Supporting Information for

1

2 3

4 5 6

7

8

9

 $\begin{array}{c} 10\\11 \end{array}$

12

13

14

15

16 17 18

19

The influence of subpolar marine ice expansion on global climate in the Early Pleistocene

Wenxia Han^{1,2*}, Jinbo Zan^{3*}, David B. Kemp⁴, Tao Zhang⁵, Zhixiang Wang¹, Li Mai¹, Xiaomin Fang³

¹ Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lake, Chinese Academy of Sciences, Xining, 810008, China;

² Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment Sciences, Linyi University, Linyi, 276000, PR China;

³ State Key Laboratory of Tibetan Plateau Earth System Science, Resources and Environment (LTPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China;

⁴ State Key Laboratory for Biogeology and Environmental Geology and Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences (Wuhan), Wuhan, China;

⁵ School of Earth Sciences & Key Laboratory of Western China's Mineral Resources of Gansu Province, Lanzhou University, Lanzhou, China;

Supplementary Figures

20 21

Figure 1. Plot showing variations in insolation at different latitudes, as well as Earth's long (405-kyr, brown) and short (100-kyr, black) eccentricity and obliquity (black) and filtered 1.2-Myr variations (dark blue)¹. Atmospheric CO₂ concentrations² during the past 2.8 Ma were also shown.

- 25
- 26
- 27

29 Supplementary Tables

30

28

Table 1 Identified regime shift events based on recurrence analysis of global climate and oceanographic records.

31 32

Proxies and locations	Identified regime shift events			
	Ι	II	III	IV
coarse size fraction (>30 μm) from the Western Kunlun Mountain	2.4	1.7	1.1	—
Mn _{HOAC} record from the Qaidam Basin	2.2	1.75	1.2	0.6
Magnetic susceptibility record from the Chinese Loess Plateau	2.1	1.7	1.2	_
dust flux record from the ODP Site 722 in the Indian Ocean	2.1	1.65	1.25	—
K content from the IODP Site U1422 in the Japan Sea	2.25	1.65	1.2	0.6
dust flux record from ODP Site 1146 in the South China Sea	-	1.7	1.3	—
dust flux record from Site 967 in the Eastern Mediterranean	_	1.9	1.15	_
LR04 marine δ^{18} O data	_	1.65	_	0.6
ice-rafted debris record from the ODP Site 907 in the Nordic Seas	2.2	1.6	1.25	_
SST record of the ODP site 982	_	1.7	1.2	0.4
SST record of the ODP site 1125	2.2	1.6	1.2	_
SST record of the ODP site 1090	2.2	1.6	1.2	_

3334 References

Berger, A., & Loutre, M. F. Insolation values for the climate of the last 10 million years. *Quaternary Science Reviews* 10(4), 297–317 (1991).

Rae, J. W. B., et al. Atmospheric CO₂ over the past 66 million years from marine archives. *Annual Review of Earth and Planetary Sciences* 49, 609–641 (2021).