvalues

is deformed (see Fig. 5). For simplicity, we consider throughout the article parameter values

for the random matrices such that the variance of their diagonal elements does not cause

a significant perturbation of the circular law; these seem to match realistic assumptions on

human mobility.

As explained in section 1, the system will be stable whenever all the eigenvalues of the Jacobian

matrix J lie on the left half of the complex plane, and therefore one should in principle control

for both the bulk region and the outlier eigenvalue to verify this condition. This results in the

following two conditions for the stability of the system

βµc(N − 1) + β − γ < 0 (5)

β(1− µc)− γ −Nµm + σ
√
N < 0 (6)

However, we see that if the first condition holds but the second is violated, then

βµc(N − 1) < γ − β < σ
√
N − βµc −Nµm, (7)

or, equivalently, that the coefficient of variation of the off-diagonal entries of J verifies

√
N <

σ

βµc + µm
. (8)

Note, however, that the the off-diagonal entries of J follow a positive distribution, as explained in

section 1. Without loss of generality, if we assume this distribution to be compactly supported on

an interval [0, R] for some R > 0, the Bhatia-Davies inequality [7] introduces another constraint

on the size of its variance

σ2 ≤ (R− µ)µ, (9)

where we have denoted by µ = βµc + µm the mean of the off-diagonal entries of J . Combining

Eqs. (8) and (9), we see that in order for the first stability condition to hold and for the second to

be violated, the distribution of the off-diagonal entries of J would need to verify

µ(N + 1) = (βµc + µm)(N + 1) < R. (10)

In the asymptotic regime, this results in a contradiction, and even for finite but moderately large

values of N this results in highly degenerated distributions that do not seem to model realistic

systems. This means that for practical purposes, the outlier eigenvalue always lies on the right of
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Figure 5: Variance of the diagonal entries of random matrices. The convergence of the

distribution of the bulk of the eigenvalues to the circular law breaks as σm increases. From

top to bottom, the migration rates of the corresponding systems have standard deviation σm =

0.005, 0.02, 0.03. All three plots correspond to a Jacobian matrix of size N = 200 with off-diagonal

entries having mean βµc + µm = 0.026. The standard deviation of the commuting coefficients is

given by σc = 0.03. Note that convergence would not be recovered at higher values of N , as the

variance of the diagonal entries in the matrix grows asymptotically with N . In all cases, the outlier

eigenvalue matches closely its expected location.
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the circle where the bulk of the eigenvalues is contained. Therefore, the stability of the system is

determined by a single condition (the location of the outlier eigenvalue), which provides the desired

epidemic threshold (Eq. (2) in main text)

s(J) = βµc(N − 1) + β − γ. (11)

1.2 Next-generation matrix

The basic reproduction number R0 defines the number of contagions caused by a typical infected

individual in a fully susceptible population. In compartmental models, it is given by the spectral

radius of the next-generation matrix [9, 28]. In this section, we show that RMT could be used

to derive R0 and s(J) for a simplified version of Eq. (1). Both numbers give equivalent epidemic

thresholds; this is proved in [10] from the following equality

sign(R0 − 1) = sign(s(J)). (12)

The equivalence between the two epidemic thresholds follows from Eq. (12):{
s(J) < 0 ⇐⇒ R0 < 1 : the disease will die out eventually (stability),

s(J) > 0 ⇐⇒ R0 > 1 : the disease may spread over the system (instability).
(13)

Comparing both conditions, we see that R0 < 1 holds if all the eigenvalues of the next-generation

matrix are contained in the unit circle (Fig. 6), while s(J) < 0 if the maximum real part of the

eigenvalues is smaller than zero.

We consider a simplified model with mij = 0 in Eq. (1) and same transmission and recovery

rates at the patches, given by

dIi
dt

= β
Si

Ni
Ii − γIi +

N∑
j=1

βcji
Si

Ni
Ij , i ∈ {1, ..., N}, (14)

and show that we can compute s(J) and R0 with RMT, as well as its equivalence as presented

in (13). In order to compute R0, we follow the algorithm presented in [10] for compartmental

models, where R0 is given by the spectral radius, ρ(K) of the next-generation matrix K. The

next-generation matrix is computed as K = −TΣ−1, where T and Σ can be extracted from the

Jacobian matrix as J = T + Σ. Here, T is the transmission matrix, containing the terms related

to production of new infected individuals, and Σ is the transition matrix, containing information

relative to changes between infectious states. This decomposition must be chosen in such a way that

T is a positive matrix and Σ is a positive off-diagonal matrix with negative dominant eigenvalue.

For the infected subsystem (14) we can write

T =


β βc21 βc31 . . . βcN1

βc12 β βc32 . . . βcN2

βc13 βc23 β . . . βcN3

βc1N βc2N βc3N . . . β
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and Σ = diag(−γ, ...,−γ). The next-generation matrix is then given by

K =
β

γ
(µc1N + GN (0, σc) + (1− µc)IN ) . (15)

Following the same reasoning as in section 1.1, we find from RMT results that the eigenvalues of

K are uniformly distributed in a circle with radius (β/γ)σc

√
N and center (β/γ)(1 − µc), with

an outlier produced by the low-rank matrix µc1N given by (β/γ)(µc(N − 1) + 1). Therefore,

constraining all these eigenvalues to lie inside the unit circle, we find that the basic reproduction

number is given by

R0 =
β

γ
(µc(N − 1) + 1) (16)

If we compute the epidemic threshold s(J) from the Jacobian matrix,

J = β (µc1N + GN (0, σc) + (1− µc)IN )− γIN , (17)

we obtain the following

s(J) = β(µc(N − 1) + 1)− γ. (18)

Equations (16) and (18) present R0 and s(J), computed using the low-rank perturbation theorem

[21] from RMT. Replacing these expressions in the inequalities (13) for the epidemic threshold and

the basic reproduction number we see that

R0 < 1 ⇐⇒ β(µc(N − 1) + 1) < γ ⇐⇒ s(J) < 0. (19)

An analogous reasoning holds for the case when R0 > 0, showing the equivalence between both

epidemic thresholds s(J) and R0.

1.3 Gershgorin and Perron-Frobenius theorems

We outline in this section how the classical Gershgorin [29] and Perron-Frobenius [19] theorems

may be exploited in the analysis of our model. The less precise estimates provided by these results

motivate further our use of RMT techniques.

Let us first consider a model with no short-term mobility between patches. That is, we set all

the commuting coefficients cij to zero in (1), so that the infected subsystem simplifies to

dIi
dt

= βi
Si

Ni
Ii − γiIi −

N∑
j=1

mjiIi +

N∑
j=1

mijIj , i ∈ {1, ..., N}. (20)

Around the DFE, the Jacobian of this system of equations reads

J =


β1 − γ1 −

∑
j mj1 m12 m13 . . . m1N

m21 β2 − γ2 −
∑

j mj2 m23 . . . m2N

m31 m32 β3 − γ3 −
∑

j mj3 . . . m3N

...
...

...
...

mN1 mN2 mN3 . . . βN − γN −
∑

j mjN

 .

(21)
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line) and the reproduction number R0 (unit circle). Eigenvalue distribution for an unstable system
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eigenvalue of the next-generation matrix of the system is larger than 1 in modulus.

13



Using Gershgorin’s circle theorem on the columns of this matrix, we see that its eigenvalues are

contained in the union of the disks

D

βi − γi −
∑
j

mji,
∑
j

mji

 ,

for i ∈ {1, . . . , N}. Therefore, a sufficient condition for the stability of the system is that the

transmission rates βi are smaller than the exit rates γi at all patches i, regardless of the values

taken by the mobility coefficients mji. Indeed, this is a consequence of the fact that infected

individuals only move between patches in this case, without generating new infections in the

process. Therefore, the only quantities that influence the growth of the disease are the rates

βi and γi at which new infections are being generated and depleted at each patch. An analogous

phenomenon has been observed in [25] in the context of plant epidemics, see also [16] for a different

proof of this fact. Thus, the stability of the system is determined by the local growth rates βi − γi
at the nodes of the network.

We can also consider a system with nonzero commuting flows and bound the dominant eigen-

value of the Jacobian matrix using Perron-Frobenius theorem. For the simplest case of constant

transmission and depletion rates across nodes, the theorem provides the bounds

min
j

∑
i

Jij = β − γ + βmin
i

∑
i

cji ≤ s(J) ≤ max
j

∑
i

Jij = β − γ + βmax
i

∑
i

cji, (22)

in terms of the entries Jij of the Jacobian matrix given in Eq. (3). These locate the epidemic

threshold in an interval containing the point β − γ + βµc(N − 1), with the width of the interval

depending on the variance of the commuting rates σc. Already in this case the RMT techniques

provide a better estimate, providing an exact expression for s(J). A more significant improvement

is found for the several generalizations of the model described in the following sections below: while

RMT techniques provide in all cases an exact, analytic expression for s(J), the bounds obtained

from Gershgorin and Perron-Frobenius theorems become much less precise.

2 Transmission and disease distribution

In Section 1.1 we obtained the epidemic threshold for a system with the same transmission and

recovery rates at all patches. In this section we relax this assumption and study more general

scenarios. Let us assume that at k nodes of the network, the transmission rate is β∗ = β + α.

This could model the effect of successful vaccination, efficient public health measures (α < 0) or

massive gatherings (α > 0), for instance. Labelling these nodes as the first k ones, without loss of

generality, the Jacobian of the system around the DFE equals

β + α− γ −
∑

j mj1 . . . (β + α)ck1 +m1k βc(k+1)1 +m1(k+1) . . . βcN1 +m1N

...
. . .

...
...

...

(β + α)c1k +mk1 . . . β + α− γ −
∑

j mjk βc(k+1)k +mk(k+1) . . . βcNk +mkN

(β + α)c1(k+1) +m(k+1)1 . . . (β + α)ck(k+1) +m(k+1)k β − γ −
∑

j mj(k+1) . . . βcN(k+1) +m(k+1)N

...
...

...
. . .

...

(β + α)c1N +mN1 . . . (β + α)ckN +mNk βc(k+1)N +mN(k+1) . . . β − γ −
∑

j mjN


.
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Using the same reasoning as in section 1.1, the eigenvalue distribution of this matrix can be seen

to coincide with that of matrix (4) upon replacing the structure matrix by

βµc + α+ µm (β + α)µc + µm . . . (β + α)µc + µm βµc + µm . . . βµc + µm

(β + α)µc + µm βµc + α+ µm (β + α)µc + µm βµc + µm . . . βµc + µm

...
...

. . .
...

...
...

(β + α)µc + µm (β + α)µc + µm . . . βµc + α+ µm βµc + µm . . . βµc + µm

(β + α)µc + µm (β + α)µc + µm . . . (β + α)µc + µm βµc + µm . . . βµc + µm

...
...

...
...

. . .
...

(β + α)µc + µm (β + α)µc + µm . . . (β + α)µc + µm βµc + µm . . . βµc + µm


, (23)

where a total of k columns have been modified in (23). We assume that the number of perturbed

nodes k is small compared to N , to ensure that the low-rank perturbation theorem [21] provides a

factual estimate for the corresponding eigenvalue distribution. Now k outliers arise in the eigenvalue

distribution of the Jacobian, stemming from the k nontrivial eigenvalues of the matrix (23), with

the largest one being equal to (Eq. (9) in main text)

s(J) =
N

2
(βµc + µm) +

α

2
(1 + (k − 1)µc) + β(1− µc)− γ −Nµm (24)

+
1

2

√
N2 (βµc + µm)

2
+ α2 (1 + (k − 1)µc)

2
+ 2α (βµc + µm) [N (1 + (k − 1)µc) + 2(N − k) (µc − 1)].

The resulting expression for the epidemic threshold is more complicated than that for the system

with equal transmission rates. We also find a dependence on the average migratory flow µm, in

addition to the expected dependence on the perturbation in transmission α and the number of

affected nodes k (see Fig. 7 for examples). Interestingly, an increase in transmission in one patch

to β∗ = β + kα produces a stronger variation in the stability than an equivalent increase in k

patches to β∗ = β + α (Fig.8b). We also find that Eq. (24) gives a better prediction for the epi-

demic threshold than the one obtained from the circular law Eq. (11) when considering the average

transmission rate of the perturbed system β′ = (kβ∗ + (N − k)β)/N (Fig.8a).

In addition to this, we may also consider random fluctuations in the transmission rates across

patches, drawing βi from a probability distribution with mean µβ and variance σβ . Numerical

experiments show that the eigenvalue distribution for the system with random βi is remarkably

close to that predicted with a fixed diagonal term, corresponding to the mean of the random vector,

µβ . The epidemic threshold would thus read as follows

s(J) = µβµc(N − 1) + µβ − γ. (25)

This prediction seems to be less accurate as either the coefficient of variation or the variance of the

distribution followed by the βi increases (Fig. 9). Larger values of N provide a better agreement,

and the larger the variance of the off-diagonal terms of J is with respect to the variance of its

diagonal terms, the better the predicted distribution matches the empirically found one. This

could model the case where there are some patches with zero or close to zero transmission rate.

Even in this case, the average µβ determines the stability of the system and the number of infected
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Figure 7: Epidemic threshold s(J) for systems with perturbed transmission. Changes

in Eq. (24) upon variations in several parameters of a system with N = 100, β = 0.05, γ = 0.8,

µc = 0.05, µm = 0.001. As commuting and transmission increase (left plot, for a system with k = 1

modified patch with transmission β + α = 0.55) the rightmost eigenvalue increases. We observe

that a relatively smaller variation in the epidemic threshold is caused by µm, consistently with

the unperturbed setting. The right plot shows the influence of the number of patches where the

transmission is higher. As expected, as the number of modified patches increases the rightmost

eigenvalue increases.
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Figure 8: Variations in transmission at several patches of the system. Accuracy of the

low-rank perturbation theorem (left). A better estimate is obtained for the rightmost eigenvalue

in comparison to that obtained with Eq. (11) by simply using the average transmission rate of the

perturbed system (size N = 100). Comparison between the epidemic threshold after increasing the

transmission rate in a single patch to β∗ = β + kα versus increasing it at k patches to β∗ = β + α

(right), for β = 0.05 and α = 0.5. There is a greater change in the rightmost eigenvalue when the

increase is localized at one node compared to k nodes.
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individuals may grow at all the patches. This is consistent with the results in [11, 25], where it

is proved that if the network is fully connected then almost surely there is no equilibrium point

having patches with no infected individuals.

In section 1.1, the recovery rates were also assumed to be constant. We can also relax this

assumption and assume that the recovery rate γi in each patch is drawn from a probability distri-

bution with mean µγ and variance σγ . This results in the diagonal entries of the Jacobian matrix

having finite variance, which is still under the assumptions of the low-rank perturbation theorem

[21]. We therefore obtain the same epidemic threshold in Eq. (11) in this case, upon replacing γ

by µγ .

Let us note that two seemingly contradicting phenomena have been described in this section.

First, a different epidemic threshold has been obtained for targeted perturbations in the trans-

mission rates of the system at a small number of patches by means of the low-rank perturbation

theorem. In particular, this expression caused a larger increase in s(J) whenever an equivalent

rise in transmission was concentrated at fewer locations. Secondly, we have observed a very close

agreement between systems with random variations in their transmission rates and those with

equal rates across patches. These findings seem to be incompatible, as the concentrated and dis-

seminated increases in transmission considered in the first case were equal in mean. This fact

may be understood in terms of the different nature of the two perturbations of the system. The

first change favours a more severe rupture of the otherwise statistically balanced distribution of

the underlying random matrix, while the second generates smoother statistical fluctuations that

are compensated more easily. This is a subtle distinction that will arise also when considering

variations on the mobility networks.

3 Random mobility networks

The epidemic threshold (Eq. (11)) shows that the average commuting flow is the only parame-

ter from the connectivity networks that may influence the possibility of spread of the disease on

unperturbed systems. Other features of the mobility flows may cause qualitative changes in the

evolution of the pandemic, relevant for adequate design of public health measures. As explained

in the main article, networks with a more heterogeneous distribution of commuting and migration

flows result in more heterogeneous epidemic landscapes, in which patches with both higher and

lower incidences can be found, see Fig. 10.

An instance of a more heterogeneous setting results from considering sparse connectivity net-

works. The examples of system (Eq. (1)) considered until now displayed fully connected networks.

Here, we explore the stability of the system with a sparse connectivity network, i.e. a proportion

of the flows is set to zero. In order to do this, each of the coefficients in the connectivity matrix

is multiplied by a Bernoulli random variable with mean p; this models the effect of removing a

proportion p of the connectivity flows of the system. This scenario has the same epidemic threshold

as a system where the mean of the migration and the commuting coefficients is multiplied by the

probability of success of the Bernoulli variable, µ = p(βµc + µm). The latter represents a uniform
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Figure 9: Accuracy on predictions for random transmission rates βi. Relative error for the

outlier eigenvalue predicted by Eq. (11) for a system of N = 200 nodes with random transmission

rates. Top row shows relative error in terms of the standard deviation σβ and a fixed average

µβ = 1 (top left) and in terms of the average µβ with a fixed standard deviation σβ (top right).

Bottom row shows relative error for the system in terms of the standard deviation σβ (bottom

left) and the average µβ (bottom right) of the transmission rates for a fixed coefficient of variation

CV = σβ/µβ = 0.5. If we compare the different scenarios, we observe a linear increase in loss of

accuracy whenever CV is constant for either σβ and µβ . On the other hand, the relative accuracy

of the prediction when CV is not fixed seems to depend non-linearly on σβ and µβ (and thus on

CV as well). We see that as the CV increases the accuracy of the prediction decreases.
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Figure 10: Variability in the connectivity networks and epidemic heterogeneity. Increas-

ing either the networks’ joint variance (center, from σ = 0.01 to σ = 0.03) or the average migration

flow (right, from µm = 0.001 to µm = 0.01) increases the heterogeneity in disease incidence across

patches with respect to the base scenario (left, N = 40).

proportional reduction in the strength of the connectivity on all of the flows of the system. Since

the outlier eigenvalues coincide for both systems, we find the same qualitative behaviour for the

spread of the disease (Fig. 11). However, the connectivity matrices are distinct and thus the bulk

of the eigenvalues changes its shape: the radius of the circle differs due to the increase in variance

in the sparse network (Fig. 11). In particular, the larger variance of the sparse system results in a

more heterogeneous distribution of the incidence across patches.

3.1 Restrictions in commuting flows

We have observed the influence of the average commuting flow µc in the epidemic threshold

(Eq. (11)) when this remains the same for all the coefficients in the network. Let us explore

the influence in the epidemic threshold of structured modifications in the commuting network. For

this, we follow the same reasoning as in section 2 for the case of variable transmission rates. More

precisely, we replace the structure matrix in (4) by one that adequately models a given modified

mobility network, and compute the corresponding outlier by means of the low-rank perturbation

theorem [21]. We consider a perturbation µc → µc + ν on the average commuting flow on some

flows of the network, which increases or decreases the strength of the connectivity depending on

the sign of ν, and assume that a number k of patches or a proportionate number of connectivity

flows are perturbed. As above, we assume k to be small compared to the size of the network N in

order for the low-rank perturbation theorem [21] to hold.

We first consider targeted scenarios, where there is a set of k patches with modified average

commuting flows: these comprise all the outgoing (A), incoming (B) or incoming and outgoing

(C) flows. In this case, rows and/or columns in the structure matrix are modified. We also
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Figure 11: Sparse connectivity networks. Mobility network (top), eigenvalue distribution

(center) and evolution of the number of infected individuals in time (bottom) for a sparse system

(left, orange) and a uniformly restricted scenario (right, blue), with N = 50 and a proportion

p = 0.6 of flows set to zero. Accordingly, the fully connected system shows a 60% reduction in the

connectivity flows. The outliers are in the same position, in both scenarios the number of infected

individuals increases initially. The bulk of eigenvalues is different, with higher variance for the

sparse matrix implying a larger radius for the bulk of the eigenvalues and thus a higher variability

between nodes.
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study non-structured scenarios: varying randomly chosen coefficients in the connectivity matrix

(D), introducing symmetry in this random choice by modifying flows in both directions (E), and

reducing uniformly the average commuting flow throughout the network (F). These scenarios are

modelled as follows:

• Strategy A: outgoing flows at selected locations. The structure matrix in (4) is now

βµc + µm β(µc + ν) + µm . . . β(µc + ν) + µm βµc + µm . . . βµc + µm

β(µc + ν) + µm βµc + µm β(µc + ν) + µm βµc + µm . . . βµc + µm

...
...

. . .
...

...
...

β(µc + ν) + µm β(µc + ν) + µm . . . βµc + µm βµc + µm . . . βµc + µm

...
...

...
...

. . .
...

β(µc + ν) + µm β(µc + ν) + µm . . . β(µc + ν) + µm βµc + µm . . . βµc + µm


,

(26)

where the first k columns of the matrix have been modified, and the last (N − k) remain

unchanged. For this choice of structure matrix, the outlier of the Jacobian (3) is given by

s(J) =
N

2
(βµc + µm) +

k − 1

2
βν + β (1− µc)− γ −Nµm (27)

+
1

2

√
N2 (βµc + µm)

2
+ (k − 1)2β2ν2 + 2(N +Nk − 4k) (βµc + µm)βν.

• Strategy B: incoming flows at selected locations. The structure matrix is precisely

the transpose of the structure matrix for strategy A, and thus the corresponding epidemic

threshold coincides with Eq. (27).

• Strategy C: incoming and outgoing flows at selected locations. The structure matrix

in (4) is now

βµc + µm . . . β(µc + ν) + µm β(µc + ν) + µm . . . β(µc + ν) + µm

β(µc + ν) + µm . . . β(µc + ν) + µm β(µc + ν) + µm . . . β(µc + ν) + µm

...
. . .

...
...

...

β(µc + ν) + µm . . . βµc + µm β(µc + ν) + µm . . . β(µc + ν) + µm

β(µc + ν) + µm . . . β(µc + ν) + µm βµc + µm . . . βµc + µm

...
...

...
. . .

...

β(µc + ν) + µm . . . β(µc + ν) + µm βµc + µm . . . βµc + µm


, (28)

where the first k rows and columns of the matrix have been modified and bottom-right

(N − k)× (N − k) block remains unchanged. For this choice of structure matrix, the outlier

of the Jacobian (3) is given by

s(J) =
N

2
(βµc + µm) +

k − 1

2
βν + β (1− µc)− γ −Nµm (29)

+
1

2

√
N2 (βµc + µm)

2
+ 2βν(βµc + µm)(N + k(3N − 2k − 2)) + β2ν2 (4k(N − k) + (k − 1)2).
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• Strategy D, E and F: randomly chosen flows. The structure matrix is now replaced by

(β(µc + νk/N)+µm)1N . The location of the outlier is now provided by the same expression

as in the unperturbed case (3), with the corresponding modified average commuting flow

s(J) = (N − 1)β(µc + νk/N) + β − γ. (30)

As explained above when considering sparse matrices, the average commuting flow for strat-

egy D and F coincide if the number of perturbed flows is the same, and thus the resulting

epidemic thresholds are also equal. Strategy E consists of modifying the mobility flows in

both directions at half as many randomly chosen edges of the network. While this perturba-

tion results in a non-zero correlation between the diagonally opposite elements of the random

matrix, this is known to only modify the distribution of the bulk of the eigenvalues [21], and

thus results in the same epidemic threshold as strategy D as well. See section 3.3 below for

more complicated correlations in the mobility matrices and their effect on the spread of the

disease.

Fig. 12 shows variations in the epidemic threshold s(J) corresponding to strategies A-F above

upon variations in several relevant parameters of the system.

3.2 Perturbed migration scenarios

To investigate the response of the system to perturbations in the migration network, we compare

in Fig. 13 six scenarios of increased migratory flows analogous to those considered in the previous

section. We consider increased incoming flows to particular patches as well as outgoing flows,

and non-structured modifications of the network. These could represent scenarios of humanitarian

crisis or seasonal movements between particular locations, for instance.

As expected, the possibility of spread of the disease remains the same upon these perturbations

in the network (see Results in main article and section 1 above). However, sensible differences arise

in the local distribution of infected individuals over the system. For Scenario A (B), that models

increased incoming (outgoing) migratory flows at certain nodes, we find that a larger (smaller)

number of infected individuals concentrate at these locations, as a consequence of the overall

larger number of individuals moving to (out of) the patches. If both incoming and outgoing flows

are increased (Scenario C), these compensate each other and no significant differences arise in the

affected patches. Among the randomly perturbed scenarios, those introducing more variability in

the network (D and F) result in more heterogeneous epidemic landscape across patches.

3.3 Generally correlated networks

Baron et al [6] provide an asymptotic expression for the eigenvalue distribution of a random matrix

with general pair-to-pair correlations between their elements. These may modify the location of

both the bulk and the outlier eigenvalues, and thus change the stability of the corresponding

system. Let us review their result and its implications for our model.

Consider a random matrix which elements zij are drawn from a probability distribution with

mean µ/N and variance σ2/N . Following [6], we assume that elements in the random matrix may
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Figure 12: Epidemic threshold s(J) for systems with perturbed commuting networks.

Changes in the epidemic thresholds Eqs. (27),(29),(30) upon variations in several system param-

eters (from top-left to bottom-right): perturbation factor ν, average migration flow µm, average

commuting flow µc, transmission rate β. For the base scenario the parameters are N = 50, β = 0.1,

γ = 0.95, µc = 0.1, µm = 0.0001, k = 1 and ν = 0.5. Increases in ν, µc, and β increase s(J),

being strategy C the most sensitive to these increases, particularly for ν and β. An increase of µm

(top right) produces a decrease in s(J) for strategy C, while strategies AB and DEF remain close

to constant in comparison. This corroborates the smaller influence of the migration flows in the

stability of the system observed in Sections 1.1 and 2.
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Figure 13: Variations in the migration network. We consider a base scenario (size N = 40)

of sustained disease spread (positive, close to zero value for s(J), in grey) and test six perturbed

migratory scenarios analogous to those described for the commuting network in the main article,

here for an increase in migratory flows from µm = 0.0005 to µ∗
m = 0.0025. Migratory rates

concerning a total of 6 nodes or an equivalent proportion of flows are considered in the figure. In

each scenario, the top graph displays the strength of the migration flow from patch i to patch j in its

(i, j)-th cell. The brightness of the color represents the strength of the flow, with white representing

absence of movement. Each line in the bottom graph shows the evolution of the infected population

at the patches, colored according to its average incoming and outgoing migratory flows. The three

targeted scenarios (in shades of orange) consist of A: increased incoming migration, B: increased

outgoing migration, C: increased incoming and outgoing migration at half of the nodes. The three

random scenarios (in shades of blue) consist of D: increasing randomly chosen unidirectional flows,

E: increasing half as many randomly chosen flows in both directions, F: uniformly increasing all

the flows in the network.
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also display non-trivial correlations with other matrix coefficients located at specific positions.

More precisely, matrix elements that share a common index verify1

ρ = Cor(zij , zji),

Γ

N
= Cor(zij , zki),

r

N
= Cor(zij , zik),

c

N
= Cor(zji, zki).

(31)

Then, as N → ∞, the bulk of the eigenvalues of the matrix distribute uniformly on the ellipse

centered at the origin with semi-axes (1 + ρ)σ and (1− ρ)σ, following the well-known elliptic law

[20]. There is also a single outlier eigenvalue, located at

µ+
µ

2

(
1 +

ρ

Γ

)(√
1 +

4Γσ2

µ2
− 1

)
. (32)

This coincides with the location given by the low rank perturbation theorem (first term in the

sum), with a translation that depends on the value of the correlations ρ and Γ, as well as the mean

and variance of the matrix coefficients zij (second addend). Additionally, Baron et al [6] show

that any pair-to-pair correlations between elements of the matrix other than those in (31) may be

absorbed in the mean of the coefficients zij in the large-N limit. Therefore, eigenvalue predictions

for networks that display more complex inter-dependencies can be approximated with accuracy by

the expression (32) as long as N is sufficiently large. Interestingly, we see from this expression

that the correlations r and c in (31) do not modify the eigenvalue distribution of the random matrix.

The parameters describing the statistical variability of the Jacobian matrix in our model can be

obtained from those of the commuting and migration coefficients. Indeed, the off-diagonal terms of

J matrix can be expressed as a linear combination of two differently distributed random matrices

β


0 c21 c31 . . . cN1

c12 0 c32 . . . cN2

c13 c23 0 . . . cN3

...
...

...
...

c1N c2N c3N . . . 0

+


0 m12 m13 . . . m1N

m21 0 m23 . . . m2N

m31 m32 0 . . . m3N

...
...

...
...

mN1 m2N mN3 . . . 0

 . (33)

Let us denote as follows the correlations between matrix elements in both of these matrices (note

the different scaling in N with respect to (31))

ρc = Cor(cij , cji), ρm = Cor(mij ,mji),

Γc = Cor(cij , cki), Γm = Cor(mij ,mki),

rc = Cor(cij , cik), rm = Cor(mij ,mik),

cc = Cor(cji, cki), cm = Cor(mji,mki).

(34)

1We use the usual notation ρ in place for Baron et al ’s Γ, and replace their γ by Γ to avoid confusion with our

rate of depletion of infected individuals. All indices i, j, k in (31) are assumed distinct.
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Figure 14: Correlated mobility networks. Commuting networks of size N = 30 displaying

three types of correlation between their flows. Network showing a positive value for ρ (ρ =

0.85), see Eq.(34)), that concerns flows between patches going in opposite directions (left), thus

favoring a more symmetric configuration with respect to the diagonal. Networks showing positive

values for r and c (r = 0.7 and c = 0.7 respectively, see Eq. (34)), which concern outgoing

and incoming flows at the patches (center and right, respectively). These correlations result in

more homogeneous distributions across the columns and rows of the mobility matrix respectively,

favouring the existence of “source” or “sink” locations. See Fig. 5 in main article for examples of

networks displaying nonzero Γ correlation.

See Figure 14 for some examples of correlated networks and the meaning of each parameter in (31)

in the context of mobility networks. The relevant parameters encoding the statistical variability

of the joint mobility network result from combining those of the two random matrices in (33)

σ =
√
β2σ2

c + 2βτ + σ2
m,

ρ = (ρcβ
2σ2

c + ρmσ2
m)/σ2,

Γ = (Γcβ
2σ2

c + Γmσ2
m)/σ2,

r = (rcβ
2σ2

c + rmσ2
m)/σ2,

c = (ccβ
2σ2

c + cmσ2
m)/σ2,

(35)

where τ = σcσmCor(cij ,mij). We have assumed in (35) that the correlations between other

pairs of elements coming from each random matrix in (33) are null for simplicity (for instance,

Cor(cij ,mji) = 0); the corresponding generalization would follow analogously. Note that we have

chosen a different scaling in N from that in Baron et al [6]. This produces a deformation of the

ellipse on which the bulk of the eigenvalues is uniformly distributed, as shown in Fig. 5 of the main

text. The location of the outlier eigenvalue is nevertheless correctly estimated after performing the

corresponding rescaling in equation (32), following an analogous reasoning as the one in section

1.1 for the circular law and the low-rank perturbation theorem. After correcting for the different
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diagonal terms in our model, this results in the following expression for the epidemic threshold for

systems displaying the correlations in Eq. (34)

s(J) = βµc(N − 1) + β − γ +
N

2
(βµc + µm)

(
1 +

ρ

NΓ

)(√
1 +

4Γσ2

(βµc + µm)2
− 1

)
. (36)

See Fig. 5 in the main article for examples of this outlier eigenvalue and the effect of correlations

in the stability of the system. Whenever both correlations Γc and Γm are zero, the last term in

Eq. (36) vanishes and one recovers the original expression for the stability threshold Eq. (11). In

the more general case, the sign of Γ determines whether the correlations facilitate or prevent the

spread of the disease over the network (Fig. 15). We see from (36) that the epidemic threshold

also depends on the correlation ρ between mobility flows going in opposite directions, as well the

average migration rate and the joint variability of the connectivity network (Fig. 16).
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Figure 15: Correlated mobility flows shift the epidemic threshold. Size of the perturbation

of the outlier eigenvalue (given by the last term in Eq. (36)) in terms of the joint correlation Γ

for several choices of transmission rate β and joint mean and variance of the mobility network

(µ = βµc + µm, σ2 = β2σ2
w + 2βτ + σ2

c ). Negative (positive) values for this shift mean that

the epidemic threshold for the correlated system is smaller (larger) than that expected from the

unperturbed expression Eq. (11). The relatively small change in stability caused by ρ can be seen

from the fact that a change from ρ = −0.3 (solid lines) to ρ = 0.6 (dashed lines) produces little

variation in the outlier eigenvalue. In all cases, the sign of Γ determines whether the correlated

network will be more stable (positive shift in s(J)) or less stable (negative shift in s(J)).
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Figure 16: Epidemic threshold s(J) for systems with correlated connectivity networks.

Changes in Eq. (36) upon variations in several parameters of the system: the correlation between

incoming and outgoing flows at the patches Γ, the correlation between flows going in opposite

directions ρ, the average commuting flow µc and the joint standard deviation of the connectivity

networks σ. Note the different y scales in the three graphs; parameters for the base system are

N = 200,Γ = 0.295, ρ = 0.44, µc = 0.12, σ = 0.0012. As observed for systems with only nontrivial ρ

correlation between their connectivity flows, the effect of this parameter on the epidemic threshold

vanishes asymptotically (Eq. (36)).
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