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Supplementary Note 1 Glossary table for acronyms/terminologies used in this
paper

To improve reader comprehension, we have included a glossary table (Supplementary Table S1), which
provides detailed explanations for all acronyms and terminologies used in the manuscript.

Supplementary Table S1. Glossary table for acronyms/terminologies used in this paper.
Abbreviation The corresponding full name of the abbreviation

Repeats Repetitive DNA sequences
TEs Transposable Elements
TRs Tandem Repeats
LTRs Long Terminal Repeats
LINEs Long Interspersed Nuclear Elements
L1 LINE-1
L2 LINE-2
L3 LINE-3
SINEs Short Interspersed Nuclear Elements
Alu Arthrobacter luteus
HERV Human Endogenous Retroviruses
VNTR A variable number tandem repeat
SVA SINE-VNTR-Alu
DIRS Dictyostelium Intermediate Repeat Sequence
PLEs Penelope-Like Elements
MITEs Miniature Inverted-repeat TEs
MaLRs Mammalian apparent LTR retrotransposons
ARMDs Alu recombination-mediated deletions
TERTs Telomerase Reverse Transcriptases
RTs Reverse Transcriptases
TIRs Terminal Inverted Repeat sequences
TSD Target Site Duplication
YR Tyrosine Recombinase
CREs Cis-regulatory DNA elements
ORFs Open Reading Frames
SNPs Single Nucleotide Polymorphisms
STRs Short Tandem Repeats
lncRNAs long noncoding RNAs
siRNAs small interfering RNAs
mRNA messenger RNA
rRNA ribosomal RNA
rDNA ribosomal DNA
ASD autism spectrum disorder
HLA loci human leukocyte antigen (HLA) super-locus
UTRs Untranslated regions
ALS amyotrophic lateral sclerosis

MSA Multiple Sequence Alignment
HMM hidden markov model
GRF Generic Repeat Finder
TRF Tandem Repeats Finder
EDTA Extensive de novo TE Annotator
TGS Third-generation sequencing
NGS Next-generation sequencing
CNNs Convolutional neural networks
SVM support vector machine
GPUs graphics processing units

Supplementary Note 2 Types, structures and distributions of repeats in
eukaryotic genomes

The classes and length distribution of tandem repeats in the human genome are observed in Supplementary
Table S2. The proportions for the most abundant repetitive element classes in the genomes of Human, Rice,
and Drosophila can be found in Supplementary Fig. S1. In Supplementary Table S3, the focus is on the
presentation of types of repetitive sequences, along with their typical families, length distribution, and a brief
introduction. The typical structures of retrotransposons, transposons, and tandem repeats are illustrated in
Supplementary Fig. S2.

Supplementary Table S2. Classes of tandem repeats in the human genome.
Class of TRs in the human genome Length of TR unit Length of TR array

Telomeres ∼6 bp ∼10-15 kb

Tandem paralogous
rDNA ∼43 kb ∼3-6 Mb
Segmental duplications ∼1-400 kb ∼1kb-5Mb
Microsatellites ∼2-6 bp ∼10-100bp
Minisatellites ∼10-100bp ∼100bp-20kb

Satellites
Alpha satellite ∼171bp ∼0.2-8Mb
Beta satellite ∼68 bp ∼60-80kb
Gamma satellite ∼48-220bp ∼11-121kb
Satellite I ∼17-25bp ∼2.5kb
Satellite II ∼23-200bp ∼11-70kb
Satellite III ∼5bp ∼3.6kb
Satellite IV ∼35bp ∼25-530kb
Macrosatellites ∼100bp-5kb ∼300kb
Megasatellites ∼1-5kb ∼400kb

Supplementary Note 2.1 TEs in the human genome

As described in the introduction, the repetitive sequences in the eukaryotic genome can be classified into two
types: interspersed repeats and TRs [1, 2], and the human genome is no exception. The interspersed repeats
in the human genome can be divided into three major groups: DNA transposons, non-LTR retrotransposons,
and retrovirus-like LTR retrotransposons [3–5] (Table 1 in manuscript, Supplementary Table S3,
and Supplementary Fig. S2 (a), (b) and (c)).
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Supplementary Table S3. Types of repetitive sequences and their families, length distribution and brief introduc-
tion.

Type Order / Superfamily Length Description

Retrotransposons

LTR
–Copia
–DIRS
–ERV
–ERV1
–ERVK
–ERVL
–Gypsy
–Ngaro
–Ty1
–Ty3
–Bel-Pao
–Retrovirus
–Ngaro

100bp∼25kb

A LTR is a pair of identical sequences of DNA, which occur in eu-
karyotic genomes on either end of a series of genes or pseudogenes
that form a retrotransposon or an endogenous retrovirus or a retro-
viral provirus. The LTRs are generally 100bp to 25kb long and are
involved in all aspects of their life cycle that includes providing pro-
moter sequences and transcription termination signals. All retroviral
genomes are flanked by LTRs, while there are some retrotransposons
without LTRs. Typically, an element flanked by a pair of LTRs will
encode a reverse transcriptase and an integrase, allowing the element
to be copied and inserted at a different location of the genome. Copies
of such an LTR-flanked element can often be found hundreds or thou-
sands of times in a genome. LTR retrotransposons comprise about 8%
of the human genome. The typical structure of LTR is shown in de-
tail in Fig. S2 (a).

LINE
–CR1
–I
–RTE
–I-Nimb
–Jockey
–L1-Tx1
–L2
–LOA
–CRE
–R2
–L1
–Penelope

500bp∼7kb

LINEs are a group of non-LTR retrotransposons that are widespread
in the genome of many eukaryotes. They make up around 21.1% of
the human genome. LINEs make up a family of transposons, where
each LINE is about 7,000 base pairs long. LINEs are transcribed into
mRNA and translated into protein that acts as a reverse transcrip-
tase. The reverse transcriptase makes a DNA copy of the LINE RNA
that can be integrated into the genome at a new site. The only abun-
dant LINE in humans is LINE1. The human genome contains an es-
timated 100,000 truncated and 4,000 full-length LINE-1 elements.
Due to the accumulation of random mutations, the sequence of many
LINEs has degenerated to the extent that they are no longer tran-
scribed or translated. Comparisons of LINE DNA sequences can be
used to date transposon insertion in the genome. The typical struc-
ture of LINE is shown in detail in Fig. S2 (a).

SINE
–5S
–tRNA
–Alu
–U
–ID
–MIR
–B1
–B2
–7SL
–B4

100bp∼700bp

SINEs are non-autonomous, non-coding transposable elements (TEs)
that are about 100 to 700 base pairs in length. They are a class of
retrotransposons, DNA elements that amplify themselves through-
out eukaryotic genomes, often through RNA intermediates. SINEs
compose about 13% of the mammalian genome. SINEs are present
in many species of vertebrates and invertebrates, SINEs are often
lineage specific, making them useful markers of divergent evolution
between species. Copy number variation and mutations in the SINE
sequence make it possible to construct phylogenies based on differ-
ences in SINEs between species. SINEs are also implicated in certain
types of genetic disease in humans and other eukaryotes. The typical
structure of SINE is shown in detail in Fig. S2 (a).

Scattered repeats DIRS
–DIRS
–Ngaro
–VIPER

100bp∼700bp

The DIRS order represents a structurally diverse group of retrotrans-
posons that contain a tyrosine recombinase (YR) gene instead of an
INT and do not produce TSDs. DIRSs can be further classified into
superfamilies like DIRS, Ngaro, and VIPER. The typical structure of
DIRS is shown in detail in Fig. S2 (a).

PLE
–Penelope
–Neptune
–Athena

100bp∼700bp

PLEs are widely distributed from amoebae and fungi to vertebrates,
but not in mammals. Very few of them have been detected in plants so
far. PLEs are composed of a single ORF that codes for some domains,
including the reverse transcriptase (RT) and endonuclease (EN). The
typical structure of PLE is shown in detail in Fig. S2 (a).

Transposons

MITE
–hAT
–Mutator
–PIF
–Tc1/Mar
–PIF/Har
–CACTA

50bp∼500bp

MITEs are generally short elements (50 to 500 bp) with terminal
inverted repeats (TIRs; 10–15 bp) and two flanking target site dupli-
cations (TSDs), which exist within the genomes of animals, plants,
fungi and bacteria. Like other transposons, MITEs are inserted pre-
dominantly in gene-rich regions and this can be a reason that they
affect gene expression and play important roles in accelerating eu-
karyotic evolution. The typical structure of MITE is shown in detail
in Fig. S2 (b).

Helitron
–Aie
–AthE1
–Atrep
–Basho

< 500bp

Helitrons are the eukaryotic rolling-circle transposable elements
which are hypothesized to transpose by a rolling circle replication
mechanism via a single-stranded DNA intermediate. Helitrons seem
to have a major role in the evolution of host genomes. The typical
structure of Helitron is shown in detail in Fig. S2 (b).

Crypton
< 500bp

Cryptons represent a unique class of DNA transposons using tyrosine
recombinase (YR) to cut and rejoin the recombining DNA molecules.
The typical structure of Crypton is shown in detail in Fig. S2 (b).

Maverick
< 500bp

Mavericks, a novel class of giant transposable elements widespread
in eukaryotes and related to DNA viruses. The typical structure of
Helitron is shown in detail in Fig. S2 (b).

Satellite
–macro
–telomeric
–5S

150bp∼500bp

Satellite DNA consists of very large arrays of tandemly repeating,
non-coding DNA. Satellite DNA is the main component of functional
centromeres, and form the main structural constituent of heterochro-
matin. The typical structure of Satellite is shown in detail in Fig.
S2 (c).

Tandem repeats
Minisatellite

10bp∼100bp

Minisatellites consist of repetitive, generally GC-rich, motifs that
range in length from 10 to over 100 base pairs, which occur at more
than 1,000 locations in the human genome and they are notable for
their high mutation rate and high diversity in the population. The
typical structure of Minisatellite is shown in detail in Fig. S2 (c).

Microsatellite

2bp∼10bp

A microsatellite is a tract of repetitive DNA in which certain DNA
motifs (ranging in length from one to six or more base pairs) are
repeated, typically 5–50 times. The typical structure of Microsatellite
is shown in detail in Fig. S2 (c).

′LTR′ is the abbreviation of Long Terminal Repeat, ′LINE′ is the abbreviation of Long Interspersed Nuclear Element, ′SINE′ is the abbreviation of Short
Interspersed Nuclear Element, ′DIRS′ is the abbreviation of Dictyostelium Intermediate Repeat Sequence, ′PLE′ is the abbreviation of Penelope-Like

Elements and ′MITE′ is the abbreviation of Miniature Inverted-repeat Transposable Element.
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Supplementary Figure S1. The proportions of the most abundant repetitive element classes in the genomes of Hu-
man, Rice, and Drosophila are depicted. The X-axis represents the percentage of masked bases in the genome, while
the Y-axis represents the species and repetitive elements. The category ′Overall′ represents all types of repetitive
sequences, ′Retroelements′ represents the retroposon elements, ′DNA transposons′ represents the DNA transposon
elements, ′Satellites′ represents the satellite DNA, ′Simple repeats′ represents the trinucleotide repeats, microsatel-
lites, and minisatellites, and ′Low complexity′ represents the amino acid sequences that contain repeats of single
amino acids or short amino acid motifs.

Supplementary Note 2.1.1 DNA transposons Also known as autonomous and Class II transposons,
DNA transposons can move autonomously across the genome through the ′cut and paste′ mechanism without
the involvement of RNA intermediaries [6]. The presence of TIRs characterizes DNA transposons, which
means that TIR sequences are complementary to each other at the left and right ends of the DNA transposon.
The general structure of DNA transposons is presented in Supplementary Fig. S2 (b).

The proportion of DNA transposons in the human genome is only about 3% [7] (Supplementary Fig.
S1), so the interspersed repeats in the genome comprise retrotransposons (RNA transposons). For example,
the proportion of retrotransposons in the human genome exceeds 37%. Additionally, DNA transposons are
considered DNA fossils, as no family of them currently remains active in most mammals [6, 8]. With no
active family, DNA transposons no longer affect the function of the human genome, so they are usually not
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Supplementary Figure S2. Typical structures of Retrotransposons, transposons, and tandem repeats. ′LTR′ is the
abbreviation of Long Terminal Repeat, ′LINE′ is the abbreviation of Long Interspersed Nuclear Element, ′SINE′ is
the abbreviation of Short Interspersed Nuclear Element, ′DIRS′ is the abbreviation of Dictyostelium Intermediate
Repeat Sequence, ′PLE′ is the abbreviation of Penelope-Like Elements and ′MITE′ is the abbreviation of Miniature
Inverted-repeat Transposable Element. Sub-graph(a) shows the typical structure of retrotransposons, sub-graph(b)
shows the typical structure of transposons, and sub-graph(c) shows the typical structure of tandem repeats. The
types of repetitive sequences are summarized in Table S3.

the focus of researchers. Although they are no longer functional, they exist objectively in the human genome.
Fossil sequences may contribute to the study of human genome evolution [9], so we describe them in this
section.

Supplementary Note 2.1.2 Non-LTR retrotransposons Non-LTR retrotransposons lack LTRs, but
contain genes for reverse transcriptases, RNA-binding proteins, nucleases, and sometimes the Ribonuclease
H domain [10]. The common structures of non-LTR retrotransposons are presented in Supplementary
Fig. S2 (a). In addition, LINE and SINE are the two remaining active super families contained in non-
LTR retrotransposons of the human genome, consisting of LINE1, Alu, and SVA, three active subfamilies.
Detailed descriptions of the three active subfamilies are presented in the following sections.

As summarized above, the non-LTR retrotransposon families still active in the human genome include
LINE-1 (L1), Alu, and SVA. They have all been shown to cause diseases by integrating into human genes.
Many studies have suggested that L1 may contribute to human cancers by mutating specific oncogenes or
tumor suppressor genes in somatic cells [11]. For example, there is evidence that APC tumor suppressor gene
failure is caused by the L1 insertions, which may be an important factor in the development of colorectal
cancer [12]. In addition, Alu elements are retrotransposons specifically present in primate genomes that can
regulate gene function by providing canonical polyadenylation signals and play a critical role in the primate
genomic diversity, causing complex diseases [13]. For instance, many complex human diseases, such as
meningococcal disease, venous thromboembolism, obesity, and breast cancer, etc., are related to the structural
variants caused by Alu insertions [14]. Currently, SVA is more active than high-copy pseudogenes (e.g.,
processed ribosomal pseudogenes), and SVA insertions may alter gene expression and cause several human
diseases [15]. For example, SVA regulates the expression of related genes whose insertions have been identified
as a significant contributor to diseases such as X-linked dystonia-parkinsonism (XDP), Neurofibromatosis
type 1, and hemophilia B [16], through mechanisms, such as loss of function mutation, modulation of splicing,
and deletions at the site of insertion.
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Supplementary Note 2.1.3 Retrovirus-like LTR retrotransposons The common structural orga-
nization of retroviruses and LTR retrotransposons is similar [17]. Several LTR retrotransposons have similar
open reading frames (ORFs) to those of retroviruses, consisting of the gag and pol (pro) genes and, in some
cases, env and other accessory genes. The main difference between retroviruses and LTR is the presence of
a functional envelope (env) gene in retroviruses, which is absent or nonfunctional in LTR retrotransposons
[18]. The common structures of the retrovirus and LTR are illustrated in Supplementary Fig. S2 (a).
No retrotransposable LTR retrotransposons have been identified in the human genome, and no LTR retro-
transposon insertions have been collected in the database of human mutations. However, many elements
belonging to the young human endogenous retroviruses (HERV) family, such as HERV-K (K denotes a
lysine-tRNA-specific primer binding site to initiate reverse transcription), have an individual ORF domain
in their structure capable of translation and production of functional proteins [19]. In addition, HERVs are
only one type of TE or retroelement found in the human genome. Retroelements and isolated LTRs, as part
of molecular evolution, may benefit the host by promoting plasticity and gene expression regulation (i.e., via
promoters and cis-regulatory sequences) [20]. The expression of HERV-K envelope transcripts is typically
undetectable in normal human breast tissues but is detectable in most breast cancer tissues [21]. Therefore,
this expression pattern can be used as a new disease biomarker in clinical diagnosis.

Supplementary Note 2.2 TRs in the human genome

In the human genome, TRs can be divided into four subcategories: microsatellites, minisatellites, centromeric
satellites, and telomeric and subtelomeric repeats (Fig. 1 (f) in manuscript). The difference between
microsatellites and minisatellites is represented in their length and frequency of occurrence. Microsatellites
are DNA sequences of less than 10bp units repeated in tandem and are most frequent in the human genome
[22]. Minisatellites are tandem repetitions of more than 10 bp units, and their frequency in the human
genome is relatively rarer than that of the former [23]. In the human genome, centromeric satellites can be
classified into the alpha satellite and Satellite II/III. Among them, the alpha satellite is a high-order TRs,
consisting of basic repeat units (A-T rich motifs) of 171 bp in length linked end-to-end [24]. In contrast,
Satellite II/III comprises various variations on the ATTCC motif [25]. Telomeric repeats (satellites) are
located at the telomeres, consisting of 300 to 8,000 precise CCCTAA/TTAGGG motifs and covering a range
of 2 to 50 kb on the end of the chromosomes [26]. Subtelomeric repeats are located in the boundary of 100 to
300 kb between the telomere and the remaining part of the chromosome, consisting of satellite-like sequences
[27].

Supplementary Note 2.2.1 Microsatellites Each microsatellite comprises a series of motifs (1 to
5 bp) linked end to end. The common structure of microsatellites is illustrated in Supplementary Fig. S2
(c). Approximately 3% of the human genome comprises of microsatellites [22]. Microsatellites are enriched in
the human genome, with more than 600,000 distinct microsatellites. The high mutation rates of microsatellites
often cause several neurological diseases and cancers. [28].

Supplementary Note 2.2.2 Minisatellites Each minisatellite is typically repeated 5 to 50 times in
the genome and consists of motifs with 5 to 64 bp linked end-to-end. Microsatellites can be found in more
than 1,000 locations in the human genome, and their high mutation rate is a significant factor in generating
population diversity [29]. Minisatellites have been found in association with essential features of the human
genome biology, such as gene regulation, fragile chromosomal sites, and imprinting [30].

Supplementary Note 2.2.3 Centromeric satellites Centromeric satellites are TRs distributed
around centrioles, primarily consisting of alpha satellites, as shown in Fig. 1 (f) in manuscript. Alpha
satellites belong to the AT-rich repeat family comprising of 171 bp monomers [31], which are the most
abundant higher-order structures comprising the centrioles of the human genome [32]. Alpha satellites are
essential for chromosome segregation and centromere formation and function during cell division in the
human genome [33].

Supplementary Note 2.2.4 Telomeric and subtelomeric repeats Telomeric repeats consist of
STRs formed by conserved CCCTAA/TTAGGG hexamers spanning 2 to 50 kb [34], located at telomeres, a
special region at the ends of human chromosomes. Subtelomeric repeats are also composed of TRs (satellite-
like sequences) formed by telomere-derived TTAGGG hexamers. These hexamers are considerably less con-
served than telomeres and display differences across chromosomes. Subtelomeric repeats are distributed in
the boundary of 100 to 300 kb from telomeres to the remaining part of the chromosomes [27]. The role of
telomeric repeats is to keep chromosomes from being degraded and maintain their ability to conduct repair
activities that prevent chromosome shortening due to replicating the end of the linear chromosomes [35]. In
addition, telomeric and subtelomeric repeats play a key role in meiosis. At the beginning of meiosis, they
can assist in the identification and pairing of specific chromosomes [36] that are critical in the later stages
of chromosomal recombination between homologs (identical chromosomes in the same genome).

Supplementary Note 3 Challenges of repeats in sequence analysis

Repetitive DNA sequences (repeats) have always presented technical challenges for sequence analysis, such
as multiple sequence alignment (MSA), sequencing error correction, SNP and variation detection, and de
novo sequence assembly. For instance, the assembly of short or long reads is usually affected by the repeats,
leading to ambiguous paths in assembly graphs (de Bruijn/string/overlap graphs) and eventually forming
misassemblies or gaps in generated contigs (Supplementary Fig. S3 (a) and (b)), restricting the down-
stream applications based on complete sequence assembly [37]. Besides, repeats usually cause ambiguity in
MSA, interfering with downstream single-nucleotide polymorphism (SNP) identification, variation detection,
and gene expression abundance analysis.

There are two strategies to address the problem of ambiguous paths in assembly graphs caused by repeats:
1) paired-end reads with large insertsizes, and 2) third-generation sequencing (TGS) long reads [38]. Among



Supplementary Materials 5

them, the paired-end reads with large insertsizes can only be used to resolve ambiguous paths whose sizes are
equal to or smaller than the insertsizes (usually only a few kilobase pairs in length) [39]. In contrast, TGS
long reads can be used to resolve ambiguous paths of a larger size, as they typically span tens to hundreds
of kilobase pairs [40]. Although the TGS long reads have the potential to resolve more extensive ambiguous
paths in assembly graphs, their efficacy is also limited. For instance, when the size of ambiguous paths is
much larger than the maximum length of the TGS long reads (e.g., more than ten megabase pairs), the TGS
long reads are also powerless [41]. In addition, telomeres, subtelomeres, and centrioles, composed of highly
complex tandem repeats (TRs), pose significant challenges to de novo sequence assembly, and the accurate
composition of these particular regions has yet to be obtained so far [42].

Repeats complicate determining where reads are aligned by introducing ambiguity during MSA, poten-
tially reducing the sensitivity of detecting SNPs, indels, and other mutations [43] (Supplementary Fig. S3
(c)). Repeats in the genome comprise many highly similar copies, some of which may contain specific varia-
tions. Due to the high similarity between copies, they can be aligned with each other during the fault-tolerant
MSA. Variations belonging to one copy are aligned with other copies, causing confusion in the alignment
and reducing the sensitivity of detecting SNPs, indels, and other structural variations [44].

Furthermore, repeats can also interface with the performance of sequencing error correction. Due to
the high similarity between copies, when any one of them to be corrected, all the remaining copies will
be aligned with it, causing substantial consumption of computing resources. The error correction process
erases the specific subsequences between various copies as sequencing errors, losing some significant SNP
and variation information, which is primarily why sequence error correction is not performed in structural
variation detection. In general, repeats of the genome negatively affect the downstream applications based
on sequence assembly and MSA.
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Supplementary Figure S3. Schematic illustration of the computational challenges and negative impact of repeats
on sequence assembly and single-nucleotide polymorphism (SNP)/indel detection, respectively.

Supplementary Note 4 Biological Functions of Repeats

Supplementary Note 4.1 Biological functions of transposable elements

The DNA sequences that can move from one location in the genome to another are TEs, which are present
in almost all prokaryotic and eukaryotic genomes. The movement of TEs may result in mutations, alter gene
expression, induce chromosome rearrangements, and enlarge genome sizes due to increased copy numbers
[45]. Thus, they are considered an essential contributor to gene and genome evolution. In addition, TEs have
also been recognized as promising candidates for stimulating gene adaptation through their ability to regulate
the expression levels of nearby genes. Furthermore, combined with their mobility, TEs can relocate adjacent
to their targeted genes and control the expression levels of those genes, depending on the circumstances [46].
Overall, TEs can affect the genome in direct or indirect ways (Supplementary Fig. S4).
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Supplementary Note 4.1.1 Transposable elements can cause mutations and genetic polymor-
phisms Many TE families are still active and undergoing constant transposition. Variations are induced
when TEs transpose nearby genes and regulatory regions, and these are often rare mutations under purifying
selection. For example, an experimental study revealed that the spontaneous insertion of multiple TEs causes
more than 50% of all known phenotypic mutants in D. melanogaster [47]. Another experimental study found
that approximately 10% to 15% of inherited mutant phenotypes in the mouse genome are caused by the
autonomous activity of a family of persistently active LTR retransposons [48]. Furthermore, in another study
[49], the researchers found that the average difference between any two human haploid genomes is caused
by approximately 1,000 TE-dominated insertions, primarily from the L1 (LINE-1) or Alu families.

Supplementary Note 4.1.2 Transposable elements can regulate gene expression and activity
repression The TE transposition is an essential factor in gene expression variation, often resulting in
extreme gene expression changes much more significantly than those produced by rare SNPs [50]. Involvement
in gene expression regulation is another crucial function of TEs in the human genome. There are two primary
mechanisms by which TEs regulate gene expression. First, they provide cis-regulatory sequences in the
genome with intrinsic regulatory properties for their expression, making them potential regulators of host
gene expression. Second, TEs can encode regulatory RNAs. A growing number of studies have demonstrated
that their sequences are found in most miRNAs and long noncoding RNAs (lncRNAs), implying that these
RNAs are derived from TEs [51]. Moreover, TEs can be activated or repressed under stress conditions.
In some cases, the repression of TEs occurs after the initial activation [52]. For instance, to suppress TEs
activity, host cells have developed a variety of mechanisms, including epigenetic pathways, such as DNA
methylation and histone modifications.

Supplementary Note 4.1.3 Transposable elements can associate with genome rearrangement
In reality, TEs can be associated with genome rearrangement through various mechanisms, such as de novo
TE insertion, TE insertion-mediated deletion, and homologous recombination between them [53]. These
rearrangements increase the genomic difference between genomes, and some specific rearrangements may
lead to complex diseases [54]. For instance, the expression of retrotransposition-competent TEs may result
in additional insertions, which may affect the expression or function of genes [4] and trigger chromosome
rearrangements through an ectopic recombination between repeated copies of a TE, causing mutations [55],
resulting in several complex diseases, such as cancer [56], Alzheimer’s disease [57], and autoimmune and neu-
rological disorders [58]. The specific relationship between TEs and complex disease is discussed in Section
6.

Supplementary Note 4.1.4 Transposable elements can act as insertional mutagens in germline
and somatic cells Mobile elements, such as L1, Alu, and SVA, are in charge of novel germline insertions,
which may lead to genetic illness. For instance, a study has revealed that over 120 independent TE insertions
are essential contributors to human diseases [59]. The germline transposition rate for the Alu element in
humans is about 1 in 21 births [60], while the corresponding value for the L1 element is about 1 in 95 births
[61]. Historically, TEs have generally been considered transcriptional silencing in somatic cells. However,
evidence indicates that active TEs are also present in the somatic cells of various organisms. As an illustration,
the expression and transposition of the L1 element have been identified in several somatic contexts, such as
early embryos and specific stem cells [62]. Human cancers have also exhibited somatic activity, with tumors
able to pick up hundreds of additional L1 insertions.

Supplementary Note 4.1.5 Transposable elements can drive key coding and non-coding RNAs
According to mounting evidence, TE insertions may serve as the building blocks for forming protein-coding
genes and non-coding RNAs that can carry out the crucial physiological functions of cells [63]. For example,
Rag1 and Rag2 are spectacular examples of deeply conserved TE-derived genes that activate V(D)J somatic
recombination in the immune system of vertebrates [64]. As another example, based on a mixed lncRNA
annotation from RNA sequencing and GENCODE (a scientific project in genome research and part of the
ENCODE scale-up project), a study estimated that 41% of lncRNA nucleotides are derived from TEs, and
the majority of lncRNAs (about 83%) contain at least one TE fragment [65].

Supplementary Note 4.1.6 Transposable elements can alter transcriptional networks and con-
duce to cis-regulatory DNA elements Cis-regulatory DNA elements (CREs) are regions of non-coding
DNA that regulate the transcription of neighboring genes. In addition, CREs are vital components of ge-
netic regulatory networks. Some TEs have evolved into CREs, whose function is to mimic host promoters,
enabling them to recruit host-encoded factors driving their selfish transcription [66]. For instance, due to in-
nate and adaptive immune responses, the immune system can protect organisms from pathogens and foreign
substances. During evolution, TEs can establish or modify transcriptional networks as signaling molecules
that regulate DNA elements and the immune system [67].

TEs

Source of mutations

Genome rearrangements
Modifies regulatory 

networks

Creates genes and RNAs

Affects germline and 
soma

They can regulate gene 
expression and its activity 

repression

Supplementary Figure S4. How TEs affect the genome. TEs can directly or indirectly affect the genome through
some specific mechanisms.
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TRs
They can play an essential  role in the structural stability of 

genetic materials during the whole cell cycle

They are extremely unstable and have the potential to 
accelerate the evolution and adaptation

Their expansion can cause a range of disorders, and 
TRPs (Tandem repeat polymorphisms) can also regulate 

gene expression in healthy individuals

They can cause gene families and functional redundancy

Supplementary Figure S5. How TRs affect the genome. Similar to TEs, TRs can also affect the genome in specific
ways.

Supplementary Note 4.2 Biological functions of tandem repeats

Tandem repeats (TRs) are common features of both prokaryote and eukaryote genomes. For example, more
than one million distinct TRs are contained in the human genome, many of which are highly polymorphic in
sequence composition and copy number. TRs can be found in intergenic regions and in both the non-coding
and coding regions of a variety of genes [68–70]. Moreover, TRs occur near or between a series of genes and
can affect the structure and function of DNA, RNA, and proteins through specific mechanisms and produce
a series of molecular and cellular consequences [71]. As an illustration, many TRs are involved in biological
functions in a copy number-dependent manner, and there is evidence that TRs may regulate the expression
of nearby genes by altering their copy number [72]. In general, TRs are highly mutable and can be located in
exons, introns, or intergenic regions, providing opportunities for the modulation of gene expression, as well
as the structure and function of RNAs and proteins [73]. Expanded TRs usually cause various disorders,
including autism spectrum disorder (ASD) and cancers (Supplementary Fig. S5).

Supplementary Note 4.2.1 Tandem repeats can accelerate evolution and adaptation TR is
a sequence of one or more nucleotides that are repeated, and the repetitions are directly adjacent to each
other. TRs are also called satellites, which can be further classified into microsatellites or STRs (motif length:
2-6bp), and minisatellites (motif length: 10-60bp), according to the size of the repeated motifs [74]. TRs
can occur through various mechanisms. For example, slipped strand mispairing is a mutation process that
occurs during DNA replication, which is one explanation for the origin and evolution of repetitive DNA
sequences [75]. TRs, especially STRs, are extremely unstable in terms of length, sequence composition, and
copy number, with mutation rates typically 10 to 100,000 times higher than in other parts of the genome
[76]. These unstable repeats are found in up to 20% of eukaryotic genes and promoters, where they confer
phenotypic or functional variability on the cell surface and extracellular proteins and have pathological
consequences. Moreover, TRs are also frequently found in genes that control body morphology [77]. For
example, compared with synteny blocks, evolutionary breakpoint regions in the human genome contain
more base pairs associated with TRs, with AAAT being the most frequent motif [78]. These TRs within
evolutionary breakpoint regions have the potential to facilitate and accelerate gene expression evolution and
generate sufficient variability to drive the rapid evolution and adaptation of organisms [79].

Supplementary Note 4.2.2 Tandem repeats can play a critical role in the structural stability of
genetic materials during the cell cycle Within or around certain specialized chromosomal regions (e.g.,
centromeres, telomeres, and subtelomeres), TRs may play crucial roles in the structural stability of genetic
materials during the cell cycle [36]. For instance, centromeres are the chromosomal domains responsible
for the faithful transmission of genetic materials during cell division. An array of tandem repeats, called
alpha-satellites, is one of the most vital components of centromeres [80]. Nearly all centromeres include
alpha-satellites, which are necessary for human chromosomal stability. The function of the centromere may
be affected by variations in alpha-satellites [24].

Supplementary Note 4.2.3 Tandem repeats can result in redundancy of gene families and
functions The rRNA-coding genes are tandemly duplicated many times, which are numerous to ensure
sufficient DNA templates for the significant buildup of ribosomes needed throughout development [81, 82].
A gene family is a collection of many related genes that typically perform comparable biological tasks.
Individual members of clustered gene families are often responsible for achieving specific phenotypes or
functions in the overall mission [83].

Supplementary Note 4.2.4 Tandem repeats can regulate gene expression, and their expansion
can cause a range of disorders TRs have generous contributions to causing gene expression variation
in humans [84], and numerous disorders, such as cancer, ASD, Huntington’s disease, various ataxias, motor
neuron disease, frontotemporal dementia, and fragile X syndrome, are associated with the expansion of
TRs, especially STRs [85, 135, 87]. Recent research indicates that TR polymorphisms can also control gene
expression in healthy individuals [88].
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Supplementary Note 5 Examples of functionally important repeats in the
human genome

Most repeats in the human genome are derived from TEs, which can move within the genome and act as
regulatory elements controlling gene transcription, splicing, and genome architecture, potentially causing
mutations or altering genome size and structure [89]. In addition, TRs can alter the chromatin structure
and affect transcription, leading to gene expression and protein abundance changes, although they represent
only a tiny fraction (e.g., microsatellites accounted for only ∼3%) of the human genome. In this section, we
analyze the role of repeats in the human genome and list several typical examples of their influence on the
genome.

Supplementary Note 5.1 Relationship between the hypomethylation of Alu and HERV-K
elements and human aging

There are about 106 Alu elements in the human genome, accounting for about 11% of nuclear DNA [90].
These Alu elements occur in about 5% of human alternative exons, interfering with the mechanism of gene
splicing [91]. Epigenetic changes and altered gene expression levels may be caused by inserting Alu elements
into genes. For instance, the absence of exon 19 during splicing results from the insertion of an Alu element
into intron 18 of the human factor VIII gene, which causes severe hemophilia [92]. In addition, HERV-K,
which is a family of HERVs associated with malignant tumors of the tests, was inherited million years ago
by the genome of the human ancestors that comprise about 8% of the human genome [93].

Alu elements are intrinsic factors leading to DNA damage and instability of the human genome. Further,
the hypomethylation of Alu and HERV-K elements also have the potential to cause aging and significantly
contribute to the lifespan variation of organisms [94]. The specific mechanism should be that the reduced 5mC
content of Alu and HERV-K elements may lead to the reduced efficiency of gene regulation and inappropriate
silencing of particular genes, contributing significantly to human aging. For example, experiments designed
in one study [95] revealed that a trend of significant reductions in Alu methylation (Supplementary Fig.
S6 (a)) is observed in centenarians and the offspring of both non-long-lived parents (both p<0.05). No
change in Alu methylation occurred when the offspring of centenarians are compared with younger controls.
When comparing centenarians’ offspring to the offspring of non-long-lived parents, the Alu methylation of
the former is significantly higher than that of the latter. Another study [96] analyzed the minimum, median,
and maximum of the methylation (5mC) levels of Alu and HERV-K elements in different age intervals.
Analysis results revealed that, between the ages of 34 and 68, the methylation of the age-associated Alu is
significantly lost (r=-0.477, p<10−3), and the methylation of HERV-K is lost twice during the 40 to 63 and
64 to 83 age intervals (Supplementary Fig. S6 (b) and (c)). These results confirm that age-associated
hypomethylation of Alu and HERV-K elements contribute significantly to human aging.
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Supplementary Figure S6. Hypomethylation of Alu and HERV-K elements in relation to human aging. Sub-
graph (a): Alumethylation statistics of DNA extracted from peripheral leukocytes of young females, female offspring of
female centenarians, female offspring of non-long-lived parents, and female centenarians, respectively. In the statistics,
the sample number of each group is 21 (n=21) [95]. The asterisks in the figure indicate the degree of significance
of the p-value. For example, ′′*′′ means p < 0.05, ′′**′′ means p < 0.01, and ′′***′′ means p < 0.001. Sub-graphs
(b) and (c): Minimum, median, and maximum of the methylation (%5 mC) levels of Alu and HERV-K elements in
different age intervals, respectively. In each group, N represents the number of samples tested. The lower and upper
boundaries represent the minimum and maximum values after removing outliers. The color boundary in the middle
represents the median after removing outliers [96].

Supplementary Note 5.2 Relationship between LINE-1 and gene mutations producing
malignant tumors

LINEs are a group of non-LTR retrotransposons and are widespread in the genome of many eukaryotes.
LINE-1 (L1) is the only abundant and active LINE in the human genome, and the human genome contains
an estimated 100,000 truncated and 4,000 full-length L1 elements accounting for about 17% of the entire
genome [97]. Since L1 correlations with disease and immunity, it has become a significant hallmark of several
cancers (e.g., ovarian, endometrial, breast, colon, kidney, etc.) and other disorders. The associations between
L1 and some complex diseases and its regulatory mechanism are presented in Fig. 3 in manuscript. In
addition, L1 promotes the occurrence of malignant tumors through three main mechanisms: hypomethylation,
aberrant integrations, and high expression of its internal ORF1 and ORF2 domains.

Supplementary Note 5.2.1 Hypomethylation of LINE-1 DNA hypomethylation may lead to
chromosomal and genome instability, resulting in genetic heterogeneity. L1 promoter hypomethylation is
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an essential biomarker for judging genome-wide DNA hypomethylation. Several studies have demonstrated
that L1 promoter hypomethylation is closely associated with the development of gastric, breast, lung, liver,
esophageal, prostate, and endometrial cancers. Therefore, L1 promoter hypomethylation is also an essential
cancer biomarker. For example, a study [98] has revealed that L1 promoter hypomethylation is significantly
associated with low-grade breast cancer (p=0.023), and the median methylation level of L1 in high-grade
breast cancer is 62.41%, whereas low grade is 59.08%. Moreover, this study also mentioned that hypomethy-
lation levels of L1 ranged from 70% to 90% in normal tissues and 55% to 60% in tumor tissues of several
carcinomas, such as breast and colon cancer [99]. Another related study [100] also revealed that cancer-
associated genes are hypermethylated in 70% of colorectal cancer cases compared with normal epithelium,
and the hypomethylation of L1 is observed in 90% of colorectal cancer cases. These studies suggest that
patients with cancer could be characterized by L1 promoter hypomethylation.

Supplementary Note 5.2.2 Aberrant integration of LINE-1 Numerous studies have demonstrated
that many tumor tissues have high levels of L1 activity, and the ′copy-paste′ mechanism of L1s is an essential
pathway for the rapid rise of the oncogene copy number, because gene rearrangement mediated by L1s can
trigger the rapid amplification of oncogenes. In addition, aberrant integration of L1s can mediate tumor
suppressor gene deletion.

For example, the study [101] demonstrated that hypomethylation activates L1s, allowing L1s can in-
sert into the oncogene MYC using a target-triggered reverse transcription pathway, resulting in a specific
rearrangement and amplification of oncogenes in breast cancer. Another study [102] proved that L1 mRNA
can lead to loss of tumor suppressor genes because it can form facultative heterochromatin in the inactive
region or form a RISC complex with pre-mRNA and degrade complementary mRNA through the X inacti-
vation mechanism. Moreover, a related study revealed that the tumor suppressor gene APC in colon cancer
is destroyed by the insertion of L1, resulting in the inactivation of the gene [12]. The insertion of L1 into
the tumor suppressor gene FGGY promotes cell proliferation and invasion and leads to the occurrence of
squamous cell carcinoma of the lung [104]. In addition, a study of genome-wide pan-cancer analysis based
on 2,954 cancer genomes across 38 histological subtypes suggested that aberrant integration of L1s may lead
to gene rearrangements. Aberrant integration often also includes a breakage–fusion–bridge cycle mechanism.
As mentioned in another study, amplification of the CCND1 oncogene in esophageal tumors can be induced
by L1 generating a break-fusion-bridge cycle [105].

Supplementary Note 5.2.3 ORF1 and ORF2 domains are highly expressed in LINE-1s The
ORF1 and ORF2 domains of L1 are highly expressed in most cancers and thus serve as markers for cancer
diagnosis [102]. For example, researchers in the study [106] found that L1 ORF1p protein expression levels
are significantly elevated in breast cancer. In addition, researchers in another study [107] have found that L1
ORF1p protein expression is positively correlated with the copy number alteration burden in breast cancer.
In some studies of high-grade ovarian cancer, researchers have also detected the high expression of ORF1p
and c-Met proteins. For instance, researchers in study [108] have revealed that expression of ORF1p and
c-Met proteins is significantly increased in ovarian cancer cells compared to normal cells and peaked in the
early stages of ovarian cancer. This phenomenon is related to the loss of TP53 mutation according to another
study [109].

A high endonuclease expression causes double-strand DNA breakage, exacerbating DNA damage repair
and increasing genomic instability [110], whereas ORF2 can encode a protein with RT and endonuclease
activities required for L1 retrotransposition [102]. Therefore, the high expression of ORF2 can cause chromo-
somal and genomic instability. Furthermore, several studies have found that ORF2p expression is detectable
in human colon, prostate, lung, and breast tumors but not in the corresponding normal tissues. For example,
an experiment carried out in study [111] revealed that 30% to 100% of all examined cells are reactive in
ORF2p-positive tumor biopsies, whereas no immunoreactivity is observed in any of the examined normal
tissues (Supplementary Table S4). In this experiment, four classes with 74 human adenocarcinoma sam-
ples are selected, and the chA1-L1 antibody is used to compare the L1-ORF2p expression levels with those
of their healthy untransformed counterparts. These 74 human adenocarcinoma samples comprised ten colon,
54 prostate, six lung, and four breast tissues. The experiment concluded that 96% of the tested samples
are chA1-L1 immunoreactive, and in ORF2p-positive tumor biopsies, 30% to 100% of all examined cells are
reactive, but immunoreactivity is not found in any normal tissues.

Supplementary Note 5.3 Relationship between SVA retrotransposons and gene expression
in the human genome

The SVA (SINE-VNTR-Alu) element has approximately 2,700 to 3,000 copies in the human genome, ac-
counting for 0.13% of the genome. It is the youngest retrotransposon in the human genome and the source
of human identity. As modulators, the SVA retrotransposons can be involved in the regulation of gene ex-
pression, and the following arguments can support the regulatory function of SVA elements in the human
genome, summarized in a previous study [112]. First, there is ample evidence that SVA retrotransposons can
regulate gene expression in vitro and in vivo. Second, SVAs are complex high GC structures that affect gene
expression in a way that alters the local chromatin structure, Third, polymorphisms of SVAs are essential
in determining individual differences and disease risk, as they may lead to allele-specific expression.

More than 60% of SVAs in the human genome are within genes or located in their 10 kb flanking re-
gions [15]. Moreover, SVAs could recruit transcription factors and influence the local chromatin structure,
regulating the transcription and expression of nearby genes. As demonstrated by SVAs could make a region
accessible or inaccessible to transcriptional machinery. Specifically, how it is regulated depends on the epige-
netic marks spread throughout the element [114]. As described in the previous chapters, the hypomethylation
of retrotransposable elements has become an epigenetic mark of several diseases, such as cancers. As demon-
strated by the regulatory role of L1s in cancer, and changes in epigenetic marks of SVAs, such elements are
inappropriately reactivated, possibly leading to the dysregulation of neighboring genes and their associated
pathways.

As SVAs are always located in regions of high GC content and gene density, they can generate alternative
DNA structures, such as G-quadruplexes (G4), to affect transcription [115]. The promoter regions of more
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than 40% of human genes contain one or more G4 sequences [116]. The gene expression in vitro and in
vivo can be altered by mutation or stability of the G4 structure [117]. For example, PARK7, a gene closely
related to Parkinson’s disease, has a full-length SVA called SVA-D, which is a human-specific SVA located
approximately 8 kb from the transcription start site [15]. Experiments analyzing the PARK7 gene have
demonstrated that the expression of the PARK7 gene in vitro is positively regulated by SVAs in reporter
gene assays, and the truncation of SVAs lacking the SINE domain exhibits the strongest enhancer activity
(Supplementary Fig. S7 (a)).
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Supplementary Figure S7. The mechanisms of genomic repeats leading to some complex diseases. Sub-graph(a):
SVAs that can function as regulatory elements and have an allele-like effect on the expression of neighboring genes.
The SVA at the top has the same sequence composition as the SVA in the reference genome. The SVA in Individual
A is a variant of SVA with a longer hexameric repeat domain. The SVA in Individual B is another SVA variant with
a longer VNTR domain, acting as an enhancer. Sub-graph(b): Expression of HERVs in tumors, in which ′HERV-K
′, ′HERV-H ′, ′HERV-W ′, ′HERV-R ′, ′ERVW ′, ′ERV3 ′ and ′MaLR ′ represent the actual HERVs detected in
the tumor, respectively. Sub-graph(c): The principle of expansions of TRs, in which the TR expanded from parent
to child, is suspected of contributing to the genetic etiology of autism spectrum disorder (ASD). Sub-graph(d):
Morphology of pathogenic genetic variants. Left: The variation caused by duplication only. Right: The variation
caused by duplication and modifiers (e.g., single nucleotide variants, copy number variants, structural variants, and
tandem repeat expansions). Some complex diseases, such as cancers, ASD, and neurodegenerative disorders, are
usually caused by the second manner.

Supplementary Note 5.4 Relationship between transcriptional activation of HERVs and
human cancer

HERVs affect human health and cause disease by encoding proteins, acting as promoters/enhancers or
lncRNAs, accounting for about 8% of the human genome [118]. According to their cis-regulatory element
activities, HERVs and other types of TEs have been identified as regulatory sequences for many host genes
in various cell types throughout mammalian evolution [46]. Several studies have demonstrated that HERV
transcripts, proteins, and viral-like particles are present in multiple human cancers.

For instance, researchers found that dysregulation of proto-oncogenes or tumor suppressor genes may
result from newly inserted HERVs acting as alternative promoters or enhancers, as revealed in the study [119]
that pleiotrophin (PTN) has a HERV type C insertion between its 5’ untranslated and coding regions. The
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Supplementary Table S4. Immunohistochemical analysis of L1-ORF2p expression in healthy and staged cancer
tissues using mAb chA1-L1.

Tissue1 Samples Grade / Gleason score (pattern) Num
L1-ORF2p positive

cells (%)
Signal intensity

Normal mucosa 6 0 -
Transitional mucosa 10 80 +++

Low grade 8 50 +
Adenoma Intermediate 9 80 ++

Colon High grade 6 90 +++
1 30 +

Adenocarcinoma 4 50-70 ++
5 80-100 +++

Normal / Hyperplasia 20 0 –/±
PIN 6 90 ++

Prostate 6 (3+3) 14 30-90 +
Adenocarcinoma 7 (3+4); (4+3) 23 30-90 +

8-9 (4+4); (4+5); (5+4) 17 30-90 +
Normal 8 0 -

Lung 2 40-60 +
Adenocarcinoma 2 40-60 +

4 70-95 ++ / +++
Normal 7 0 -

Breast Invasive ductal carcinoma 4 50-95 ++

The signal strength from low to high is: ′-′ (the signal is the same as the background), ′±′ (the signal is slightly higher than the background), ′+′ (the

signal is medium), ′++′ (the signal is high), and ′++′ (the signal is very high). 1Staged samples are enrolled from the repositories or biobanks indicated in
the Materials and Methods section with their recorded histological information [111].

insertion results in an additional promoter with trophoblast-specific activity and produces HERV and PTN
fusion transcripts (HERV-PTN) specifically expressed in human trophoblast cell cultures and trophoblast-
derived choriocarcinoma cell lines.

HERVs can also have a direct effect via their proteins in the development of cancers. For example, by in-
ducing cell-cell fusion or epithelial-to-mesenchymal transition, HERV envelope proteins play a critical role in
tumorigenesis and development in melanoma, endometrial carcinoma, and breast cancer [120]. Furthermore,
HERVs can generate lncRNAs that promote cancer proliferation, motility, and invasion (Supplementary
Fig. S7 (b)). For example, in the study [121], researchers have found that several HERVs-derived lncRNAs,
such as UCA1, SAMSON, and BANCR, are involved in the processes of proliferation, motility, and invasion
in bladder cancer and melanoma.

Supplementary Note 5.5 Relationship between tandem repeats and gene expression
evolution in the human genome

Due to their intrinsic instabilities, TRs can be mutational hotspots. These highly variable TRs in promoters
and other regulatory sequences that control gene expression levels may accelerate gene expression evolution,
creating variation in the population and allowing rapid Darwinian evolution and adaptation [77]. For exam-
ple, single nucleotide (poly-T) polymorphism stretches in the promoter of the human heart disease-related
gene MMP3.

A one-nt reduction in ductal size causes increased MMP3 expression and is related to myocardial in-
farction and aneurysms, whereas a one-nt increase in the allele reduces gene expression and is associated
with coronary artery disease. That these sequences are evolving quickly in primates suggests that the MMP3
gene expression and related symptoms may also be evolving rapidly by the mutational hotspot. For another
example, researchers in the study [122] explored the genome-wide diversity of TRs in six species, includ-
ing 83 human and nonhuman great ape genomes, and investigated the influence of TRs on gene expression
evolution. The experimental results show that genes containing TRs have higher expression divergence than
genes without TRs in their promoters, 3’ untranslated regions, introns, and exons. Furthermore, compared
to genes with fixed or no TRs in the gene promoters, small polymorphic repeats (1 to 5 bp) have higher
expression divergence [123]. This study also highlighted the potential contribution of TRs to the evolution
of gene expression in the human genome.

Supplementary Note 5.6 Relationship between tandem repeats and the structural stability
of the human genome

The centromeres, telomeres, sub-telomeres, and heterochromatic regions of chromosomes in the human
genome comprise highly repetitive TRs, which play crucial roles in influencing the chromosome structure
(e.g., alternative DNA structure and packaging) and the stability of genetic materials [124]. For example,
telomeres are nucleoprotein structures at the end of each chromosome, and the nucleic acid sequence of
telomeres is a highly conserved hexameric (TTAGGG) tandem repeat. The number of hexamer repeats can
vary greatly from very few to thousands leading to the lengths of telomeres ranging between 4 to 11 kilo-
bases in humans. Telomere shortening is closely related to the replicative potential of cells and their lifespan.
When the telomere length approaches a certain critical level, the cells stop dividing and begin aging and are
exposed to apoptosis upon reaching that level.

Homodimers of telomeric repeat-binding factor 1-2 (TRF1 and TRF2), with other components of the
Shelterin complex, bind the 90 bp TRFH domain sequence to the spacer, leading to the 3’ G-rich single strand
forming the T-loop, regulating DNA termination and guarding against the processing of the DNA damage
response of the integrity of telomeric repeats [125]. Another crucial chromosomal region is the centromere,
comprising highly repetitive TRs. These TRs bind the spindle microtubules during cell division, which is
necessary for chromosome segregation [126]. Specific sequence features within alpha satellite sequences are
related to chromosomal aneuploidy and to regulating the overall centromeric domain size, implying that
centromeres may withstand some size variation to ensure functional fidelity [127].

Supplementary Note 5.7 Relationship between tandem repeats and gene expression
regulation in the human genome

Several studies have demonstrated the correlation between TRs and gene expression. For example, more
than 700,000 STR loci have been collected in the study [128], but only around 4,500 of them (a relatively
small proportion) overlap with coding regions. About 6.8% of these 4,500 loci are located within exons or
direct regulators of transcription, such as promoters and enhancers, and the remaining 93.2% are found
in intronic and intergenic regions [129]. When TRs are located within introns associated with differential,
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Supplementary Table S5. Top candidate tandem repeat loci associated with the autism spectrum disorder.
Gene / region Risk motifs and their locations (risk motifs) NUM PPC ASDG DLE

MBOAT7 / intronic
Chr. 19: 54187285–54188613 (AAAG; AAAGGAAG;

AAGG)
10 0.006 Known Novel

FXN / intronic Chr. 9: 69036648–69037984 (AAG; AAGGAG) 8 0.1 Novel Known

DMPK / 3′ UTR Chr. 19: 45769551–45770697 (AGC) 7 0.1 Known Known

FGF14 / intronic
Chr. 13: 102160822–102162469 (AAGGAG;

AAGAGG; AAAGAAGAAG)
7 0 Novel Novel

CACNB1 / intronic
Chr. 17: 39182673–39183931 (AAGGAGGAG;

AAGAAGGAG)
7 0 Novel Novel

CDON / upstream
Chr. 11: 126063945–126066092
(AAGAGGTGGCAGTATT)

6 0 Novel Novel

MYOCD / intronic Chr. 17: 12693129–12694105 (AAAAT) 6 0.1 Novel Novel

IGF1 / intronic
Chr. 12: 102440998–102442508 (AAG; AAGGAG;

AAGAGG)
6 0.1 Novel Novel

FMR1 / 5′ UTR Chr. X: 147911368–147912629 (CCG) 6 0 Known Known

IGF1 / intronic
Chr. 12: 102440998–102442508 (AAG; AAGGAG;

AAGAGG)
6 0.1 Novel Novel

IL1RAPL1 / intronic
Chr. X: 29802527–29803810

(ACACATATGTATACATGTAT;
ACACATATGTATATATGTAT)

6 0 Known Novel

′NUM′: number of samples, ′PPC′: percentage of population controls, ′ASDG′: gene related to ASD, and ′DLE′: type of expansion. The X chromosome
loci are excluded from the overall statistical comparisons for the functional analyses. The frequency for 1,612 additional population controls from GTEx

consortium 32, and the Mayo Clinic Biobank is used to calculate the percentage of the population controls [135].

and deleterious splicing, a more direct disruption of gene expression may occur, such as disruption of genes
by amplification [88, 130]. For example, the shorter length of GT-rich microsatellites in intron2 of the
Bromodomain Containing 2 (BRD2) gene can influence alternative splicing and render the BRD2 protein
non-functional, dysregulating approximately 1,450 genes under the control of BRD2 [79, 131].

Supplementary Note 5.8 Relationship between tandem repeat instabilities and cancers,
autism, and neurological disorders

TR instabilities, especially microsatellite instability, are known to cause cancers, neurogenetic disorders,
ASD, and other diseases in humans and are most often present with ataxia as a clinical feature [132]. In
addition, TR instability can decrease gene expression and increase disease incidence and tumor aggression
(Supplementary Fig. S7 (c) and (d)). For example, Lynch syndrome is an autosomal dominant disorder
that increases the risk of developing colorectal cancer, endometrial adenocarcinoma, and tumors of the small
intestine, stomach, ureter, renal pelvis, ovary, brain, and prostate. Research in study [133] has demonstrated
that most (90%) colorectal cancer due to Lynch syndrome have microsatellite instability. In addition, re-
searchers in study [134] have revealed that one neurodegenerative disease in which microsatellite instability
contributes to a substantial number of cases is amyotrophic lateral sclerosis (ALS), a rapidly progressive and
uniformly fatal motor neuron disease.

Expansion is a significant source of TR instabilities. A study published in the journal Nature [135, 136]
indicates that TR expansions are rare in normal individuals but are common in patients with ASD, espe-
cially near exons and splice junctions and genes related to developing the nervous system, cardiovascular
system, or muscle. The gene-associated expansions of TR in people with ASD are much higher than that in
siblings without ASD (Supplementary Table S5). This study demonstrated that the genetic etiology and
phenotypic complexity of ASD are closely related to TR expansions. Furthermore, we listed several essen-
tial studies that illustrate the role of repetitive sequences in the human genome in Supplementary Note 6.
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Supplementary Note 6 Some essential studies illustrate the role of repeats in
the human genome

In this section, we listed several essential studies that illustrate the role of repetitive sequences in the human
genome. It is worth mentioning that the data, and conclusions given in this section are all citations from the
corresponding published literature.

Supplementary Note 6.1 Relationship between LINE-1 and gene mutations

In the study [103], researchers found LINE-1 ORF1p expression to be about twice as high on average in p53
mutant endometrial cancers (Wilcoxon test P = 0.0014, Fig. 4A) and about 50% higher in p53 mutant breast
cancers (Wilcoxon test P = 0.011). The correlation between LINE-1 ORF1p expression and CNA burden
(average of the absolute value of GISTIC2 estimated CNA across the genome) is highest in endometrial
cancer (Spearman ρ = 0.44, P = 3.6 × 10−5).

Supplementary Note 6.2 Relationship between LINE-1 methylation and cancers

In the study [113], researchers found LINE-1 methylation levels between the control and lung cancer groups
are significantly different in the Mann-Whitney U test (p < 0.01). For breast cancer, a significant difference
in the LINE-1 methylation in the independent samples are observed (p < 0.01)

Supplementary Note 6.3 Overexpression of LINE-1 retrotransposons in autism brain

In the study [137], researchers clearly show for the first time that L1 ORF 1 and 2 mRNA transcripts are
significantly elevated in the autism cerebellum relative to carefully matched control samples. As shown in this
study, there is a highly significant increase in total RNA and mRNA in both ORF1 and ORF2 in the autism
cerebellum, although there is no significant difference in the overall L1 copy number. The remarkably high
correlation (r = 0.95; p = 0.0001) between the expression of ORF1 and ORF2. For full-length insertion to
occur, both ORF1 and ORF2 must be expressed. Thus, the coexpression of both ORF1 and ORF2 strongly
suggests that the 5′UTR promoter is fully functional since 5′-truncated L1 insertions are transcriptionally
incompetent.

Supplementary Note 6.4 Alu insertion variants alter gene transcript levels

In the study [138], researchers measured the effect of the polymorphic Alu on luciferase expression and
determined the mechanism by which the Alu alters luciferase expression using a series of ectopic reporter
constructs like previous experiments. For two loci, Alu-098 and Alu-103, the effect of the Alu in genomic
context (increasing luciferase expression) is recapitulated when the Alu is evaluated independently (adjusted
P < 0.05, t-test). Further, scrambling the Alu sequence within the genomic context did not increase luciferase
expression. Together, this indicates that the effects of Alu-098 and Alu-103 on expression are intrinsic to the
Alu.

Supplementary Note 6.5 Alu insertion variants alter mRNA splicing

In the study [139], researchers found that at one locus where detected an effect, a polymorphic Alu element
maps 41 bp upstream of exon 33 of the NUP160 gene. NUP160 encodes Nucleoporin 160, a member of
the 120-MD nuclear pore complex that mediates nucleoplasmic transport. Exon 33 of this gene is a near
constitutive exon, but EST data (JD448821) suggest that it is skipped in a minor transcript isoform; skipping
the 143 bp exon 33 would result in a frameshift in the mRNA open reading frame. The 262 bp AluYh3a3
element at NUP160 is oriented antisense with respect to the gene. To determine its effect on exon usage,
they tested a 1,743 bp fragment of this locus, both with and without the Alu element present , in the
minigene reporter assay. They detect two different splice events with both constructs. Sanger sequencing
of the RT-PCR products confirmed that one event includes the NUP160 exon 33, and the other skips the
NUP160 exon. Both spliced products are detected with and without the Alu insertion; however, when the
Alu is present, the exon is skipped significantly more often, 45.2%, compared to only 20% when the Alu is
not present (P < 0.001). This indicates that, at least in the reporter assay, this Alu polymorphism has an
effect on exon usage; the presence of the Alu promotes exon skipping.

Supplementary Note 6.6 SVA insertion polymorphisms are associated with Parkinson’s
disease progression

In the study [140], researchers found that SVA 67 at the chromosomal locus 17q21.31 is associated with
differential expression of multiple genes, including six in a 1.15 Mb region centered around the SVA RIP.
At baseline, when comparing PP and AA genotypes three (PLEKHM1 (FDR p = 2.38 × 10−6), ARL17A
(FDR p = 8.72 × 10−5) and CRHR1 (FDR p = 7 × 10−4)) out of the four significantly associated genes
are located in this region as are five (PLEKHM1 (FDR p = 2.40 × 10−9), ARL17A (FDR p = 1.21 ×
10−9), CRHR1 (FDR p = 1.47 × 10−8), MAPT (FDR p = 0.001) and LRRC37A (FDR p = 0.03)) out of
seven genes whose expression is significantly different when comparing PP to PA genotypes. Extending the
analysis to the expression data at 36 months, when comparing PP and AA genotypes of SVA 67, 22 genes
are significantly different in expression, 4 of which are located in the 1.15 Mb region (PLEKHM1(FDR p =
0.008), ARL17A (FDR p = 0.006), CRHR1 (FDR p = 2.5 × 10−4) and MAPT (FDR p = 0.002)). These
same four genes, as well as two others (LRCC37A (FDR p = 0.002) and KANSL1 (FDR p = 0.06)) in this
genomic region, are also differentially expressed when comparing PP and PA genotypes at 36 months. Four
of the genes in this region whose expression is associated with SVA 67 (PLEKHM1, ARL17A, CRHR1, and
MAPT) all showed higher expression in individuals with PP genotypes, and the individuals with the lowest
expression had an AA genotype. This is in contrast with the levels of expression of LRCC37A and KANSL1,
where the opposite pattern is observed.
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Supplementary Note 6.7 High Expression of human endogenous retrovirus (HERV)-K and
HERV-R Env proteins in various cancers

In the study [141], researchers found that the expressions of HERV-K Env and HERV-R Env protein
are significantly higher in tumor tissues compared with normal surrounding tissues in almost all types
of tumors. The expression of HERV-K Env is specifically high in breast cancer, melanoma, kidney cancer,
prostate cancer, cervical cancer, esophagus cancer, and colon cancer. The expression of HERV-R Env protein
is specifically high in melanoma, liver cancer, stomach cancer, ovarian cancer, cervical cancer, esophagus
cancer, and colon cancer. However, only osteosarcoma showed weak to moderate expressions of HERV-K
Env and HERV-R Env proteins. The relative expression of HERV-K Env and HERV-R Env to the normal
surrounding tissues (%Normal) is usually similar in different tumors except breast cancer and melanoma.
HERV-K Env protein demonstrated much higher expression than HERV-R Env in breast cancer, whereas
HERV-R demonstrated much higher expression than HERV-K Env in melanoma.

Supplementary Note 6.8 Somatic mutations in microsatellites in cancer

In the study [142], researchers compared mutational signatures found in single base substitution (SBS),
doublet base substitution (DBS), as well as IDs between the MSI and MSS samples. The PACWG signature
analysis detected 49 SBS, 11 DBS, and 17 ID signatures. They compared the fraction of each mutational
signature between MSI and MSS samples in CR (colorectal cancer), ST (stomach cancer), and UT (uterine
cancer) and found that six SBS signatures (SBS5, SBS15, SBS20, SBS21, SBS26, and SBS44), one ID
signature (ID2), and four DBS signatures (DBS3, DBS7, DBS8, and DBS10) are significantly different
among the MSI and MSS samples in at least one cancer type (Wilcoxon signed-rank test, q-value < 0.05).
Except for DBS3 and DBS8, most of these mutational signatures have been reported to be associated with
tumors having defective DNA MMR.

Supplementary Note 6.9 Rare tandem repeat expansions in ASD

In the study [143], researchers found a trend of rare tandem repeat expansions in the enriched gene sets
more often in females than in males (odds ratio = 1.3; P = 0.11) , which may further support the differential
genetic loading for males and females in ASD. Consistent with our previous findings for rare pathogenic
SNVs (single nucleotide variants) and CNVs (copy number variations), individuals with rare tandem repeat
expansions had lower IQ (Wilcoxon test, P = 0.001) and Vineland Adaptive Behavioural standard scores
(Wilcoxon test, P = 0.019) . This provides compelling evidence for the role of rare tandem repeat expansions
in ASD-related phenotypes.
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Supplementary Note 7 Classification of repeat detection methods

Numerous computational methods for identifying repeats in the genomes have been proposed. They can be
draftily divided into the following three categories: homology-based, structure-based, and de novo methods
(Supplementary Fig. S8). Some de novo methods, such as EDTA, RepeatModeler2, and LongRepMarker,
are hybrid detection frameworks that often integrate multiple detection approaches (e.g., LTRharvest, Re-
peatScout, RECON, etc.), classification and masking modules to identify various types of repeats (TEs, TRs,
low complexity sequences, etc.) in the genome. Therefore, these methods cannot be accurately classified into
the above three categories. The above classification of de novo methods is roughly performed based on the
core technology they depend on.

Repeat detection 

methods

Homology-based 

identification methods

Structure-based 

identification methods

De novo methods

Multiple sequence alignment-

based methods

k-mer and space seed extension-

based methods

Sequence assembly and similarity 

network-based methods

Censor TESeeker Greedier T-lex

LTRharvest MASiVEMUST

MGEScan-LTR MITE-DiggerFINDMITE

detectMITE

MITE-Hunter

MITE Tracker

EDAT ReAS

GRFRepeatFinder RepeatScout

RepeatModeler2

RepeatMasker

RPT RECONPILER

LTRdigest LongRepMarker

TE-greedy-nester SINE-Finder SINE_scan AnnoSINE

RepARK REPdenovo

RepAHRRepLong

Supplementary Figure S8. Classification of detection methods. Some tools belong to hybrid detection frameworks,
such as LongRepMarker, RepeatModeler2, EDTA, and GRF. These tools integrate various detection techniques; thus,
accurately classifying them into a specific category is challenging. Therefore, they can only be roughly classified
according to the main strategies. EDTA: Extensive de novo TE Annotation. GRF: Generic Repeat Finder.

Supplementary Note 7.1 Introduction of typical repeat detection methods

Supplementary Note 7.1.1 Homology-based identification methods Homology-based identi-
fication methods identify repeats by finding subsequences similar to known repeats, which must rely on
algorithms for comparing homology similarity between sequences, such as the Hidden Markov Model (HMM)-
based homology comparison algorithm, and specific databases (e.g., RepBase [144], Dfam [145], msRepDB
[146], RepeatsDB [147], REXdb [148], and Pfam [149]). RepeatMasker (https://www.repeatmasker.org)
is a representation of such tools, which is based on the Dfam or RepBase library and the alignment algorithm
RMBLAST (http://www.repeatmasker.org/RMBlast.html) to perform homology-based similarity search-
ing. Among them, RMBLAST and Dfam are the special alignment algorithm and database developed by the
RepeatMasker team based on the existing Basic Local Alignment Search Tool (BLAST) [150] (https://
blast.ncbi.nlm.nih.gov/Blast.cgi) and RepBase (https://www.girinst.org/repbase/), respectively.
In terms of accuracy, both RMBLAST and Dfam have become gold standards in the field of repeat mask-
ing and are used in the background by several repeat identification frameworks for searching and masking.
Typical homology-based detection methods also include Censor [151], TESeeker [152], Greedier [153], and
T-lex [154].

Among these homology-based methods, Censor uses RepBase as a homologous database. The local align-
ment and greedy algorithms are used by Greedier to determine embedded repeats effectively. In addition,
Dfam and RepBase are used as the homology databases in TESeeker. Further, T-lex is one of the few
transposon identifications that can apply large-scale high-throughput strain data and quickly return pop-
ulation frequency estimates for individual TE insertions. The benefits of homology-based methods include
their accuracy and the ability to discover families with a small number of copies. Their disadvantage is that
they cannot be used to discover new repeats that have not been collected in homology databases. Typical
homology-based detection methods are introduced in Supplementary Table S6.

Supplementary Note 7.1.2 Structure-based identification methods Repeats, especially TEs,
usually have specific structures, such as the structure of a protein or non-coding domains. Furthermore,
these repeats differ in the presence and size of the TSD, a short, direct repeat generated on both flanks
of a TE upon insertion [155]. Structure-based identification methods rely on prior knowledge of structural
features of known repetitive elements collected in the library and employ a heuristic algorithm to identify
repeated sequences in genomes. Typical structure-based identification methods include LTRharvest [156],
MASiVE [157], MGEScan-LTR [158], TE-greedy-nester [159], SINE-Finder [160], SINE scan [161], Anno-
SINE [162], FINDMITE [163], MUST [164], detectMITE [165], MITE-Hunter [166], MITE-Digger [167]
and, MITE Tracker [168].
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The LTR retrotransposons are Class I TEs characterized by the presence of long terminal repeats (LTRs)
directly flanking an internal coding region, which comprises about 8% of the human genome [4]. Several LTR
retrotransposons have similar open reading frameworks (ORFs) to those of retroviruses, consisting of the gag
and pol (pro) genes and, in some cases, env and other accessory genes. There are already some tools, such
as LTRharvest, MASiVE, MGEScan-LTR, and TE-greedy-nester, specifically designed for the de novo LTR
retrotransposons detection based on the above structural features. For example, LTRharvest determines
the boundary position of LTR by setting multiple filtering steps according to the sequence’s structural
characteristics (e.g., canonical features like LTRs, TSDs, and distance constraints). Besides, MASiVE is a
program used to detect and analyze SireVirus elements that belong to specific LTR transposons in plant
genomes based on the structural features of the polypurine tract and primer binding site domains of all LTR-
RTNs. Moreover, MGEScan-LTR is also a structure-based LTR detection tool that can be used to identify
all types of LTR retrotransposons using approximate string matching, protein domain analysis, and profile
HMMs. In addition, TE-greedy-nester is another structure-based method that can be used to identify LTR
retrotransposons and their nesting based on a greedy recursive algorithm to mine increasingly fragmented
copies of full-length LTR retrotransposons in assembled genomes and other sequence data.

SINEs are non-coding retrotransposable elements amplified by RNA intermediates in copy-and-paste
mode, which are small TEs ranging from 100 to 700 bp. SINEs can but do not necessarily have to possess
a head, a body, and a tail. The head is at the 5’ end of SINEs and is evolutionarily derived from an RNA
synthesized by RNA Polymerase III, such as ribosomal RNAs and tRNAs. The body of SINEs possesses an
unknown origin but often shares much homology with a corresponding LINE which thus allows SINEs to
parasitically co-opt endonucleases coded by LINEs (which recognize certain sequence motifs). Lastly, the 3’
tail of SINEs is composed of short simple repeats of varying lengths; these simple repeats are sites where two
(or more) short-interspersed nuclear elements can combine to form a dimeric SINE. Several structure-based
identification methods, such as SINE-Finder, SINE scan and AnnoSINE, have been proposed for SINEs
identification. Among them, SINE-Finder is a Python script developed to report the targeted identification
and characterization of tRNA-derived SINEs from plant genomes based on the structural features of SINEs,
such as the motif of 5’ TSD, box B, and 3’ TSD. SINE scan is an efficient method to identify SINE elements in
the genome based on the hallmark of the SINE transposition (special sequence pattern around the insertion
site), copy number, and structural signals (e.g., classification and genome-wide annotation). In addition,
AnnoSINE is another accurate and efficient SINE annotation tool, in which the homology search based on
the profile HMM and the de novo SINE search employing structural features are used to maximize the range
of SINE candidates.

MITEs are a special class of DNA transposons inserted predominantly in gene-rich regions, which could be
why they affect gene expression and play essential roles in accelerating eukaryotic evolution. The six standard
structure-based identification methods for MITE detection are MITE-Hunter, detectMITE, FINDMITE,
MUST, MITE-Digger, and MITE-Tracker. Among them, FINDMITE requires the TSD sequence, and users
must predefine the minimum and maximum distances between the terminal inverted repeats (TIRs). In
addition, MITE-Hunter is a procedural pipeline for identifying MITEs than FINDMITE and MUST, and its
output is easier to inspect and classify. In MITE detection, a combination strategy of de novo and structural-
based approaches is used in the MITE-Hunter and MITE-Digger programs. Both methods cannot detect
all MITEs concealed in the genomes, despite successfully reducing false-positive rates in MITE detection.
The advantages of structure-based methods include high efficiency and lower false-positive rates of the
detected repeats, and their detection results are easier to verify and classify. Their disadvantages are that
they cannot be used to identify repeats whose structural features have not been collected in structure
databases or whose structural features cannot be accurately and completely obtained due to the insufficient
precision and completeness of the input sequences. Therefore, the detection integrity of such methods is often
unsatisfactory. Additionally, structure-based methods are often designed for a certain class of transposons
(e.g., LTR, SINEs, and MITE), and their versatility is limited. Typical structure-based detection methods
are introduced in Supplementary Table S7.

Supplementary Note 7.1.3 De novo identification methods The de novo methods are more
flexible than the other two classes of detection methods because they do not require prior knowledge about
the repeat structure or similarity to known repeat sequences [169]. The methods can also be classified into
three categories based on the core technology that each method depends on (Supplementary Fig. S8).
The first class of methods identifies repeats through MSA, including the Repeat Pattern Toolkit (RPT)
[170], RECON [171], PILER [172], LTRdigest [173], and LongRepMarker [174]. RPT is designed based
on a sequence similarity scoring system, which uses BLAST as an aligner to perform MSAs between genomic
sequences. In the processing of RPT , the sequences are grouped using a graph-based single-link clustering
algorithm, and each one is considered a vertex in the graph, and two vertices are linked if they overlap by
more than a certain threshold. RECON is designed based on extensions to the usual approach of single linkage
clustering of local pairwise alignments between genomics sequences. PILER is a de novo repeat annotation
method that exploits characteristic patterns of local alignments induced by certain classes of repeats, in
which the searching procedures are designed to determine repeat elements with boundaries corresponding to
individual biological events by finding instances that produce characteristic signatures. LTRdigest identifies
and annotates characteristic sequence features of LTR retrotransposons in predicted candidates, which uses
several algorithms to create annotations based on user-supplied constraints, and computes the boundaries and
attributes of the features that fit the user-supplied model and output. LongRepMarker is a novel framework
for repeat identification and classification, which is implemented based on the combination of unique k-mers-
based MSA and the hybrid assembly of short and long reads. Multiple-alignment unique k-mers are used in
LongRepMarker to locate repetitive regions accurately, and long sequencing fragments (TGS long reads) are
introduced into the assembly process of short paired-end reads to fully restore repeats in the genome.

The methods in the second category are based on the strategies of high-frequency k-mers and space seed
extension to identify repeats, which convert the sequences to be detected into k-mers of a certain length
and choose k-mers whose frequency exceeds a certain threshold as a seed. During the extension process,
these methods obtain the expanded sequences by searching for the locations of these seeds in the genome,
performing sequence extensions at both ends of the genome, and always judging whether the extended ar-
rangements are consistent across multiple genome locations. Representative of this class of approaches include
the Extensive de novo TE Annotator (EDTA) [175], RepeatFinder [176], RepeatScout [177], ReAS [178],
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Generic Repeat Finder (GRF) [179] and RepeatModeler2 [180]. EDTA (Extensive de novo TE Annotator)
is a pipeline for comprehensive and high-quality TE annotation for newly assembled eukaryotic genomes or
to expand curated TE libraries, which contains a set of scripts for filtering the output of each program to
reduce the overall false discovery rate. In addition, EDTA also can be used to identify nested TE insertions
frequently found in highly repetitive genomic regions. RepeatFinder is a new clustering method for analysis
of the repeat data captured in suffix trees, which uses a set of k-mer tagged sub-strings, traditionally iden-
tified by the REPuter [181] search engine, to initialize its hierarchical clustering strategy. RepeatScout is a
tool developed for identifying repeats in assembled genomic regions, which builds a library of high-frequency
k-mers and identifies repeat family sequences by retrieving sub-strings of the input sequences that contain
specific k-mers. ReAS is an algorithm that uses unassembled reads from a whole-genome shotgun to recover
ancestral sequences for TEs. For a k-mer seed, ReAS aligns all hits and uses those with sequence similarity
to produce a 100 bp initial consensus sequence centered at the k-mer, and uses a greedy search algorithm
to identify other high-frequency k-mers in the initial consensus sequence and extend the alignment. GRF
is a genome-wide de novo repeat detection tool developed based on a combination of efficient and accurate
numerical calculation algorithms and optimized dynamic programming strategies, which can sensitively iden-
tify terminal inverted repeats and terminal direct repeats, and interspersed repeats with reverse and direct
repeats. Repeatmodeler2 is a user-friendly package that automatically discovers TE families in the genome,
generates reference TE libraries, and produces high-quality libraries that recapitulate the known composition
of three model species with some of the most complex TE landscapes. RepeatModeler2 significantly enhances
the discovery and annotation of TEs in genome sequences.

The third class of methods, including RepARK [182], REPdenovo [183], RepAHR [184], and RepLong
[185], rely on sequence assembly and community detection in sequence similarity network to detect repeats
(Supplementary Fig. S9). Of these four methods, the first three are suitable for NGS short reads, among
which RepARK and REPdenovo obtain repeats based on high-frequency k-mers assembly, while RepAHR
obtains repeats by assembling high-frequency paired-end reads. The last method, RepLong, is one of the few
identification methods that only rely on TGS long reads, which constructs a sequence similarity network based
on the overlaps between the PacBio long reads, and uses the community discovery strategy to obtain repeats
in the similarity network. RepARK obtains repeats by the assembly of high-frequency k-mers, which avoids
potential biases by using abundant k-mers of the whole-genome short reads without requiring a reference
genome. REPdenovo aims to construct repeats with relatively high copy numbers and low sequence divergence
with copies of the repeats. RepAHR is proposed to solve the problem that assembly of short k-mers may
destroy the structure of the repeats in genomes, which generates repeats by the assembly of high-coverage
reads that contain a certain proportion of high-frequency k-mers. RepLong fills a gap in the field of repeat
detection based on TGS, which can handle data with low coverage, and the modularity optimization method
is employed in it to perform community discovery [186–188].

The NGS reads, or k-mers, are too short of identifying the full-length repeats, and the TGS long reads
are with a high rate of sequencing errors, making the de novo methods typically fail to achieve satisfactory
performance in terms of accuracy and completeness. The typical de novo methods are introduced in Supple-
mentary Table S8. Different detection methods have different advantages and disadvantages. The typical
homology-based, structure-based, and de novo detection methods, their principle description, benefits, and
weaknesses are introduced in Supplementary Tables S9-S11.

(A) (B) (C)

(D) (E)

(F)

(G)

Supplementary Figure S9. The workflow of detection methods based on sequence assembly and community de-
tection in sequence similarity network. Sub-graph(A): The workflow of RepARK. Sub-graph(B): The k-mer abun-
dance histogram. Sub-graph(C): The advantage of assembling high-frequency reads compared to the assembly of
high-frequency k-mers. Sub-graph(D): The workflow of REPdenovo. Sub-graph(E): The workflow of RepAHR. Sub-
graph(F): The workflow of RepLong. Sub-graph(G): The principle of discovery community in sequence similarity
network.
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Supplementary Table S6. Introduction of typical homology-based detection methods.

Method
type

Method name Description Advantages/Disadvantages

Censor

Censor (https://www.girinst.org/downloads/software/censor/) consists of an unaltered
version of RepBase (it can also apply user-supplied libraries if desired), Perl
and C++ modules. Censor identifies interspersed and tandem repeats based on
sequence similarity comparisons. It analyzes repetitive sequences using repeat
elements and their annotation information provided by RepBase Update. There
are three main steps in Censor’s pipeline.

▶ The first step is data pre-processing. In this step, long sequences are
cut into smaller pieces to reduce the memory requirements of the aligner
BLAST [150] and facilitate job splitting and scheduling tasks on multi-
processor machines.

▶ The second step is similarity searching. In this step, BLAST is used as an
aligner to compare the input sequence to annotated elements recorded in
RepBase or a custom user-supplied library.

▶ The third step is post-processing and output. In this step, the program
removes overlapping BLAST output, performs shard integration based on
the detected repeats, and generates a report file with the ′.map′ suffix
recording the repetitive elements and their locations.

Advantages:

▶ It can be used to classify all known repeats
and generate reports automatically.

▶ High detection accuracy.

▶ It provides online identification services
(https://www.girinst.org/censor/help.html).

Disadvantages:

▶ Highly reliant on homologous databases
(RepBase, Dfam, etc.), and cannot discover
novel repeats that have not been collected
in homology databases.

▶ Using BLAST as the alignment algorithm
often results in a long run time.

▶ The integrity of detection results often de-
pends on the integrity of the homology
databases.

Homology-
based

Greedier

Greedier is another homology-based detection algorithm for finding fragmented
and nested repeats in a target genome based on a given repeat library. Greedier
is implemented based on the idea of multiple iterations. Each iteration can be
divided into the following two stages.

▶ In the first stage, Greedier determines the subsequence pairs that meet the
requirements by the local alignment between the repeat library and target
genome and constructs a graph according to the detected subsequence
pairs, where each vertex represents a pair of subsequences similar to one
another. Each edge denotes pairs of subsequences that can be connected
to establish higher similarities.

▶ In the second stage, Greedier uses a greedy algorithm to traverse the
graphs constructed in the first stage to determine matches to individual
repeat units in the repeat library. For each match, it calculates a fitness
value that indicates the matching similarity. After removing matches with
fitness values over a threshold, the remaining genome is pieced together.

Advantages:

▶ Fewer false positives in detection results
(From the experimental results of the pa-
per).

▶ It can be used to report potential nested
transposon structures (From the introduc-
tion of the method in the paper).

Disadvantages:

▶ Greedier is limited by the accuracy and com-
pleteness of the repeat library.

▶ The corresponding code of the method could
not be found. The contribution of the
method is primarily reflected in theory.

RepeatMasker

RepeatMasker (https://www.repeatmasker.org/) is a program that screens DNA se-
quences for interspersed repeats and low-complexity DNA sequences. The new
addition to the RepeatMasker package is a program that can also be used to
identify the repetitive elements within protein sequences. Currently, over 56%
of the human genomic sequence is identified and masked by the tool. The prin-
ciple of RepeatMasker is to search for the occurrence of any reference sequence
contained in a library (currently Dfam and RepBase, or a user-builtin library)
in a query sequence using a sequence comparison approach based on popular
search engines including nhmmer, cross match, AB-BLAST/WU-BLAST, RM-
BLAST, and Decypher. RepeatMasker provides users with viable options to
meet the needs appropriate for various cases. The execution of RepeatMasker
can be split into seven steps:

▶ Verify the hit point with a valid alignment tool (e.g., nhmmer,
cross match, AB-BLAST/WU-BLAST, and RM-BLAST).

▶ Read and check the input sequences.

▶ Check the RepeatMasker library (e.g., RepBase/Dfam) or the user TEs
library.

▶ Split the sequences into fragments and prepare a list of executions on the
fragments.

▶ Launch the alignment tool on the sequences.

▶ Change the search engine output to the RepeatMasker standard output.

▶ Merge the fragment sequences and merge the fragmented hits of TEs.

Advantages:

▶ Fewer false positives and highly accurate de-
tection results.

▶ There is no restriction on the number of in-
put sequences or the length of the sequences
for RepeatMasker.

▶ RepeatMasker can also be used to identify
the repetitive elements within protein se-
quences.

▶ RepeatMasker can also be accessed through
the web (https://www.repeatmasker.org/cgi-bin/
WEBRepeatMasker).

Disadvantages:

▶ Highly reliant on homologous databases
(RepBase, Dfam, etc.), and cannot discover
novel repeats that have not been collected
in homology databases.

▶ The BLAST algorithm is the foundation
of the four alignment tools (nhmmer,
cross match, AB-BLAST/WU-BLAST, and
RM-BLAST), often resulting in a long run
time.

▶ The integrity of detection results often de-
pends on the integrity of the homology
databases.

Supplementary Table S7. Typical structure-based detection methods.

Method
type

Method name Description Advantages/Disadvantages

LTRharvest

The LTRharvest method (https://www.girinst.org/downloads/software/censor/) is a de
novo detection algorithm used to detect full-length LTR elements in large se-
quence sets based on known features, such as length, distance, and sequence
motifs of LTR transposons. The workflow of LTRharvest is summarized as fol-
lows:

▶ Constructing an improved suffix array for genomic chromosomes under
consideration.

▶ Loading an enhanced suffix array into the main memory and conducting a
subsequent search for the most extensive exact repeat based on this data
structure.

▶ Testing candidate pairs against LTR retrotransposon-specific features
(i.e., TSD and palindromic LTR motifs). The testing process is to search
for TSDs with user-specified minimum and maximum lengths to the left
and right of a candidate pair’s 5′ and 3′ instance. The palindromic LTR
motif consists of two pairs of two nucleotides and an allowed number of
mismatches between these.

▶ Determining whether the user-specified LTR distance and length con-
straints are met for each remaining candidate pair. Additionally, LTR
sequences containing TSDs and motifs (corresponding to the candidate
pairs) are checked for a user-defined minimum sequence identity.

Advantages:

▶ Allows users to make flexible parameter set-
tings.

▶ The algorithm has the characteristics of
high efficiency, low memory, and disk-space
consumption so that it can handle large
species, such as vertebrates.

▶ The algorithm is powerful for de novo an-
notating high-quality, full-length, or nearly-
full-length LTR retrotransposons.

Disadvantages:

▶ The LTRharvest method cannot detect par-
tial short LTR retrotransposon copies, solo
LTRs, and some nested elements.

▶ The LTRharvest method cannot check the
presence of LTR retrotransposon-specific
open reading frameworks (ORFs), primer
binding sites, or polypurine tracts.

Structure-
based

SINE scan

The SINE scan method (https://github.com/maohlzj/SINE\_scan) is a highly efficient
structure-based algorithm for predicting SINEs in genomic DNA sequences by
combining the hallmarks of SINE transposition, copy number, and structural
signals. The SINE scan program comprises the following three core modules.

▶ A collection of the SINE candidates by de novo identification method. An
enhanced version of SINE-Finder is used in the SINE scan program as the
default detection tool for SINE candidate collection, which can identify all
three types (tRNA, 7SLRNA, and 5SRNA) of SINEs.

▶ The validation of the SINE candidates using a copy number and transpo-
sition hallmark. Only candidates with a copy-number of full-length ele-
ments higher than a certain threshold (controlled by the parameter ′-n′;
default=5) are kept.

▶ Classification and genome-wide annotation. This module first classifies all
verified SINEs into families according to the 80% identity rule using the
CD-HIT suite, then compares them to known SINEs deposited publicly
available repeat databases, such as the RepBase, SINEBase, and PGSB
repeat databases.

Advantages:

▶ The SINE scan method is designed to be
flexible and robust for diverse purposes of
SINE annotation and verification.

▶ The SINE scan method can more compre-
hensively detect SINEs in genomes and dis-
cover numerous new SINEs.

Disadvantages:

▶ Highly reliant on structure databases, such
as RepBase, SINEBase and PGSB repeat
databases, and it is difficult to discover
novel repeats whose structural features have
not been collected in structure databases.

▶ The integrity of detection results often de-
pends on the integrity of the database struc-
ture.

MITE-Hunter

The MITE-Hunter method primarily comprises Perl scripts and a Unix program
pipeline for discovering MITEs from genomes and produces outputs of consensus
sequences classified into families. The workflow of MITE-Hunter comprises the
following five main steps.

▶ Use a structure-based approach to identify TE candidates. Terminal
inverted-repeat (TIR)-like structures (default 10 bp with at most 1 bp
mismatch) flanked by putative TSDs (2 to 10 bp; default is TA if TSD
length = 2) are used to identify TE candidates from each fragment se-
quence.

▶ Identify and filter false positives using a pair-wise sequence alignment-
based approach. For candidate TEs and their flanking sequences, an all-
by-all blastn comparison (default E-value = 1e-10) is performed. Single-
copy candidates are identified and filtered from the blastn results.

▶ Generate exemplars. First, MITE-Hunter cluster candidate TEs based on
the similarity between the TE sequences and selects the most representa-
tive sequence in each cluster as the category representative.

▶ Using an MSA approach, identify and filter false positives, generate con-
sensus sequences, and predict TSDs.

▶ Group consensus sequences into the corresponding families.

Advantages:

▶ The fundamental drawback of the cur-
rent MITE discovery programs, a significant
false-positive rate, is effectively addressed
by MITE-Hunter.

▶ Compared with existing programs, MITE-
Hunter can more completely discover Class
II non-autonomous TEs, particularly MITEs.

Disadvantage:

▶ The MITE-Hunter approach is implemented
based on the pair-wise sequences align-
ment and false-positive filtering modules
and is faster and more sensitive than MSA-
based algorithms. Although MITE-Hunter
has false-positive filtering modules, the
false-positive rate of its results is still sig-
nificantly higher than that of the methods
based on MSA.
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Supplementary Table S8. Introduction of typical de novo methods.

Method
type

Method name Description Advantages/disadvantages

RepeatScout

The RepeatScout method (http://bix.ucsd.edu/repeatscout/) is a de novo identifica-
tion algorithm that finds repeat families by extending consensus seeds, allowing
for a precise determination of repeat boundaries.

▶ Builds a table of high-frequency l-mers.

▶ Extends the most frequent l-mer to a repeat family consensus sequence Q.

▶ Identifies occurrences of Q in the genome and adjusts l-mer frequency
counts to exclude counts from occurrences of Q and proceeds to the most
frequently remaining l-mer.

▶ The algorithm terminates when no l-mers with a frequency at least m, a
fixed l-mer frequency threshold.

Advantages:

▶ The algorithm runs efficiently.

▶ The detection results of the algorithm are
pure and accurate.

Disadvantages:

▶ The integrity of the detection results of the
algorithm is usually unsatisfactory.

▶ The algorithm cannot process more than
1 Gb of the genome at a time.

▶ The size change of l-mer has a greater effect
on the detection results.

RepARK

RepARK (https://github.com/PhKoch/RepARK) is a de novo repetitive motif detection
algorithm based on the assembly of high-frequency k-mers, which are orders of
magnitude faster than the other methods and generate libraries that are (i)
composed almost entirely of repetitive motifs, (ii) more comprehensive, and
(iii) almost completely annotated by the TEclass tool [189]. The workflow of
the RepARK program is summarized as follows:

▶ Converting the NGS short reads into k-mers of a certain length.

▶ Counting the frequency of k-mers.

▶ Separating high-frequency k-mers according to the high-frequency thresh-
old.

▶ Assembling the high-frequency k-mers using a de novo genome assembly
program, such as Velvet, into repeat consensus sequences.

Advantages:

▶ The algorithm runs efficiently.

▶ The algorithm consumes less computing re-
sources (CPU, memory and disk space).

Disadvantages:

▶ The accuracy of detection results of the al-
gorithm is general and the integrity is poor.

▶ The threshold of the high-frequency k-mer
is challenging to determine, dramatically af-
fecting the integrity and accuracy of the fi-
nal detected repeats.

de novo RepLong

The RepLong method (https://github.com/ruiguo-bio/replong) is a de novo repeat
identification method suitable for TGS long reads. The pipeline of RepLong
consists of the following three stages : (i) identification of the overlaps between
long reads, (ii) construction of a similarity network based on overlaps, and (iii)
extraction of repeats from the network based on community detection. The
workflow of RepLong is summarized in detail as follows:

▶ The pair-wise alignment of the reads is used to construct a read overlap
similarity network. In this network, each vertex represents a read, and
an edge represents the substantial overlap between the two corresponding
reads.

▶ Network modularity optimization is used to locate communities with
stronger internal than external connectivity.

▶ Representative reads from each community are collected to construct the
repeat library.

Advantages:

▶ The RepLong approach can directly obtain
repeats and only relies on TGS long reads.

▶ Compared with existing de novo detection
methods (e.g., RepARK and REPdenovo),
RepLong tends to obtain repeats more com-
pletely.

Disadvantages:

▶ This algorithm usually consumes vast com-
puting resources (CPU, memory, and disk
space) and has a long run time.

▶ The detection accuracy of the algorithm is
usually unsatisfactory.

LongRep
Marker

The LongRepMarker method (https://github.com/Xingyu-Liao/LongRepMarker\_v2.0) is
a hybrid framework for sensitively detecting repeats based on short and long
reads. It is designed based on strategies of a hybrid global de novo assembly of
long and short reads and overlap detection based on multi-alignment unique
k-mers, which can be used for precise identification and classification of com-
prehensive repeats in the genome. The LongRepMarker’workflow consists of the
following steps:

▶ Identifying overlap sequences between chromosomes/contigs/long reads.

▶ Converting overlap sequences into unique k-mers.

▶ Generating coverage regions on overlap sequences that can be covered by
multi-alignment unique k-mers.

▶ Classifying coverage regions on overlap sequences that can be aligned us-
ing multi-alignment k-mers.

▶ Calling genetic variants that exist in repetitive regions.

▶ Generating the TE consensus sequences by combining fragments with re-
lationships of duplication or inclusion.

▶ Classifying TE consensus sequences and generating the final identification
results with several detection reports.

Advantages:

▶ By assembling the overall NGS short and
long sequencing fragments (barcode linked
reads and TGS long reads) rather than the
high-frequency k-mers, it can largely recover
the repeats in the genome.

▶ By detecting the overlap sequences between
assemblies/chromosomes/long reads, it can
more quickly and accurately locate repeti-
tive regions.

▶ Using the multi-alignment unique k-mer-
based overlap detection strategy, it can
more comprehensively and stably identify
repeats.

▶ This algorithm can also be used to detect
TRs.

Disadvantage:

▶ This algorithm may consumes substantial
memory space and have a relatively long run
time when dealing with large genomes.

Supplementary Note 7.2 Performance comparison between different detection methods

Supplementary Note 7.2.1 Datasets We evaluated the performance of Greedier, RepeatMasker,
Corss match, WindowMasker, LTR-STRUC, LTR-Seq, LTR-Rho, LTR-FINDER, LTRharvest, MITE-Hunter,
FINDMITE, MUST, AnnoSINE, SINE-Finder, SINE Scan, SINE Base, RepeatModeler, RepMasker, Re-
peatScout, RepeatModeler2, RepARK, REPdenovo, RepLong, and LongRepMarker based on 20 datasets.
The details of these datasets are shown in Supplementary Tables S9-S11.

Supplementary Table S9. Details of the experimental data
Test items Species Dataset Name Datasize (KB) Source

Leafcutter Ant GCA 000204515.1 Aech 3.9
genomic Ant.fna

293,052 https://www.ncbi.nlm.nih.gov/

D.melanogaster dmel-all-chromosome- r5.43.fasta 168,080 https://www.ncbi.nlm.nih.gov/
Soybean Glycine max Soybean.fna 968,211 https://www.ncbi.nlm.nih.gov/

Reference Gallus Gallus gallus.fna 1,053,454 https://www.ncbi.nlm.nih.gov/
Mouse GCA 000001635.8 GRCm38.p6

genomic Mouse.fna
2,787,341 https://www.ncbi.nlm.nih.gov/

Human(hg38) GCF 000001405.39 genomic
Human.fna

3,196,759 https://www.ncbi.nlm.nih.gov/

Arabidopsis GCF 000004255.2 v.1.0 genomic.fna 204,585 https://www.ncbi.nlm.nih.gov
Rice GCF 002938485.1 Soryzae 2.0

genomic.fna
762,197 https://www.ncbi.nlm.nih.gov/

Maize GCF 902167145.1 Zm-B73-
REFERENCE-NAM-5.0 genomic.fna

2,158,363 https://www.ncbi.nlm.nih.gov/

S.cerevisiae GCF 000002945.1 ASM294v2.fna 168,080 https://www.ncbi.nlm.nih.gov/

Annotation Arabidopsis gene models 5,446 https://www.arabidopsis.org/
Rice gene models 61 https://www.arabidopsis.org/

Leafcutter Ant ERR034186 1.fastq 17,580,863 https://www.ncbi.nlm.nih.gov/
ERR034186 2.fastq 17,580,863 https://www.ncbi.nlm.nih.gov/

D.melanogaster SRR350908 1.fastq 5,767,698 https://www.ncbi.nlm.nih.gov/
SRR350908 2.fastq 5,767,698 https://www.ncbi.nlm.nih.gov/

NGS short reads Mouse ERR2894257 1.fastq 26,655,537 https://www.ncbi.nlm.nih.gov/
ERR2894257 2.fastq 26,655,537 https://www.ncbi.nlm.nih.gov/

Human-chr14 frag 1.fastq 4,913,897 http://gage.cbcb.umd.edu/
frag 2.fastq 4,913,897 http://gage.cbcb.umd.edu/

HG003 24149 father D2 S2 L001 R1 001.fastq 23,534,426 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data
D2 S2 L001 R2 001.fastq 23,534,426 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data

D.melanogaster 100k dro 100k.fa 919,162 https://github.com/ruiguo-bio/replong
SMS long reads Homo sapiens 100K human 100k.fa 507,871 https://github.com/ruiguo-bio/replong

D.melanogaster 900k dmel filtered.fastq 30,885,716 https://github.com/ruiguo-bio/replong
Homo sapiens 900k human polished.fastq 109,716,724 https://github.com/ruiguo-bio/replong

Supplementary Note 7.2.2 Evaluation metrics In order to comprehensively evaluate the perfor-
mance of the compared methods, we used 19 evaluation metrics in this experiment, which are Num, Max(kb),
N50(kb), N75(kb), N90(kb), 0 time, 1 times, >1 times, Mapping Rate(%), Reference(%), Repbase(%), Time
(hour) and Memory(MB) (Supplementary Table S12). ′Num′ denotes the number of segments; ′Max(kb)′



20 Xingyu Liao et al.

Supplementary Table S10. Detail of test genomes
Genomes

Datasets H.sapiens (hg38) Mouse L.Ant Gallus D.melanogaster Glycine max

Species type Eukaryote Eukaryote Eukaryote Eukaryote Eukaryote Eukaryote
Genome size(bp) 3,209,286,105 2,818,974,548 295,944,863 1,065,365,434 168,736,537 979,046,046
Number of chromosomes 455 239 4339 464 15 1192
Longest chromosome(bp) 248,956,422 195,471,971 5,247,136 197,608,386 29,004,656 58,018,742
Shortest chromosome(bp) 970 1,976 200 87 19,517 1002

’H.sapiens’ represents the dataset of Homo sapiens; ’D.melanogaster’ represents the dataset of Drosophila melanogaster; ’L.Ant’ represents the dataset of
Leafcutter Ant; ’G.gallus’ represents the dataset of Gallus gallus(chicken); ’Glycine max’ represents the dataset of Glycine max(Soybean).

Supplementary Table S11. Details of NGS short reads
NGS short reads

Datasets Saccharomyces Human14 Human wgs Drosophila
melanogaster

Acromyrmex Mouse

Species type Eukaryote Eukaryote Eukaryote Eukaryote Eukaryote Eukaryote
Genome size(Mbp) 12.157 106.332 3,209.286 168.080 295.944 2,818.974
Sequencing technology Illumina Illumina Illumina Illumina Illumina Illumina
Library type Single-lib Single-lib Single-lib Single-lib Single-lib Single-lib
Read length(bp) 301 101 108 100 100 100
Number of reads 5,504,000 145,778,752 60,007,256 39,468,243 106,748,982 106,748,982
Average Coverage ∼136.27 ∼138.46 ∼4.02 ∼23.48 ∼36.42 ∼36.42
Insertsizes(bp) 400 155 388 358 500 500

’Human14’ indicates the sequencing data of chromosome 14 in the human genome, ’Human wgs’ represents the whole genome sequencing data of the human
genome.

denotes the length of the largest segment; ′N50(kb)′ is the length of the longest segment such that all the
segments longer than this segment cover at least half (50%) of the total length of all segments; ′N75′ and
′N90′ are calculated in a similar way; ′0 time′ indicates the proportion of segments that cannot be aligned to
the reference sequence in all segments; ′1 time′ indicates the proportion of segments that can be aligned to a
unique location on the reference sequence in all segments; ′ >1 times’ indicates the proportion of segments
that can be aligned to multiple locations on the reference sequence in all segments; ′Mapping Rate(%)′ indi-
cates the proportion of segments that can be aligned to the reference sequence in all segments; ′Reference(%)′

indicates the proportion of regions marked as repetitive regions in the reference sequence that can be cov-
ered with the segments; ′Repbase(%)′ indicates the proportion of fragments in Repbase that can be covered
with segments; ′Annotations′ indicates the total number of annotation transposable elements in the dataset;
′Predictions′ indicates the number of transposable elements predicted by method; ′Sensitivity′ indicates the
ability to predict the true positives of each available category; ′Specificity′ indicates the ability to predict the
true negatives of each available category; ′PDR′ indicates the false discovery rate; ′F1-score′ indicates the
precision and recall of a classifier into a single metric by taking their harmonic mean; ′Time (hour)′ indicates
the time consumption of algorithms; ′Memory(MB)′ indicates the peak memory consumption of algorithms.

Supplementary Table S12. Evaluation metrics

Metrics Meaning

Num The number of segment
Max(kb) The length of the largest segment
N50(kb) The length of the longest segment such that all the segments longer than this segment cover at least 50% of the

total length of all segments
N75(kb) The length of the longest segment such that all the segments longer than this segment cover at least 75% of the

total length of all segments
N90(kb) The length of the longest segment such that all the segments longer than this segment cover at least 90% of the

total length of all segments

0 time The proportion of segments that cannot be aligned to the reference sequence in all segments
1 time The proportion of segments that can be aligned to a unique location on the reference sequence in all segments
> 1 times The proportion of segments that can be aligned to multiple locations on the reference sequence in all segments
Mapping Rate(%) The proportion of segments that can be aligned to the reference sequence in all segments
Repbase(%) The proportion of fragments in Repbase that can be covered with segments
Reference(%) The proportion of regions marked as repetitive regions in the reference sequence that can be covered with the

segments
Annotations The total number of annotation transposable elements in the dataset
Accuracy The ratio of correctly predicted observation to the total observations.
Predictions The number of transposable elements predicted by method
Sensitivity The metric that evaluates the ability of a method to predict the true positives of each available category
Specificity The metric that evaluates the ability of a method to predict the true negatives of each available category
PDR The false discovery rate is the ratio of the number of false positive results to the number of total positive test

results. FDR = expected (# false predictions / # total predictions)
Recall The measure of how many of the positive cases the classifier correctly predicted, over all the positive cases in the

data
F1-score The F1-score combines the precision and recall of a classifier into a single metric by taking their harmonic mean

Time (hour) The run time consumption of algorithms
Memory(MB) The peak memory consumption of algorithms

Supplementary Note 7.2.3 Performance comparison The comparison of the performance of
homology-based methods, including Greedier, RepeatMasker, corss match, and WindowMasker, in terms of
bases masked in the genomes of Arabidopsis and Rice, is shown in Supplementary Table S13. The quality
validation of structural-based methods LTR STRUC, LTR Seq, LTR Rho, LTR FINDER, and LTRharvest
on the genomes of S.cerevisiae and D.melanogaster is shown in Supplementary Table S14. The per-
formance comparison of structural-based methods MITE-Hunter, FINDMITE, detectMITE, GRF-mite dft,
MITE-Tracker, TIR-Learner, and MUST on the Rice genome is shown in Supplementary Tables S15
to S16. The comparison of the element-level performance of different structural-based SINE annotation
methods AnnoSINE, SINE FINDER, SINE Scan, SINE Base, RepeatModeler is shown in Supplementary
Table S17. The comparison of the proportion and detailed classification of elements in the reference genomes
and the corresponding RepBase libraries is covered by the detection results of de novo detection methods
RepeatScout, RepeatModeler2, RepARK, REPdenovo, RepLong, LongRepMarker, and standard benchmark
method RepeatMasker is shown in Supplementary Tables S18-S32.
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Supplementary Table S13. Comparison of Greedier, RepeatMasker, cross match, and WindowMasker
in terms of bases masked in different regions of the Arabidopsis and Rice genomes.

Number of bases masked Percentage of bases masker
Region #bases annotated Greedier RepeatMasker cross match WM Greedier RepeatMasker cross match WM

Arabidopsis
whole-genome

119,186,497 3,831,443 8,506,912 3,725,050 22,177,358 3.2 7.1 3.1 18.5

(TP) 5,905,785 924,076 2,087,175 385,889 344,000 16 35.68 6.8 5.8
(FP) 42,900,000 324,635 860,241 1,028,240 3,230,000 0.78 2 2.4 7.5

# 10 chromosome
of the rice genome

22,876,596 3,973,477 6,839,111 4,594,861 4,315,506 17.4 29.9 20 18.9

(TP) 3,072,087 1,481,468 2,051,697 641,277 461,174 48.2 66.8 20.9 15
(FP) 3,297,203 101,616 181,082 535,830 293,923 3.1 5.5 16.3 8.9

’WM’ represents the method WindowMasker, transposons (TP), and other exons (FP). The TP/FP rates of Greedier, RepeatMasker, cross match, and
WindowMasker are 2.85, 2.42, 0.37, and 0.10, respectively.

Supplementary Table S14. Quality validation of programs for LTR retrotransposon prediction on the
genomes of S.cerevisiae and D.melanogaster.
Species Program used LTR STRUC LTR Seq LTR Rho LTR FINDER LTRharvest

S. cerevisiae Run-time [s] ∼600 413 190 19 3
Annotations 50 50 47 50 50
Predictions 39 50 46 56 68
Sensitivity 76% 80% 89.4% 100.0% 98.0%
Specificity 97.4% 100.0% 91.3% 89.3% 72.1%

D. melanogaster Run-time [s] 4380 24120 2286 1209 25
Annotations 304 304 304 304 340
Predictions 310 188 417 395 723
Sensitivity 37.5% 36.8% 94.7% 74.3% 94.7%
Specificity 36.8% 59.6% 69.1% 57.2% 40.4%

Supplementary Table S15. Comparison of MITE-Hunter with FINDMITE and MUST on the chro-
mosome #12 of the Rice genome.
Program Running time Predicted TEs False-positive(%)

MITE-Hunter 1.7h 114 4.4
FINDMITE <1h 10,864 85.0
MUST 5.5h 5,485 86.0

Supplementary Table S16. Comparison of the new TIR candidates discovered by several MITE and
TIR identification tools based on Rice genome.

TIRs and MITEs

Tools New TE New TE with
known TIRs

Unique new TE
with new TIRs

New TIRs with con-
served domains

New TIRs with copy
number > 3

detectMITE 15,654 10,947 1,341 159 1,018
GRF-mite dft 1,489 687 354 159 311
MITE-Hunter 114 144 0 0 0
MITE-Tracker 836 137 668 126 577
TIR-Learner 13,317 4,104 6,461 252 2,893

Supplementary Table S17. Element-level performance of different SINE annotation tools on the Ara-
bidopsis and Rice genomes.
Species Metrics AnnoSINE SINE-Finder SINE Scan SINE Base RepeatModeler

arabidopsis F1-score 0.928 0.081 0.255 0.851 0.772
Sensitivity 0.955 0.901 0.146 0.772 0.734
PDR 0.097 0.958 0.024 0.052 0.186
Precision 0.903 0.042 0.976 0.948 0.841

rice F1-score 0.924 0.072 0.569 0.705 0.457
Sensitivity 0.890 0.803 0.492 0.545 0.305
PDR 0.040 0.963 0.327 0.002 0.092
Precision 0.960 0.037 0.673 0.998 0.908

Supplementary Table S18. Comparison of LongRepMarker, RepeatScout, and RepeatMasker.
Quast (length ≥ 5000bp) Minimap2 RepeatMasker

Species Tool Time(min)/Peak
Mem(GB)

Max (kb) N50
(kb)

N75
(kb)

N90
(kb)

0 time 1 time >1
time

Mapping
Rate
(%)

Reference
(%)

Repbase
(%)

H.sapiens(hg38) LongRepMarker 2863.539/46.688 1034.338 83.195 28.812 10.281 0.00% 11.75% 88.25% 100.0% 37.20% 81.61%
RepeatScout Error Error Error Error Error Error Error Error Error Error Error
RepeatMasker 12696.500/71.808 1499.996 7.228 6.133 5.616 0.00% 92.63% 7.37% 100.0% NA 80.01%

Mouse LongRepMarker 2979.584/42.868 339.188 16.526 7.112 6.061 0.00% 24.49% 75.51% 100.0% 40.27% 68.36%
RepeatScout Error Error Error Error Error Error Error Error Error Error Error
RepeatMasker 11734.183/65.234 78.144 6.409 6.092 5.391 0.01% 82.61% 17.39% 99.99% NA 68.18%

Leafcutter Ant LongRepMarker 9.954/18.800 17.329 12.961 12.961 9.639 0.00% 0.00% 100.0% 100.0% 4.48% 12.89%
RepeatScout 49.866/6.068 5.740 5.695 5.058 5.058 0.00% 0.00% 100.0% 100.0% 3.63% 11.85%

Gallus LongRepMarker 73.538/32.167 24.886 8.040 6.434 5.583 0.00% 0.26% 99.74% 100.0% 12.50% NA
RepeatScout Error Error Error Error Error Error Error Error Error Error NA

D.melanogaster LongRepMarker 36.166/24.021 41.224 9.225 9.115 9.092 0.00% 0.20% 99.80% 100.0% 13.83% 23.80%
RepeatScout 31.933/3.086 20.015 9.511 6.423 5.377 0.00% 0.00% 100.0% 100.0% 10.55% 14.40%

Glycine max LongRepMarker 248.059/36.567 34.756 20.023 17.264 15.974 0.00% 0.46% 99.54% 100.0% 34.16% NA
RepeatScout 214.183/22.990 16.383 8.267 6.313 5.310 0.00% 0.00% 100.0% 100.0% 33.40% NA

The left sub-table shows the size statistics of detection results of each tool on various datasets, and the main evaluation indicators are Max(The longest
contig), N50, N75, and N90. The middle sub-table shows the alignment ratio statistics of the detection results of LongRepMarker on various datasets, and

the main evaluation indicators are ’0 time (The proportion of fragments in detection results that can not be aligned to the reference genome)’, ’1 time (The
proportion of fragments in detection results that can be aligned to the reference genome only one location)’, ’>1 times (The proportion of fragments in
detection results that can be aligned to the reference genome many locations)’ and ’Mapping rate(%) (The overall proportion of fragments in detection

results that can be aligned to the reference genome)’. The right sub-table shows the proportion of repetitive fragments in the reference genome or repbase
library that can be covered by the detection results. ’Time(min)/Peak Mem(GB)’ represents the run time and peak memory consumption.

Supplementary Table S19. The proportion and detailed classification of elements in the RepBase
library of Human is covered by the detection results of LongRepMarker, RepeatScout, and Repeat-
Modeler2.

LongRepMarker RepeatScout RepeatModeler2
sequence: 1512
total length: 1647075bp
GC level: 45.30%
bases masked: 1213841 bp (82.45%))

sequence: 1512
total length: 1647075bp
GC level: 45.30%
bases masked: 1213841 bp (73.70%))

sequence: 1512
total length: 1647075bp
GC level: 45.30%
bases masked: 1213841 bp (63.33%))

Repeat Types
Number of
elements

Length
occupied

Percentage of
sequence

Number of
elements

Length
occupied

Percentage of
sequence

Number of
elements

Length
occupied

Percentage of
sequence

SINEs: 709 255186 bp 15.49% 690 189225 bp 11.49% 87 26863 bp 1.63%
–ALUs: 690 251356 bp 15.26% 676 188001 bp 11.41% 74 25030 bp 1.52%
–MIRs: 17 3552 bp 0.22% 9 613 bp 0.04% 10 1566 bp 0.10%
LINEs: 1376 690975 bp 41.95% 624 298720 bp 18.14% 275 254509 bp 15.45%
–LINE1: 1337 682454 bp 41.43% 608 295084 bp 17.92% 244 242822 bp 14.74%
–LINE2: 11 1455 bp 0.09% 9 2517 bp 0.15% 9 5981 bp 0.36%
–L3/CR1: 5 708 bp 0.04% 4 805 bp 0.05% 18 4208 bp 0.26%
LTR elements: 566 327086 bp 19.86% 903 571647 bp 34.71% 1011 612530 bp 37.19%
–ERVL 98 39268 bp 2.38% 152 87126 bp 5.29% 188 119764 bp 7.27%
–ERVL-MaLRs 32 8118 bp 0.49% 47 13970 bp 0.85% 47 19783 bp 1.20%
–ERV classI 370 220447 bp 13.38% 634 388908 bp 23.61% 709 402655 bp 24.45%
–ERV classII 54 57466 bp 3.49% 56 79131 bp 4.80% 65 69756 bp 4.24%
DNA elements: 110 25838 bp 1.57% 223 64465 bp 3.91% 344 106865 bp 6.49%
–hAT-Charlie: 41 8781 bp 0.53% 48 11006 bp 0.67% 102 28766 bp 1.75%
–TcMar-Tigger: 35 11048 bp 0.67% 84 34543 bp 2.10% 107 36801 bp 2.23%
Unclassified: 185 57213 bp 3.47% 141 54603 bp 3.32% 8 2266 bp 0.14%
Total interspersed repeats: 1356298 bp 82.35% 1178660 bp 71.56% 1003033 bp 60.90%
Small RNA: 14 1276 bp 0.08% 51 11176 bp 0.68% 6 742 bp 0.05%
Satellites: 24 10205 bp 0.62% 31 12727 bp 0.77% 14 3414 bp 0.21%
Simple repeats: 216 31821 bp 1.93% 255 34087 bp 2.07% 279 34727 bp 2.11%
Low complexity: 11 483 bp 0.03% 18 851 bp 0.05% 27 1228 bp 0.07%

′sequence′ (the number of fragments contained in the Human RepBase library). ′Base Masked (%)′ (the ratio of the bases in RepBase that can be covered

by the detected fragments). ′GC(%)′ (the GC content). ′Length occupied′. (the length of the bases of the corresponding repetitive family in RepBase that
can be covered by the detected fragments).
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Supplementary Table S20. The proportion and detailed classification of elements in the RepBase
library of Mouse is covered by the detection results of LongRepMarker, RepeatScout, and Repeat-
Modeler2.

LongRepMarker RepeatScout RepeatModeler2
sequence: 1561
total length: 1680566bp
GC level: 44.70%
bases masked: 1044496 bp (62.15%))

sequence: 1561
total length: 1680566bp
GC level: 44.70%
bases masked: 987478 bp (58.76%))

sequence: 1561
total length: 1680566bp
GC level: 44.70%
bases masked: 907532 bp (54.00%))

Repeat Types
Number of
elements

Length
occupied

Percentage of
sequence

Number of
elements

Length
occupied

Percentage of
sequence

Number of
elements

Length
occupied

Percentage of
sequence

SINEs: 325 62219 bp 3.70% 292 60826 bp 3.62% 77 10662 bp 0.63%
–ALUs: 272 52570 bp 3.13% 218 50691 bp 3.02% 44 6817 bp 0.41%
–MIRs: 8 1464 bp 0.09% 5 439 bp 0.03% 10 1220 bp 0.07%
LINEs: 822 581349 bp 34.59% 477 417481 bp 24.84% 276 357395 bp 21.27%
–LINE1: 820 579118 bp 34.46% 472 416637 bp 24.79% 275 357213 bp 21.26%
–LINE2: 1 94 bp 0.01% 4 205 bp 0.01% 1 182 bp 0.01%
–L3/CR1: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
LTR elements: 493 343322 bp 20.43% 659 458817 bp 27.30% 848 483400 bp 28.76%
–ERVL 85 56252 bp 3.35% 83 54386 bp 3.24% 76 61939 bp 3.69%
–ERVL-MaLRs 57 10909 bp 0.65% 71 16563 bp 0.99% 59 16407 bp 0.98%
–ERV classI 78 65804 bp 3.92% 117 86999 bp 5.18% 135 82306 bp 4.90%
–ERV classII 265 207985 bp 12.38% 383 291835 bp 17.37% 575 31922 bp 18.99%
DNA elements: 57 7136 bp 0.42% 33 4009 bp 0.24% 36 9446 bp 0.56%
–hAT-Charlie: 32 3880 bp 0.23% 25 3117 bp 0.19% 24 5297 bp 0.32%
–TcMar-Tigger: 9 1410 bp 0.08% 1 107 bp 0.01% 9 3608 bp 0.21%
Unclassified: 53 20086 bp 1.20% 33 9440 bp 0.56% 18 6587 bp 0.39%
Total interspersed repeats: 1014112 bp 60.34% 950573 bp 56.56% 867490 bp 51.62%
Small RNA: 29 3693 bp 0.22% 55 4815 bp 0.29% 2 323 bp 0.02%
Satellites: 8 4208 bp 0.25% 9 4033 bp 0.24% 4 544 bp 0.03%
Simple repeats: 314 36351 bp 2.16% 327 36959 bp 2.20% 333 37141 bp 2.21%
Low complexity: 35 1618 bp 0.10% 40 1873 bp 0.11% 45 2227 bp 0.13%

′sequence′ (the number of fragments contained in the Mouse RepBase library). ′Base Masked (%)′ (the ratio of the bases in RepBase that can be covered

by the detected fragments). ′GC(%)′ (the GC content). ′Length occupied′. (the length of the bases of the corresponding repetitive family in RepBase that
can be covered by the detected fragments).

Supplementary Table S21. The proportion and detailed classification of elements in the RepBase
library of Drosophila is covered by the detection results of LongRepMarker, RepeatScout, and Re-
peatModeler2.

LongRepMarker RepeatScout RepeatModeler2
sequence: 2489
total length: 7220516bp
GC level: 42.77%
bases masked: 3746452 bp (51.89%))

sequence: 2489
total length: 7220516bp
GC level: 42.77%
bases masked: 3491131 bp (48.35%))

sequence: 2489
total length: 7220516bp
GC level: 42.77%
bases masked: 3336440 bp (46.21%))

Repeat Types
Number of
elements

Length
occupied

Percentage of
sequence

Number of
elements

Length
occupied

Percentage of
sequence

Number of
elements

Length
occupied

Percentage of
sequence

SINEs: 1 73 bp 0.00% 1 74 bp 0.00% 0 0 bp 0.00%
–ALUs: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
–MIRs: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
LINEs: 1317 1043230 bp 14.45% 1187 949761 bp 13.15% 1152 955570 bp 13.23%
–LINE1: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
–LINE2: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
–L3/CR1: 202 143230 bp 1.98% 147 106999 bp 1.48% 108 104755 bp 1.45%
LTR elements: 2515 2355715 bp 32.63% 2631 2194498 bp 30.39% 2254 2065761 bp 28.61%
–ERVL 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
–ERVL-MaLRs 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
–ERV classI 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
–ERV classII 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
DNA elements: 421 193452 bp 2.68% 524 177269 bp 2.46% 409 170180 bp 2.36%
–hAT-Charlie: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
–TcMar-Tigger: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
Unclassified: 166 53666 bp 0.74% 179 59066 bp 0.82% 139 32370 bp 0.45%
Total interspersed repeats: 3646136 bp 50.50% 3380668 bp 46.82% 3223881 bp 44.65%
Small RNA: 29 13271 bp 0.18% 27 13792 bp 0.19% 15 6003 bp 0.08%
Satellites: 17 6719 bp 0.09% 15 6065 bp 0.08% 4 544 bp 0.03%
Simple repeats: 1108 74336 bp 1.03% 1172 76644 bp 1.06% 1224 80026 bp 1.11%
Low complexity: 291 15714 bp 0.22% 295 16084 bp 0.22% 318 17088 bp 0.24%

′sequence′ (the number of fragments contained in the Drosophila RepBase library). ′Base Masked (%)′ (the ratio of the bases in RepBase that can be

covered by the detected fragments). ′GC(%)′ (the GC content). ′Length occupied′. (the length of the bases of the corresponding repetitive family in
RepBase that can be covered by the detected fragments).

Supplementary Table S22. The proportion and detailed classification of elements in the RepBase
library of Soybean is covered by the detection results of LongRepMarker, RepeatScout, and Repeat-
Modeler2.

LongRepMarker RepeatScout RepeatModeler2
sequence: 758
total length: 1646292bp
GC level: 42.57%
bases masked: 1536173 bp (93.31%))

sequence: 758
total length: 1646292bp
GC level: 42.57%
bases masked: 1535709 bp (93.28%))

sequence: 758
total length: 1646292bp
GC level: 42.57%
bases masked: 1375693 bp (83.56%))

Repeat Types
Number of
elements

Length
occupied

Percentage of
sequence

Number of
elements

Length
occupied

Percentage of
sequence

Number of
elements

Length
occupied

Percentage of
sequence

SINEs: 1 18 bp 0.00% 0 0 bp 0.00% 2 145 bp 0.01%
–ALUs: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
–MIRs: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
LINEs: 45 80754 bp 4.91% 52 85283 bp 5.18% 67 72838 bp 4.42%
–LINE1: 44 77578 bp 4.71% 50 81968 bp 4.98% 65 69502 bp 4.22%
–LINE2: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
–L3/CR1: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
LTR elements: 881 1238562 bp 75.23% 1030 1238480 bp 75.23% 815 1114450 bp 67.69%
–ERVL 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
–ERVL-MaLRs 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
–ERV classI 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
–ERV classII 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
DNA elements: 130 154184 bp 9.37% 145 146753 bp 8.91% 139 123780 bp 7.52%
–hAT-Charlie: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
–TcMar-Tigger: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
Unclassified: 28 25065 bp 1.52% 34 31451 bp 1.91% 20 23872 bp 1.45%
Total interspersed repeats: 1498583 bp 91.03% 1501967 bp 91.23% 1335085 bp 81.10%
Small RNA: 22 6625 bp 0.40% 26 6988 bp 0.42% 2 5216 bp 0.32%
Satellites: 0 0 bp 0.00% 0 0 bp 0.00% 3 301 bp 0.02%
Simple repeats: 200 31493 bp 1.91% 215 32310 bp 1.96% 255 33830 bp 2.05%
Low complexity: 9 1018 bp 0.06% 11 824 bp 0.05% 21 1344 bp 0.08%

′sequence′ (the number of fragments contained in the Soybean RepBase library). ′Base Masked (%)′ (the ratio of the bases in RepBase that can be covered

by the detected fragments). ′GC(%)′ (the GC content). ′Length occupied′. (the length of the bases of the corresponding repetitive family in RepBase that
can be covered by the detected fragments).

Supplementary Table S23. The proportion and detailed classification of elements in the RepBase
library of Gallus is covered by the detection results of LongRepMarker, RepeatScout, and Repeat-
Modeler2.

LongRepMarker RepeatScout RepeatModeler2
sequence: 512
total length: 362626bp
GC level: 49.51%
bases masked: 255267 bp (70.39%))

sequence: 512
total length: 362626bp
GC level: 49.51%
bases masked: 246110 bp (67.87%))

sequence: 512
total length: 362626bp
GC level: 49.51%
bases masked: 225717 bp (62.25%))

Repeat Types
Number of
elements

Length
occupied

Percentage of
sequence

Number of
elements

Length
occupied

Percentage of
sequence

Number of
elements

Length
occupied

Percentage of
sequence

SINEs: 9 784 bp 0.22% 15 1292 bp 0.36% 13 1935 bp 0.53%
–ALUs: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
–MIRs: 0 0 bp 0.00% 0 0 bp 0.00% 5 839 bp 0.23%
LINEs: 163 119330 bp 32.91% 94 100795 bp 27.80% 84 88718 bp 24.47%
–LINE1: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
–LINE2: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
–L3/CR1: 163 119330 bp 32.91% 94 100795 bp 27.80% 84 88718 bp 24.47%
LTR elements: 68 78553 bp 21.94% 107 99403 bp 27.41% 109 85021 bp 23.45%
–ERVL 40 45157 bp 12.45% 55 52791 bp 14.56% 69 54457 bp 15.02%
–ERVL-MaLRs 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
–ERV classI 7 9997 bp 2.76% 14 11837 bp 3.26% 16 14306 bp 3.95%
–ERV classII 20 23453 bp 6.47% 38 34775 bp 9.59% 24 16258 bp 4.48%
DNA elements: 18 3974 bp 1.10% 21 7645 bp 2.11% 35 11014 bp 3.04%
–hAT-Charlie: 2 346 bp 0.10% 7 2249 bp 0.62% 5 4653 bp 1.28%
–TcMar-Tigger: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
Unclassified: 8 8430 bp 2.32% 2 397 bp 0.11% 5 652 bp 0.18%
Total interspersed repeats: 212071 bp 58.48% 209532 bp 57.78% 187340 bp 51.66%
Small RNA: 39 6135 bp 1.69% 46 4770 bp 1.32% 2 380 bp 0.10%
Satellites: 5 5709 bp 1.57% 3 583 bp 0.16% 7 6199 bp 1.71%
Simple repeats: 197 31810 bp 8.77% 198 31808 bp 8.77% 200 32031 bp 8.83%
Low complexity: 3 147 bp 0.04% 3 147 bp 0.04% 3 147 bp 0.04%

′sequence′ (the number of fragments contained in the Gallus RepBase library). ′Base Masked (%)′ (the ratio of the bases in RepBase that can be covered

by the detected fragments). ′GC(%)′ (the GC content). ′Length occupied′. (the length of the bases of the corresponding repetitive family in RepBase that
can be covered by the detected fragments).
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Supplementary Table S24. The proportion and detailed classification of elements in the RepBase
library of Ant is covered by the detection results of LongRepMarker, RepeatScout, and RepeatMod-
eler2.

LongRepMarker RepeatScout RepeatModeler2
sequence: 254
total length: 214457bp
GC level: 45.07%
bases masked: 168915 bp (78.76%))

sequence: 254
total length: 214457bp
GC level: 45.07%
bases masked: 173383 bp (80.85%))

sequence: 254
total length: 214457bp
GC level: 45.07%
bases masked: 169070 bp (78.84%))

Repeat Types
Number of
elements

Length
occupied

Percentage of
sequence

Number of
elements

Length
occupied

Percentage of
sequence

Number of
elements

Length
occupied

Percentage of
sequence

SINEs: 1 69 bp 0.03% 0 0 bp 0.00% 0 0 bp 0.00%
–ALUs: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
–MIRs: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
LINEs: 19 8223 bp 3.83% 29 12137 bp 5.66% 16 13379 bp 6.24%
–LINE1: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
–LINE2: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
–L3/CR1: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
LTR elements: 71 48344 bp 22.54% 43 49839 bp 23.24% 38 48684 bp 22.70%
–ERVL 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
–ERVL-MaLRs 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
–ERV classI 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
–ERV classII 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
DNA elements: 95 71724 bp 33.44% 111 72618 bp 33.86% 116 69591 bp 32.45%
–hAT-Charlie: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
–TcMar-Tigger: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
Unclassified: 39 9733 bp 4.54% 34 7607 bp 3.55% 13 7330 bp 3.42%
Total interspersed repeats: 138093 bp 64.39% 142201 bp 66.31% 138984 bp 64.81%
Small RNA: 6 566 bp 0.26% 7 746 bp 0.35% 0 0 bp 0.00%
Satellites: 0 0 bp 0.00% 0 0 bp 0.00% 0 0 bp 0.00%
Simple repeats: 184 30485 bp 14.21% 184 30449 bp 14.20% 181 30285 bp 14.12%
Low complexity: 2 110 bp 0.05% 2 110 bp 0.05% 2 110 bp 0.05%

′sequence′ (the number of fragments contained in the Ant RepBase library). ′Base Masked (%)′ (the ratio of the bases in RepBase that can be covered by

the detected fragments). ′GC(%)′ (the GC content). ′Length occupied′. (the length of the bases of the corresponding repetitive family in RepBase that can
be covered by the detected fragments).

Supplementary Table S25. The proportion and detailed classification of elements in the RepBase
library of Human is covered by the detection results of de novo detection methods LongRepMarker,
RepARK, and REPdenovo based on the NGS sequencing reads of the chromosome #14 of the human
genome.

LongRepMarker RepARK REPdenovo
sequence: 1512
total length: 1647075bp
bases masked: 452080 bp ( 27.45%)

sequence: 1512
total length: 1647075bp
bases masked: 229636 bp ( 13.94%)

sequence: 1512
total length: 1647075bp
bases masked: 183245 bp ( 11.13%)

Repeat Types
Num of
elements

Length
occupied

Percentage
of sequence

Num of
elements

Length
occupied

Percentage
of sequence

Num of
elements

Length
occupied

Percentage
of sequence

DNA elements: 81 13426bp 0.82% 32 2828bp 0.17% 0 0bp 0.00%
–TcMar-Tigger: 40 8134bp 0.49% 23 2045bp 0.12% 0 0bp 0.00%
–hAT-Charlie: 23 3836bp 0.23% 5 461bp 0.03% 0 0bp 0.00%
LINEs: 345 191120bp 11.60% 544 118330bp 7.18% 126 116694bp 7.08%
–L3/CR1: 6 243bp 0.01% 1 75bp 0.00% 0 0bp 0.00%
–LINE1: 309 178143bp 10.82% 540 117752bp 7.15% 126 116694bp 7.08%
–LINE2: 10 2268bp 0.14% 3 503bp 0.03% 0 0bp 0.00%
LTR elements: 539 155596bp 9.45% 260 35630bp 2.16% 15 1427bp 0.09%
–ERVL: 119 36766bp 2.23% 30 3894bp 0.24% 0 0bp 0.00%
–ERVL-MaLRs: 70 12274bp 0.75% 49 8109bp 0.49% 15 1427bp 0.09%
–ERV-classI: 310 91588bp 5.56% 144 19917bp 1.21% 0 0bp 0.00%
–ERV-classII: 28 12635bp 0.77% 37 3710bp 0.23% 0 0bp 0.00%
Low complexity: 60 3018bp 0.18% 85 4170bp 0.25% 82 4030bp 0.24%
SINEs: 183 39215bp 2.38% 74 19956bp 1.21% 71 18201bp 1.11%
–ALUs: 173 38321bp 2.33% 70 19316bp 1.17% 71 18201bp 1.11%
–MIRs: 10 894bp 0.05% 4 640bp 0.04% 0 0bp 0.00%
Satellites: 14 3334bp 0.20% 19 1908bp 0.12% 6 524bp 0.03%
Simple repeats: 393 39165bp 2.38% 408 40077bp 2.43% 419 40550bp 2.46%
Small RNA: 0 0bp 0.00% 2 224bp 0.01% 0 0bp 0.00%
Total interspersed repeats: 407126bp 24.72% 183285bp 11.13% 138141bp 8.39%
Unclassified: 21 7769bp 0.47% 51 6541bp 0.40% 10 1819bp 0.11%

′sequence′ (the number of fragments contained in the Human RepBase library). ′Base Masked (%)′ (the ratio of the bases in RepBase that can be covered

by the detected fragments). ′GC(%)′ (the GC content). ′Length occupied′. (the length of the bases of the corresponding repetitive family in RepBase that
can be covered by the detected fragments).

Supplementary Table S26. The proportion and detailed classification of elements in the RepBase
library of Human is covered by the detection results of de novo detection methods LongRepMarker,
RepARK, and REPdenovo based on the NGS sequencing reads of the HG003 NA24149 father dataset.

LongRepMarker RepARK REPdenovo
sequence: 1512
total length: 1647075bp
bases masked: 1210784 bp ( 73.51%)

sequence: 1512
total length: 1647075bp
bases masked: 870210 bp ( 52.83%)

sequence: 1512
total length: 1647075bp
bases masked: 199536 bp ( 12.11%)

Repeat Types
Num of
elements

Length
occupied

Percentage
of sequence

Num of
elements

Length
occupied

Percentage
of sequence

Num of
elements

Length
occupied

Percentage
of sequence

DNA elements: 448 121106bp 7.35% 378 60164bp 3.65% 0 0bp 0.00%
–TcMar-Tigger: 126 37522bp 2.28% 129 23339bp 1.42% 0 0bp 0.00%
–hAT-Charlie: 143 39145bp 2.38% 121 17883bp 1.09% 0 0bp 0.00%
LINEs: 653 291629bp 17.71% 504 213163bp 12.94% 129 123854bp 7.52%
–L3/CR1: 26 4388bp 0.27% 5 1076bp 0.07% 0 0bp 0.00%
–LINE1: 586 278984bp 16.94% 481 209312bp 12.71% 129 123854bp 7.52%
–LINE2: 21 4123bp 0.25% 12 1992bp 0.12% 0 0bp 0.00%
LTR elements: 1082 620894bp 37.70% 2467 483315bp 29.34% 14 1927bp 0.12%
–ERVL: 219 92790bp 5.63% 336 68843bp 4.18% 0 0bp 0.00%
–ERVL-MaLRs: 102 23018bp 1.40% 93 26417bp 1.60% 14 1927bp 0.12%
–ERV-classI: 649 418886bp 25.43% 1713 320240bp 19.44% 0 0bp 0.00%
–ERV-classII: 63 76152bp 4.62% 309 65213bp 3.96% 0 0bp 0.00%
Low complexity: 16 652bp 0.04% 40 2039bp 0.12% 81 3926bp 0.24%
SINEs: 503 112306bp 6.82% 198 37531bp 2.28% 72 19991bp 1.21%
–ALUs: 469 108143bp 6.57% 162 34020bp 2.07% 72 19991bp 1.21%
–MIRs: 25 3428bp 0.21% 17 1893bp 0.11% 0 0bp 0.00%
Satellites: 39 9924bp 0.60% 102 16427bp 1.00% 11 1683bp 0.10%
Simple repeats: 234 32433bp 1.97% 318 36600bp 2.22% 414 40423bp 2.45%
Small RNA: 23 13124bp 0.80% 44 12839bp 0.78% 0 0bp 0.00%
Total interspersed repeats: 1165100bp 70.74% 806029bp 48.94% 153504bp 9.32%
Unclassified: 80 19165bp 1.16% 109 11856bp 0.72% 34 7732bp 0.47%

′sequence′ (the number of fragments contained in the Human RepBase library). ′Base Masked (%)′ (the ratio of the bases in RepBase that can be covered

by the detected fragments). ′GC(%)′ (the GC content). ′Length occupied′. (the length of the bases of the corresponding repetitive family in RepBase that
can be covered by the detected fragments).

Supplementary Table S27. The proportion and detailed classification of elements in the RepBase
library of Human is covered by the detection results of de novo detection methods LongRepMarker,
RepARK, and REPdenovo based on the NGS sequencing reads of the Mouse genome.

LongRepMarker RepARK REPdenovo
sequence: 1561
total length: 1680566bp
bases masked: 1167584 bp ( 69.48%)

sequence: 1561
total length: 1680566bp
bases masked: 867535 bp ( 51.62%)

sequence: 1561
total length: 1680566bp
bases masked: 381565 bp ( 22.70%)

Repeat Types
Num of
elements

Length
occupied

Percentage
of sequence

Num of
elements

Length
occupied

Percentage
of sequence

Num of
elements

Length
occupied

Percentage
of sequence

DNA elements: 395 69181bp 4.12% 40 8027bp 0.48% 0 0bp 0.00%
–TcMar-Tigger: 75 13659bp 0.81% 2 222bp 0.01% 0 0bp 0.00%
–hAT-Charlie: 145 28233bp 1.68% 27 6071bp 0.36% 0 0bp 0.00%
LINEs: 646 454590bp 27.05% 371 334128bp 19.88% 241 299948bp 17.85%
–L3/CR1: 21 2981bp 0.18% 0 0bp 0.00% 0 0bp 0.00%
–LINE1: 591 447010bp 26.60% 367 333804bp 19.86% 241 299948bp 17.85%
–LINE2: 22 3006bp 0.18% 4 324bp 0.02% 0 0bp 0.00%
LTR elements: 981 532020bp 31.66% 1795 450620bp 26.81% 118 31176bp 1.86%
–ERVL: 183 73304bp 4.36% 265 35675bp 2.12% 32 11265bp 0.67%
–ERVL-MaLRs: 156 31941bp 1.90% 102 23074bp 1.37% 43 10176bp 0.61%
–ERV-classI: 209 107341bp 6.39% 338 85642bp 5.10% 0 0bp 0.00%
–ERV-classII: 399 313254bp 18.64% 1086 305486bp 18.18% 43 9735bp 0.58%
Low complex-
ity:

26 1069bp 0.06% 51 2566bp 0.15% 97 5116bp 0.30%

SINEs: 273 46075bp 2.74% 110 13784bp 0.82% 29 2553bp 0.15%
–ALUs: 164 31988bp 1.90% 56 7858bp 0.47% 24 1826bp 0.11%
–MIRs: 5 943bp 0.06% 4 589bp 0.04% 0 0bp 0.00%
Satellites: 10 3642bp 0.22% 22 4181bp 0.25% 2 734bp 0.04%
Simple repeats: 286 34991bp 2.08% 354 37830bp 2.25% 426 42038bp 2.50%
Small RNA: 41 14171bp 0.84% 46 12537bp 0.75% 0 0bp 0.00%
Total interspersed repeats: 1126788bp 67.05% 815147bp 48.50% 333677bp 19.86%
Unclassified: 172 24922bp 1.48% 63 8588bp 0.51% 0 0bp 0.00%

′sequence′ (the number of fragments contained in the Mouse RepBase library). ′Base Masked (%)′ (the ratio of the bases in RepBase that can be covered

by the detected fragments). ′GC(%)′ (the GC content). ′Length occupied′. (the length of the bases of the corresponding repetitive family in RepBase that
can be covered by the detected fragments).
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Supplementary Table S28. The proportion and detailed classification of elements in the RepBase
library of Human is covered by the detection results of de novo detection methods LongRepMarker,
RepARK, and REPdenovo based on the NGS sequencing reads of the Ant genome.

LongRepMarker RepARK REPdenovo
sequence: 254
total length: 214457bp
bases masked: 181755 bp ( 84.75%)

sequence: 254
total length: 214457bp
bases masked: 142209 bp ( 66.31%)

sequence: 254
total length: 214457bp
bases masked: 46235 bp ( 21.56%)

Repeat Types
Num of
elements

Length
occupied

Percentage
of sequence

Num of
elements

Length
occupied

Percentage
of sequence

Num of
elements

Length
occupied

Percentage
of sequence

DNA elements: 108 73712bp 34.37% 261 62768bp 29.27% 21 14153bp 6.60%
–TcMar-Tigger: 0 0bp 0.00% 0 0bp 0.00% 0 0bp 0.00%
–hAT-Charlie: 0 0bp 0.00% 0 0bp 0.00% 0 0bp 0.00%
LINEs: 24 14161bp 6.60% 59 9312bp 4.34% 0 0bp 0.00%
–L3/CR1: 0 0bp 0.00% 0 0bp 0.00% 0 0bp 0.00%
–LINE1: 0 0bp 0.00% 0 0bp 0.00% 0 0bp 0.00%
–LINE2: 0 0bp 0.00% 0 0bp 0.00% 0 0bp 0.00%
LTR elements: 40 44578bp 20.79% 91 24272bp 11.32% 0 0bp 0.00%
–ERVL: 0 0bp 0.00% 0 0bp 0.00% 0 0bp 0.00%
–ERVL-MaLRs: 0 0bp 0.00% 0 0bp 0.00% 0 0bp 0.00%
–ERV-classI: 0 0bp 0.00% 0 0bp 0.00% 0 0bp 0.00%
–ERV-classII: 0 0bp 0.00% 0 0bp 0.00% 0 0bp 0.00%
Low complex-
ity:

1 72bp 0.03% 2 137bp 0.06% 8 351bp 0.16%

SINEs: 0 0bp 0.00% 1 45bp 0.02% 0 0bp 0.00%
–ALUs: 0 0bp 0.00% 0 0bp 0.00% 0 0bp 0.00%
–MIRs: 0 0bp 0.00% 0 0bp 0.00% 0 0bp 0.00%
Satellites: 0 0bp 0.00% 0 0bp 0.00% 0 0bp 0.00%
Simple repeats: 185 30802bp 14.36% 194 30860bp 14.39% 208 31731bp 14.80%
Small RNA: 15 13646bp 6.36% 15 13826bp 6.45% 0 0bp 0.00%
Total interspersed repeats: 138052bp 64.37% 97695bp 45.55% 14153bp 6.60%
Unclassified: 11 5601bp 2.61% 17 1298bp 0.61% 0 0bp 0.00%

′sequence′ (the number of fragments contained in the Ant RepBase library). ′Base Masked (%)′ (the ratio of the bases in RepBase that can be covered by

the detected fragments). ′GC(%)′ (the GC content). ′Length occupied′. (the length of the bases of the corresponding repetitive family in RepBase that can
be covered by the detected fragments).

Supplementary Table S29. The proportion and detailed classification of elements in the RepBase
library of Human is covered by the detection results of de novo detection methods LongRepMarker,
RepARK, and REPdenovo based on the NGS sequencing reads of the Drosophila genome.

LongRepMarker RepARK REPdenovo
sequence: 2489
total length: 7220516bp
bases masked: 3051295 bp ( 42.26%)

sequence: 2489
total length: 7220516bp
bases masked: 2820283 bp ( 39.06%)

sequence: 2489
total length: 7220516bp
bases masked: 199042 bp ( 2.76%)

Repeat Types
Num of
elements

Length
occupied

Percentage
of sequence

Num of
elements

Length
occupied

Percentage
of sequence

Num of
elements

Length
occupied

Percentage
of sequence

DNA elements: 243 84091bp 1.16% 419 67480bp 0.93% 12 1758bp 0.02%
–TcMar-Tigger: 0 0bp 0.00% 0 0bp 0.00% 0 0bp 0.00%
–hAT-Charlie: 0 0bp 0.00% 0 0bp 0.00% 0 0bp 0.00%
LINEs: 1203 893842bp 12.38% 2304 790389bp 10.95% 189 74869bp 1.04%
–L3/CR1: 178 90613bp 1.25% 345 77798bp 1.08% 0 0bp 0.00%
–LINE1: 0 0bp 0.00% 0 0bp 0.00% 0 0bp 0.00%
–LINE2: 0 0bp 0.00% 0 0bp 0.00% 0 0bp 0.00%
LTR elements: 2328 1948634bp 26.99% 3444 1834947bp 25.41% 2 317bp 0.00%
–ERVL: 0 0bp 0.00% 0 0bp 0.00% 0 0bp 0.00%
–ERVL-MaLRs: 0 0bp 0.00% 0 0bp 0.00% 0 0bp 0.00%
–ERV-classI: 0 0bp 0.00% 0 0bp 0.00% 0 0bp 0.00%
–ERV-classII: 0 0bp 0.00% 0 0bp 0.00% 0 0bp 0.00%
Low complex-
ity:

333 18139bp 0.25% 350 19015bp 0.26% 456 24145bp 0.33%

SINEs: 1 135bp 0.00% 0 0bp 0.00% 0 0bp 0.00%
–ALUs: 0 0bp 0.00% 0 0bp 0.00% 0 0bp 0.00%
–MIRs: 0 0bp 0.00% 0 0bp 0.00% 0 0bp 0.00%
Satellites: 20 4926bp 0.07% 36 4122bp 0.06% 6 1791bp 0.02%
Simple repeats: 1253 81143bp 1.12% 1288 82461bp 1.14% 1494 92425bp 1.28%
Small RNA: 15 13770bp 0.19% 20 13760bp 0.19% 5 593bp 0.01%
Total interspersed repeats: 2935431bp 40.65% 2702177bp 37.42% 80127bp 1.11%
Unclassified: 63 8729bp 0.12% 70 9361bp 0.13% 7 3183bp 0.04%

′sequence′ (the number of fragments contained in the Drosophila RepBase library). ′Base Masked (%)′ (the ratio of the bases in RepBase that can be

covered by the detected fragments). ′GC(%)′ (the GC content). ′Length occupied′. (the length of the bases of the corresponding repetitive family in
RepBase that can be covered by the detected fragments).

Supplementary Table S30. Detection results of de novo detection methods LongRepMarker and Rep-
Long based on the SMS long reads of the Human and D.melanogaster genomes.

Quast (length ≥ 5000bp) Minimap2 RepeatMasker
Species Tool Time(min)/Peak

Mem(GB)
Max (kb) N50

(kb)
N75
(kb)

N90
(kb)

0 time 1 time >1 time Mapping
Rate (%)

Reference
(%)

Repbase
(%)

Human wgs LongRepMarker 97.155/20.613 28.880 10.919 8.232 6.342 0.03% 76.60% 23.37% 99.97% NA 82.20%
RepLong 1421.909/22.568 14.500 13.000 9.700 7.200 0.00% 91.11% 8.89% 100.0% NA 17.51%

D.melanogaster LongRepMarker 79.264/42.868 31.242 13.703 9.488 6.972 0.06% 69.88% 30.06% 99.94% 40.74% 44.32%
RepLong 12696.500/71.808 14.600 8.000 5.600 4.300 0.00% 11.21% 88.79% 100.0% 21.31% 16.66%

The left sub-table shows the size statistics of detection results of each tool on various datasets, and the main evaluation indicators are Max(The longest
contig), N50, N75, and N90. The middle sub-table shows the alignment ratio statistics of the detection results of LongRepMarker on various datasets, and

the main evaluation indicators are ′0 time (The proportion of fragments in detection results that can not be aligned to the reference genome)′, ′1 time (The

proportion of fragments in detection results that can be aligned to the reference genome only one location)′, ′ >1 time (The proportion of fragments in

detection results that can be aligned to the reference genome many locations)′ and ′Mapping rate(%) (The overall proportion of fragments in detection

results that can be aligned to the reference genome)′. The right sub-table shows the proportion of repetitive fragments in reference genome or repbase

library that can be covered by the detection results. ′Time(min)/Peak Mem(GB)′ represents the run time and peak memory consumption.

Supplementary Table S31. Detection results of de novo detection methods LongRepMarker and Rep-
Long based on the SMS long reads of the Human and D.melanogaster genomes covering the masked
repeats on the corresponding reference genomes.

Marking on reference genome Repeat Classification
Tools Species Num Total length (kb) GC level (%) Base Masked

(%)
Repeat type Num Length Occupied Percentage of se-

quence
LongRepMarker Human wgs 455 3209286105.105 40.99% NA% Interspersed NA NA kb NA%

455 3209286105.105 40.99% NA% Simple NA NA kb NA%
D.melanogaster 15 168736.537 41.74% 40.74% Interspersed 99811 67240.060kb 39.85%

15 168736.537 41.74% 40.74% Simple 83075 4030.411kb 2.39%

RepLong Human wgs 455 3209286105.105 40.99% NA % Interspersed NA NA kb NA %
455 3209286105.105 40.99% NA % Simple NA NA kb NA %

D.melanogaster 15 168736.537 41.74% 21.31% Interspersed 331169 59908.910kb 20.24%
15 168736.537 41.74% 21.31% Simple 191168 8911.109kb 3.01%

The left sub-table shows the statistics of detection results covering the corresponding reference genome, and the right sub-table shows the statistics of
repeat classification. ′Num′ indicates the number of fragments in detection results. ′Base Masked (%)′ indicates the coverage ratio of the reference genome.

′GC(%)′ indicates the GC content.

Supplementary Table S32. Detection results of de novo detection methods LongRepMarker and Rep-
Long based on the SMS long reads of the Human and D.melanogaster genomes covering the elements
in the corresponding RepBase libraries.

Marking on repbase libray Repeat Classification
Tools Species Num Total length (kb) GC level (%) Base Masked

(%)
Repeat type Num Length Occupied Percentage of se-

quence
LongRepMarker Human wgs 1381 1438.717kb 44.94% 82.20% Interspersed 3191 1307.883kb 90.91%

1381 1438.717kb 44.94% 82.20% Simple 134 7.593kb 0.53%
D.melanogaster 2383 7197.137kb 42.75% 44.32% Interspersed 7142 3558.226kb 49.44%

2383 7197.137kb 42.75% 44.32% Simple 1424 68.316kb 0.95%

RepLong Human wgs 1381 1438.717kb 44.94% 17.51% Interspersed 647 249.659kb 17.35%
1381 1438.717kb 44.94% 17.51% Simple 355 17.355kb 1.21%

D.melanogaster 2383 7197.137kb 42.75% 16.66% Interspersed 1165 1159.780kb 16.11%
2383 7197.137kb 42.75% 16.66% Simple 1799 87.913kb 1.22%

The left sub-table shows the statistics of detection results covering the corresponding reference genome, and the right sub-table shows the statistics of
repeat classification. ′Num′ indicates the number of fragments in detection results. ′Base Masked (%)′ indicates the coverage ratio of reference genome.

′GC(%)′ indicates the GC content.
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Supplementary Note 7.3 Performance analysis of automated repeat sequence classification
and masking methods

The performance and composition analysis of the four most important databases (RepBase, Dfam, Re-
peatDB, REXdb, and msRepDB) in the field of repetitive sequences identification is performed in this study,
and the detailed evaluation results are shown in Supplementary Tables S33 to S41. Furthermore, the
performance of the four most famous classification methods (TERL, PASTEC, TEclass, TEsorter, Repeat-
Clssifier, LTR Retriver, LTR Classifier, and DeepTE) are compared in Supplementary Tables S42 to
S46.

Supplementary Note 7.3.1 Datebase used in repeat sequence automated classification and
masking An accurate and complete repeat database is essential to achieve the accurate automated clas-
sification and annotation of repeats in genomes. Three well-known repetitive sequence nucleic acid libraries
exist, namely RepBase [144], Dfam [145] and msRepDB [146]. In addition, three well-known repetitive
sequence protein libraries exist, namely RepeatsDB [147], REXdb [148] and Pfam [149]. The details of
these libraries are described as follows.

The RepBase database (https://www.girinst.org/repbase/) is one of the most famous repeat-sequence
databases and contains prototypical sequences for repetitive DNA from many eukaryotic species. Most of
RepBase’s prototypic sequences are consensus sequences of significant families and subfamilies of repeats.
The RepBase update currently contains more than 38,000 sequences of different families or subfamilies. In
addition, Repbase is used as a reference library for masking and annotating repetitive DNA for some tools,
such as RepeatMasker and Censor, and it has been widely used in genome sequencing projects worldwide.
Next, the Dfam (https://www.dfam.org/releases/Dfam_3.5/) database is an open collection of TE DNA
sequence alignments, HMMs, consensus sequences, and genome annotations. The latest version of the Dfam
library houses 285,542 TE models across 595 species, and it has been incorporated into the new version of Re-
peatMasker. Moreover, msRepDB (https://msrepdb.cbrc.kaust.edu.sa/pages/msRepDB/index.html) is
constructed based on the hybrid detection framework LongRepMarker [174]. It contains more than 84,000
species and is currently the most comprehensive cross-species repeat sequence database.

The RepeatsDB database (https://repeatsdb.bio.unipd.it/) collects protein structures of annotated
TRs. This database provides the unit position, classification, and reference to other databases. The current
version of RepeatsDB is based on an update of RepeatsDB-lite [190], a method for automatically identi-
fying repetitive units in protein structures. The Pfam (http://pfam.xfam.org/) database contains many
protein families, each of which is represented by MSAs and HMMs. The latest version of Pfam is v.35.0,
which contains 19,632 families and clans constructed by the European Bioinformatics Institute (EMBL-EBI,
https://www.ebi.ac.uk/) based on UniProt release 2021 03 (https://www.uniprot.org/), and a sequence
database called Pfamseq. The REXdb database (http://repeatexplorer.org/?page_id=918) is a refer-
ence for TE protein domains. In addition, REXdb is employed in the repeat analysis tools RepeatExplorer2
[191] and DANTE [192], which are available on the Galaxy server (https://repeatexplorer-elixir.
cerit-sc.cz/). The classification table and protein sequences are two files in the database archive. Compo-
sition and performance analysis of the five most essential databases (RepBase, Dfam, RepeatDB, REXdb,
and msRepDB) used in the field of repetitive sequences identification and classification is performed in
Supplementary Tables S33 to S41.

Supplementary Table S33. Partial comparison of the length distribution, multiple alignment ratio,
proportion of covering the reference genome and duplication ratio of elements contained in msRepDB
and Dfam databases.

Length distribution Mapping RepeatMasker Other
Species Database Num Max

(bp)
N50
(bp)

N75
(bp)

N95
(bp)

MAR
(%)

Non-
MAR
(%)

Reference (%) Duplication
ratio (%)

H.sapiens(human) msRepDB 1,628 20,016 2,954 920 492 82.58% 17.41% 47.36% 0.11%
Dfam+RepBase 1,353 9,043 2,532 786 464 80.93% 19.06% 45.62% 0.15%

Mouse msRepDB 1,792 15,041 3,958 1,145 513 88.74% 11.25% 43.26% 0.15%
Dfam+RepBase 1,407 8,959 2,210 791 437 86.28% 13.71% 40.58% 0.21%

Oryza sativa(Rice) msRepDB 3,564 13,922 3,712 1,744 810 85.17% 14.82% 50.65% 4.14%
Dfam+RepBase 3,049 20,789 3,879 1,831 892 82.81% 17.18% 50.50% 3.91%

D.melanogaster msRepDB 510 20,014 4,470 2,010 978 97.77% 2.22% 22.03% 2.41%
Dfam+RepBase 258 15,576 4,802 3,204 1,036 89.77% 10.22% 20.85% 3.36%

Glycine max msRepDB 1,245 10,856 4,579 3,498 1,408 95.72% 4.27% 41.58% 0.46%
Dfam+RepBase 596 17,080 4,688 4,180 3,207 90.45% 9.54% 36.11% 0.53%

′Num′ represents the number of fragments contained in the database. ′Max(bp)′ represents the length of the longest fragment in the database. ′N50′
represents the length of a fragment, such that all the fragments of at least the same length together cover at least 50% of the total length of all fragments
contained in the database. ′N75′ represents the length of a fragment, such that all the fragments of at least the same length together cover at least 75% of

the total length of all fragments contained in the database. ′N95′ represents the length of a fragment, such that all the fragments of at least the same
length together cover at least 95% of the total length of all fragments contained in the database. ′MAR(%) and Non-MAR(%)′ respectively represent the

ratios of multiple alignment and non-multiple alignment. ′Reference(%)′ represents the proportion of covering the reference genome. ′Duplication ratio′
represents the total number of aligned bases in the repetitive sequences divided by the total number of those in the reference. If there are too many

repetitive sequences that cover the same regions, the duplication ratio will be greatly increased. This occurs due to multiple reasons, including
overestimating repeat multiplicities and overlaps between repetitive sequences.
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Supplementary Table S34. Partial comparison of the proportion and detailed classification of detected
repeats generated based on two databases of the Human genome.
Combination of RepBase and Dfam
[ Sequences: 639; Total length: 3,272,089,205bp;
GC level: 41.04%; Bases masked: 45.62% ]

msRepDB
[ Sequences: 639; Total length: 3,272,089,205bp;
GC level: 41.04%; Bases masked: 47.36% ]

Repeat Types Number of elements Length occupied Percentage of
sequences

Number of elements Length occupied Percentage of
sequences

Retroelements: 2,800,814 1,236,215,277bp 37.78% 3,921,320 1,297,267,059bp 39.65%
+SINEs: 1,453,130 369,205,643bp 11.28% 1,599,106 321,120,861bp 9.81%
+Penelope: 75 14,277bp 0.00% 75 14,225bp 0.00%
+LINEs: 807,771 588,058,432bp 17.97% 1,671,568 702,653,923bp 21.47%
++CRE/SLACS: 0 0bp 0.00% 0 0bp 0.00%
+++L2/CR1/Rex: 193,908 56,822,264bp 1.74% 289,067 68,581,491bp 2.10%
+++R1/LOA/Jockey: 0 0bp 0.00% 0 0bp 0.00%
+++R2/R4/NeSL: 399 95,545bp 0.00% 400 95,165bp 0.00%
+++RTE/Bov-B: 9,890 2,788,967bp 0.09% 9,885 2,771,441bp 0.08%
+++L1/CIN4: 603,337 528,287,954bp 16.15% 1,371,979 631,142,544bp 19.29%
+LTR elements: 539,913 278,951,202bp 8.53% 650,646 273,492,275bp 8.36%
++BEL/Pao: 0 0bp 0.00% 0 0bp 0.00%
++Tyl/Copia: 0 0bp 0.00% 12 3,718bp 0.00%
++Gypsy/DTRS1: 14,309 3,767,626bp 0.12% 15,114 3,748,839bp 0.11%
+++Retroviral: 515,395 272,547,814bp 8.33% 625,198 267,126,378bp 8.16%
DNA transposons 425,304 102,360,429bp 3.13% 424,099 100,536,165bp 3.07%
+hobo-Activator: 280,952 57,692,527bp 1.76% 279,963 56,931,920bp 1.74%
+Tc1-IS630-Pogo: 128,851 41,753,772bp 1.28% 128,405 40,705,394bp 1.24%
+En-Spm: 0 0bp 0.00% 0 0bp 0.00%
+MuDR-IS905: 0 0bp 0.00% 0 0bp 0.00%
+PiggyBac: 2,310 554,582bp 0.02% 2,282 546,321bp 0.02%
+Tourist/Harbinger: 321 59,199bp 0.00% 320 59,104bp 0.00%
+Other: 0 0bp 0.00% 0 0bp 0.00%
Rolling circles 1614 402,976bp 0.01% 3,647 1,041,776bp 0.03%
Unclassified 122,691 24,233,010bp 0.74% 206,770 27,820,419bp 0.85%
Total interspersed repeats 1,362,808,716bp 41.65% 1,425,623,643bp 43.57%
Small RNA 12,650 1,358,026bp 0.04% 10,133 977,808bp 0.03%
Satellites 15,404 82,714,065bp 2.53% 11,997 79,154,876bp 2.42%
Simple repeats 710,220 39,030,544bp 1.19% 656,920 37,245,405bp 1.14%
Low complexity 102,465 6,353,924bp 0.19% 92,216 5,545,284bp 0.17%

∗The test results are obtained by using RepeatMasker based on the msRepDB database and the combination of Dfam and RepBase, respectively, under the
default parameter settings.

Supplementary Table S35. Partial comparison of the proportion and detailed classification of detected
repeats generated based on two databases of the Drosophila genome.
Combination of RepBase and Dfam
[ Sequences: 1,870; Total length: 143,726,002bp;
GC level: 42.01%; Bases masked: 20.85% ]

msRepDB
[ Sequences: 1,870; Total length: 143,726,002bp;
GC level: 42.01%; Bases masked: 22.03% ]

Repeat Types Number of elements Length occupied Percentage of
sequences

Number of elements Length occupied Percentage of
sequences

Retroelements: 15,330 21,048,835bp 14.65% 23,352 22,594,349bp 15.72%
+SINEs: 0 0bp 0.00% 0 0bp 0.00%
+Penelope: 0 0bp 0.00% 0 0bp 0.00%
+LINEs: 5,293 5,447,560bp 4.49% 6,438 6,580,002bp 4.58%
++CRE/SLACS: 0 0bp 0.00% 0 0bp 0.00%
+++L2/CR1/Rex: 811 844,019bp 0.59% 868 841,748bp 0.59%
+++R1/LOA/Jockey: 1014 1,562,240bp 1.09% 1,991 2,357,332bp 1.64%
+++R2/R4/NeSL: 38 39,896bp 0.03% 38 39,900bp 0.03%
+++RTE/Bov-B: 0 0bp 0.00% 0 0bp 0.00%
+++L1/CIN4: 0 0bp 0.00% 0 0bp 0.00%
+LTR elements: 10,037 14,601,275bp 10.16% 16,914 16,014,347bp 11.14%
++BEL/Pao: 2,326 3,123,105bp 2.17% 2,932 3,118,279bp 2.17%
++Tyl/Copia: 500 740,782bp 0.52% 783 733,414bp 0.51%
++Gypsy/DTRS1: 7,211 10,737,388bp 7.47% 13,111 12,139,653bp 8.45%
+++Retroviral: 0 0bp 0.00% 0 0bp 0.00%
DNA transposons 4,135 1,870,086bp 1.30% 4,534 1,868,020bp 1.30%
+hobo-Activator: 189 75,919bp 0.05% 168 76,228bp 0.05%
+Tc1-IS630-Pogo: 1,112 609,344bp 0.42% 1,126 596,800bp 0.42%
+En-Spm: 0 0bp 0.00% 0 0bp 0.00%
+MuDR-IS905: 0 0bp 0.00% 0 0bp 0.00%
+PiggyBac: 23 8,619bp 0.01% 23 8,611bp 0.01%
+Tourist/Harbinger: 0 0bp 0.00% 0 0bp 0.00%
+Other: 2,243 913,674bp 0.64% 2,454 893,743bp 0.62%
Rolling circles 4662 999,082bp 0.70% 5,225 1,022,538bp 0.71%
Unclassified 495 78,825bp 0.05% 885 211,424bp 0.15%
Total interspersed repeats 22,997,746bp 16.00% 24,673,793bp 17.17%
Small RNA 306 86,258bp 0.06% 280 95,863bp 0.07%
Satellites 1,372 1,804,199bp 1.26% 1,828 1,862,604bp 1.30%
Simple repeats 85,083 3,589,418bp 2.50% 83,742 3,522,748bp 2.45%
Low complexity 10,443 488,602bp 0.34% 10,307 481,694bp 0.34%

∗The test results are obtained by using RepeatMasker based on the msRepDB database and the combination of Dfam and RepBase, respectively, under the
default parameter settings.

Supplementary Table S36. Partial comparison of the proportion and detailed classification of detected
repeats generated based on two databases of the Glycine max genome.
The combination of RepBase and Dfam
[ Sequences: 284; Total length: 978,941,695bp;
GC level: 34.74%; Bases masked: 36.11% ]

msRepDB
[ Sequences: 284; Total length: 978,941,695bp;
GC level: 34.74%; Bases masked: 41.58% ]

Repeat Types Number of elements Length occupied Percentage of
sequences

Number of elements Length occupied Percentage of
sequences

Retroelements: 199,220 289,032,002bp 29.52% 244,640 328,757,414bp 33.58%
+SINEs: 0 0bp 0.00% 0 0bp 0.00%
+Penelope: 0 0bp 0.00% 0 0bp 0.00%
+LINEs: 12,626 10,304,690bp 1.05% 13,156 10,432,965bp 1.07%
++CRE/SLACS: 0 0bp 0.00% 0 0bp 0.00%
+++L2/CR1/Rex: 0 0bp 0.00% 0 0bp 0.00%
+++R1/LOA/Jockey: 0 0bp 0.00% 0 0bp 0.00%
+++R2/R4/NeSL: 0 0bp 0.00% 0 0bp 0.00%
+++RTE/Bov-B: 3,790 2,001,199bp 0.20% 3,945 2,017,968bp 0.21%
+++L1/CIN4: 8,836 8,303,491bp 0.85% 9,211 8,414,997bp 0.86%
+LTR elements: 186,594 278,727,312bp 28.47% 231,484 318,324,449bp 32.52%
++BEL/Pao: 0 0bp 0.00% 0 0bp 0.00%
++Tyl/Copia: 58,199 80,563,666bp 8.23% 82,522 88,004,365bp 8.99%
++Gypsy/DTRS1: 126,690 195,309,037bp 19.95% 141,484 225,436,017bp 23.03%
+++Retroviral: 0 0bp 0.00% 340 206,126bp 0.02%
DNA transposons 58,468 41,514,301bp 4.24% 61,037 42,777,718bp 4.37%
+hobo-Activator: 7,612 2,233,822bp 0.23% 5,901 1,964,862bp 0.20%
+Tc1-IS630-Pogo: 117 56,379bp 0.01% 321 75,504bp 0.01%
+En-Spm: 0 0bp 0.00% 0 0bp 0.00%
+MuDR-IS905: 0 0bp 0.00% 0 0bp 0.00%
+PiggyBac: 0 0bp 0.00% 0 0bp 0.00%
+Tourist/Harbinger: 923 564,171bp 0.06% 1,070 589,379bp 0.06%
+Other: 0 0bp 0.00% 0 0bp 0.00%
Rolling circles 538 252,405bp 0.03% 967 740,463bp 0.08%
Unclassified 0 0bp 0.00% 46,069 9,184,163bp 0.94%
Total interspersed repeats 330,546,303bp 33.77% 380,719,295bp 38.89%
Small RNA 2,223 902,022bp 0.09% 2,221 901,833bp 0.09%
Satellites 19,885 2,175,759bp 0.22% 9,389 6,367,993bp 0.65%
Simple repeats 323,670 15,236,633bp 1.56% 306,680 14,384,955bp 1.47%
Low complexity 82,139 4,344,053bp 0.44% 75,614 3,960,136bp 0.40%

∗The test results are obtained by using RepeatMasker based on the msRepDB database and the combination of Dfam and RepBase, respectively, under the
default parameter settings.
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Supplementary Table S37. Partial comparison of the proportion and detailed classification of detected
repeats generated based on two databases of the Rice genome.
The combination of RepBase and Dfam
[ Sequences: 61; Total length: 374,424,240bp;
GC level: 43.57%; Bases masked: 50.50% ]

msRepDB
[ Sequences: 61; Total length: 374,424,240bp;
GC level: 43.57%; Bases masked: 50.65% ]

Repeat Types Number of elements Length occupied Percentage of
sequences

Number of elements Length occupied Percentage of
sequences

Retroelements: 65,791 95,531,185bp 25.51% 79,315 95,506,323bp 25.51%
+SINEs: 6,826 987,304bp 0.26% 6,867 952,864bp 0.25%
+Penelope: 0 0bp 0.00% 0 0bp 0.00%
+LINEs: 11,557 5,568,202bp 1.49% 11,562 5,572,111bp 1.49%
++CRE/SLACS: 0 0bp 0.00% 0 0bp 0.00%
+++L2/CR1/Rex: 0 0bp 0.00% 0 0bp 0.00%
+++R1/LOA/Jockey: 0 0bp 0.00% 0 0bp 0.00%
+++R2/R4/NeSL: 0 0bp 0.00% 0 0bp 0.00%
+++RTE/Bov-B: 0 0bp 0.00% 0 0bp 0.00%
+++L1/CIN4: 10,365 5,077,865bp 1.36% 10,381 5,087,940bp 1.36%
+LTR elements: 47,408 88,975,679bp 23.76% 60,886 88,981,348bp 23.76%
++BEL/Pao: 0 0bp 0.00% 0 0bp 0.00%
++Tyl/Copia: 10,831 14,340,045bp 3.83% 14,004 14,335,288bp 3.83%
++Gypsy/DTRS1: 32,899 73,328,202bp 19.58% 42,849 73,361,406bp 19.59%
+++Retroviral: 0 0bp 0.00% 0 0bp 0.00%
DNA transposons 241,722 68,736,938bp 18.36% 248,589 69,123,767bp 18.46%
+hobo-Activator: 29,293 6,598,030bp 1.76% 29,091 6,573,553bp 1.76%
+Tc1-IS630-Pogo: 40.793 7,245,966bp 1.94% 43,607 7,258,626bp 1.94%
+En-Spm: 0 0bp 0.00% 0 0bp 0.00%
+MuDR-IS905: 0 0bp 0.00% 0 0bp 0.00%
+PiggyBac: 0 0bp 0.00% 0 0bp 0.00%
+Tourist/Harbinger: 51,501 10,987,662bp 2.93% 52,626 11,058,599bp 2.95%
+Other: 58 7,292bp 0.00% 58 7,292bp 0.00%
Rolling circles 66,680 17,453,430bp 4.66% 66,425 17,410,443bp 4.65%
Unclassified 4,534 1,574,152bp 0.42% 5,066 1,732,111bp 0.46%
Total interspersed repeats 165,842,275bp 44.29% 166,362,201bp 44.43%
Small RNA 4,631 704,192bp 0.19% 4,997 762,938bp 0.20%
Satellites 426 1,368,174bp 0.37% 591 1,382,862bp 0.37%
Simple repeats 88,676 3,867,177bp 1.03% 88,603 3,878,911bp 1.04%
Low complexity 9,277 456,471bp 0.12% 9,235 454,107bp 0.12%

∗The test results are obtained by using RepeatMasker based on the msRepDB database and the combination of Dfam and RepBase, respectively, under the
default parameter settings.

Supplementary Table S38. Partial comparison of the proportion and detailed classification of detected
repeats generated based on two databases of the Mouse genome.
The combination of RepBase and Dfam
[ Sequences: 61; Total length: 2,728,222,451bp;
GC level: 41.67%; Bases masked: 40.58% ]

msRepDB
[ Sequences: 61; Total length: 2,728,222,451bp;
GC level: 41.67%; Bases masked: 43.26% ]

Repeat Types Number of elements Length occupied Percentage of
sequences

Number of elements Length occupied Percentage of
sequences

Retroelements: 2,604,809 985,247,550bp 36.11% 3,497,950 1,065,736,604bp 39.06%
+SINEs: 1,211,566 162,662,859bp 5.96% 1,293,615 162,373,734bp 5.95%
+Penelope: 34 6,243bp 0.00% 34 6,243bp 0.00%
+LINEs: 623,172 523,121,773bp 19.17% 1,181,500 583,037,969bp 21.37%
++CRE/SLACS: 0 0bp 0.00% 0 0bp 0.00%
+++L2/CR1/Rex: 13,069 2,187,962bp 0.08% 13,330 2,187,279bp 0.08%
+++R1/LOA/Jockey: 0 0bp 0.00% 0 0bp 0.00%
+++R2/R4/NeSL: 92 18,578bp 0.00% 82 17,994bp 0.00%
+++RTE/Bov-B: 1,195 223,045bp 0.01% 1,194 222,866bp 0.01%
+++L1/CIN4: 608,739 520,675,766bp 19.08% 1,166,817 580,593,408bp 21.28%
+LTR elements: 770,071 299,462,918bp 10.98% 1,022,835 320,324,901bp 11.74%
++BEL/Pao: 0 0bp 0.00% 0 0bp 0.00%
++Tyl/Copia: 0 0bp 0.00% 0 0bp 0.00%
++Gypsy/DTRS1: 1,058 176,553bp 0.01% 1,069 176,306bp 0.01%
+++Retroviral: 767,530 298,945,097bp 10.96% 1,020,331 319,857,078bp 11.72%
DNA transposons 101,050 19,397,414bp 0.71% 101,523 19,514,699bp 0.72%
+hobo-Activator: 80,289 15,218,974bp 0.56% 81,366 15,449,005bp 0.57%
+Tc1-IS630-Pogo: 17,991 3,780,493bp 0.14% 17,390 3,668,389bp 0.13%
+En-Spm: 0 0bp 0.00% 0 0bp 0.00%
+MuDR-IS905: 0 0bp 0.00% 0 0bp 0.00%
+PiggyBac: 166 40,102bp 0.00% 166 39,950bp 0.00%
+Tourist/Harbinger: 161 25,353bp 0.00% 160 25,316bp 0.00%
+Other: 0 0bp 0.00% 0 0bp 0.00%
Rolling circles 180 31,909bp 0.00% 180 31,865bp 0.00%
Unclassified 125,730 15,031,702bp 0.55% 189,664 24,656,083bp 0.90%
Total interspersed repeats 1,019,676,666bp 37.38% 1,109,907,386bp 40.68%
Small RNA 16,041 1,313,388bp 0.05% 8,468 696,855bp 0.03%
Satellites 69,015 8,721,290bp 0.32% 29,094 4,768,705bp 0.17%
Simple repeats 1,319,791 67,604,107bp 2.48% 1,148,193 57,689,551bp 2.11%
Low complexity 147,721 9,696,829bp 0.36% 114,082 7,077,301bp 0.26%

∗The test results are obtained by using RepeatMasker based on the msRepDB database and the combination of Dfam and RepBase, respectively, under the
default parameter settings.
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Supplementary Table S39. TE reference sequences of 23 genomes with about 39,039 TE consensus are
collected in the RepetDB database.

Species
Genome assembly
annotated
(without gap)

Cumulative
coverage

Genome
coverage

No. of consensus
sequences

No. of genome
copies

No. of full-length
genome copies

Arabidopsis
lyrata

206,667,935 76,899,516 37.21 2,408 112,563 9,527

Arabidopsis
thaliana

119,146,348 22,954,742 19.27 641 37,129 2,513

Arabis
alpina

309,171,870 152,175,264 49.22 3,204 268,936 11,729

Brassica
rapa

283,841,084 101,457,103 35.74 2,660 239,373 10,881

Capsella
rubella

134,834,574 27,975,436 20.75 873 54,560 3,326

Schrenkiella
parvula

123,600,562 19,838,473 16.05 455 37,597 1,356

Fragaria
vesca

211,673,467 58,062,323 27.43 1,543 112,822 8,576

Malus
domestica

624,851,326 365,363,669 58.47 2,456 564,270 25,280

Prunus
persica

227,411,381 99,590,159 43.79 1,738 170,681 9,056

Pyrus
communis

577,335,413 194,166,715 33.63 975 482,345 11,435

Vitis
vinifera

486,205,130 290,981,308 59.85 2,473 475,119 10,551

Triticum
aestivum

986,092,508 894,245,831 90.69 6,671 785,986 15,905

Zea mays 2,059,701,728 1,768,705,851 85.87 7,319 1,381,303 41,666

Blumeria
graminis hordei

87,976,437 59,069,666 67.14 733 122,756 8,909

Botrytis
cinerea B0510

42,630,066 1,583,714 3.72 15 1,927 263

Botrytis
cinerea T4

37,887,365 254,124 0.67 24 611 62

Colletotrichum
higginsianum

50,819,261 3,505,545 6.90 41 1,482 440

Magnaporthe
oryzae

40,949,321 4,549,294 11.11 37 4,358 463

Melampsora
larici populina

97,682,699 49,975,736 51.16 1,779 88,708 6,942

Microtryum
violaceum

25,201,507 4,423,374 17.55 286 9,620 640

Puccinia
graminis

81,521,292 37,620,112 46.15 1,625 6,9167 6,648

Sclerotinia
sclerotiorum

38,001,451 3,459,261 9.10 178 13,868 622

Tuber
melanosporum

123,533,734 73,821,108 59.76 905 72,212 3,845

Supplementary Table S40. The types of transposon elements in eukaryotic genomes collected in the
RepBase database.

Type of TE Super-family

DNA transposon

Academ, Crypton (CryptonA, CryptonF, CryptonI, CryptonS, CryptonV),
Dada, EnSpm/CACTA, Ginger1, Ginger2, Harbinger, hAT, Helitron,
IS3EU, ISL2EU, Kolobok, Mariner/Tc1,
Merlin, MuDR, Novosib, P, piggyBac, Polinton,
Sola (Sola1, Sola2, Sola3),
Transib, Zator, Zisupton

LTR retrotransposon BEL, Copia, DIRS, Gypsy, ERV1, ERV2, ERV3, ERV4, Lentivirus

Ambal a, CR1, CRE, Crack, Daphne, Hero, I, Ingi, Jockey, Kiri a, L1, L2, L2A, L2B,
Loa, NeSL, Nimb, Outcast, Penelope, Proto1, Proto2, R1, R2, R4, RandI/Dualen,
Rex1, RTE, RTETP, RTEX, Tad1, Tx1, Vingi

Non-LTR retrotransposon SINE (SINE1/7SL, SINE2/tRNA, SINE3/5S, SINE4, SINEU)

Supplementary Table S41. The types of transposon elements in eukaryotic genomes collected in the
REXdb database.

Type of TE Super-family Family Sub-family

Class I SINE

LTR Ty1 copia, Ale, Alesia, Angela, Bianca, Bryco, Lyco, Gymco-
III, Gymco-I, Gymco-II, Ikeros, Ivana, Gymco-IV,
Osser, SIRE, TAR, Tork, Ty1-outgroup

Ty3 gypsy, non-chromovirus, non-chromo-outgroup, Phygy,
Selgy, OTA, Athila, Tat, TatI, TatII, TatIII, Ogre, Re-
tand, chromovirus, Chlamyvir, Tcn1, chromo-outgroup,
CRM, Galadriel, Tekay, Reina, chromo-unclass

pararetrovirus

DIRS

Penelope

LINE

Class II Subclass 1 TIR, MITE, EnSpm, CACTA, hAT, Kolobok, Merlin,
MuDR, Mutator, Novosib , P, PIF , Harbinger, Piggy-
Bac, Sola1, Sola2, Tc1, Mariner

Subclass 2 Helitron
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Supplementary Note 7.3.2 Comparison of the automated classification and masking methods
Comparison performance of the four most famous classification methods (TERL, PASTEC, TEclass, and
DeepTE) is performed based on three datasets (Supplementary Table S42), and evaluation results are
shown in Tables S43 to S45. Data from RepBase and PGSB database are combined to train the DeepTE
models. Among them, dataset #1 consists of orders (LTR and LINE) and class (Class II) from RepBase
consensus sequences and generated non-TE sequences, dataset #2 consists of orders (LTR, LINE, and SINE)
and class (Class II) from the seven databases and non-TE sequences, and dataset #3 are sampled from or-
ders consensus sequences from RepBase database and undersampled to 2850, which is the total sequence
of the class with the least total sequences on RepBase (i.e., LINE). Furthermore, we compared the per-
formance of LTR elements classification among six classifiers (DeepTE, TERL, TEsorter, RepeatClassifier,
LTR Retriever, and LTR Classifier) on Rice and Maize genomes (Supplementary Tables S46).

Supplementary Table S42. The datasets used in evaluation of classification methods.
Dataset Superfamily DPTE PGSB RepBase RiTE SPTE TEfam TREP Total

#1 LTR - - - - - - - 24,505
LINE - - - - - - - 2,850
Class II - - - - - - - 9,623
Non-TE - - - - - - - -

#2 LTR 10,370 11,192 24,505 77,380 9,574 1,271 943 135,235
LINE 1,299 470 2,850 784 278 368 8 6057
SINE 0 191 685 3,072 0 0 0 3,948
Class II 260 1,150 9,623 150,142 59 128 996 162,358

#3 LTR 10,370 11,192 24,505 77,380 9,574 1,271 943 110,730
LINE 1,299 470 2,850 784 278 368 8 3,207
Class II 260 1,150 9,623 150,142 59 128 996 152,735

Supplementary Table S43. Performance comparison of different classification methods on dataset #1.
Class Methods Accuracy precision Recall Specificity F1-score

LTR TERL 0.947 ± 0.008 0.895 ± 0.029 0.896 ± 0.026 0.965 ± 0.011 0.895 ± 0.015
PASTEC 0.984 0.998 0.939 0.999 0.967
Teclass 0.911 0.739 0.995 0.883 0.848

LINE TERL 0.961 ± 0.005 0.910 ± 0.018 0.937 ± 0.013 0.969 ± 0.007 0.923 ± 0.008
PASTEC 0.995 0.998 0.982 0.999 0.99
Teclass 0.896 0.709 0.989 0.865 0.826

Class II TERL 0.952 ± 0.006 0.935 ± 0.014 0.868 ± 0.028 0.980 ± 0.005 0.900 ± 0.013
PASTEC 0.97 0.95 0.928 0.984 0.939
Teclass 0.978 0.938 0.977 0.978 0.957

Non-TE TERL 0.969 ± 0.002 0.921 ± 0.012 0.957 ± 0.013 0.973 ± 0.005 0.938 ± 0.004
PASTEC 0.973 0.906 0.995 0.965 0.948
Teclass 0.793 0.895 0.195 0.992 0.32

Macro mean TERL 0.957 ± 0.004 0.915 ± 0.007 0.914 ± 0.007 0.972 ± 0.002 0.915 ± 0.007
PASTEC 0.98 0.963 0.961 0.987 0.962
Teclass 0.895 0.82 0.789 0.93 0.804

Supplementary Table S44. Performance comparison of different classification methods on dataset #2.
Class Methods Accuracy precision Recall Specificity F1-score

LTR TERL 0.846 ± 0.0125 0.594 ± 0.0331 0.749 ± 0.0484 0.870 ± 0.0257 0.660 ± 0.0133
PASTEC 0.906 0.991 0.537 0.999 0.696
Teclass 0.796 0.491 0.542 0.859 0.515

LINE TERL 0.895 ± 0.0050 0.819 ± 0.0366 0.614 ± 0.0530 0.965 ± 0.0115 0.699 ± 0.0269
PASTEC 0.947 0.992 0.742 0.998 0.849
Teclass 0.823 0.551 0.616 0.874 0.582

SINE TERL 0.958 ± 0.0100 0.882 ± 0.0510 0.919 ± 0.0185 0.968 ± 0.0160 0.899 ± 0.0194
PASTEC 0.953 0.987 0.775 0.997 0.868
Teclass 0.863 0.806 0.411 0.975 0.545

Class II TERL 0.867 ± 0.0063 0.714 ± 0.0384 0.565 ± 0.0358 0.942 ± 0.0150 0.629 ± 0.0125
PASTEC 0.885 0.914 0.468 0.989 0.619
Teclass 0.809 0.52 0.565 0.87 0.542

Non-TE TERL 0.898 ± 0.0063 0.717 ± 0.0264 0.814 ± 0.0256 0.919 ± 0.0131 0.762 ± 0.0083
PASTEC 0.716 0.413 0.996 0.646 0.584
Teclass 0.68 0.246 0.291 0.777 0.267

Macro mean TERL 0.893 ± 0.0026 0.745 ± 0.0088 0.732 ± 0.0066 0.933 ± 0.0017 0.739 ± 0.0061
PASTEC 0.881 0.859 0.704 0.926 0.774
Teclass 0.794 0.523 0.485 0.871 0.503

Supplementary Table S45. Performance comparison of different classification methods on dataset #3.
Class Methods Accuracy precision Recall Specificity F1-score

LTR TERL 0.768 ± 0.0131 0.564 ± 0.0449 0.363 ± 0.0598 0.903 ± 0.0347 0.436 ± 0.0332
PASTEC 0.861 0.981 0.454 0.997 0.621
Teclass 0.748 0.496 0.504 0.829 0.5

LINE TERL 0.820 ± 0.0158 0.669 ± 0.0508 0.570 ± 0.0585 0.904 ± 0.0276 0.613 ± 0.0337
PASTEC 0.952 0.994 0.812 0.998 0.894
Teclass 0.788 0.567 0.639 0.837 0.601

Class II TERL 0.826 ± 0.0180 0.649 ± 0.0517 0.683 ± 0.0493 0.874 ± 0.0367 0.663 ± 0.0180
PASTEC 0.918 0.936 0.721 0.984 0.815
Teclass 0.839 0.67 0.698 0.885 0.684

Non-TE TERL 0.829 ± 0.0179 0.613 ± 0.0351 0.870 ± 0.0234 0.815 ± 0.0308 0.718 ± 0.0172
PASTEC 0.76 0.51 0.995 0.682 0.675
Teclass 0.672 0.31 0.253 0.812 0.278

Macro mean TERL 0.811 ± 0.0056 0.624 ± 0.0143 0.621 ± 0.0116 0.874 ± 0.0037 0.623 ± 0.0128
PASTEC 0.873 0.855 0.746 0.915 0.797
Teclass 0.762 0.511 0.523 0.841 0.517

Supplementary Table S46. Comparison of performance among six TE classifiers on Rice and Maize
genomes.

LTR/Copia LTR/Gypsy all LTR-RTs other TEs
Species Methods ST PC CD ST PC CD ST PC ST PC CPU/h

Rice TEsorter (REXdb) 0.893 1.000 89.3% 0.786 1.000 78.6% 0.782 0.994 0.160 1.000 0.09
TEsorter (GyDB) 0.843 0.993 83.0% 0.768 0.989 76.8% 0.765 0.994 NA NA 0.15
RepeatClassifier 0.887 0.922 NA 0.768 0.864 NA 0.773 0.908 0.396 0.881 11.3
DeepTE 0.874 0.842 NA 0.866 0.713 NA 0.826 0.813 0.671 0.954 0.3
TERL 0.818 0.435 NA 0.728 0.608 NA 0.729 0.522 0.186 0.828 0.03
LTR retriever 0.868 1.000 NA 0.830 0.979 NA 0.814 0.991 NA NA 0.01
LTR classifier 0.824 1.000 NA 0.576 0.679 NA 0.645 0.822 NA NA 1.0

Maize TEsorter (REXdb) 0.919 0.966 91.9% 0.930 1.000 91.8% 0.793 0.998 0.329 0.997 0.1
TEsorter (GyDB) 0.914 0.977 89.7% 0.922 0.991 90.6% 0.770 0.998 NA NA 0.12
RepeatClassifier 0.968 0.821 NA 0.971 0.707 NA 0.878 0.958 0.365 0.938 12.8
DeepTE 0.914 0.790 NA 0.963 0.671 NA 0.862 0.925 0.753 0.905 0.21
TERL 0.541 0.543 NA 0.791 0.448 NA 0.725 0.710 0.464 0.882 0.02
LTR retriever 0.892 0.859 NA 0.918 0.878 NA 0.757 1.000 NA NA 0.01
LTR classifier 0.789 0.913 NA 0.664 0.818 NA 0.547 0.916 NA NA 1.2

′ST′ represents sensitivity, ′PC′ represents precision, ′CD′ represents the percentage of elements that are assigned to clades. ′CPU/h′ represents the CPU

time (hour). The database used in RepeatClassifier is Dfam. ′TEsorter (REXdb)′ represents the tool TEsorter running based on the database REXdb.
′TEsorter (GyDB)′ represents the tool TEsorter running based on the database GyDB. ′NA′ represents the data that is not available.
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192. Budǐs J., Kuchaŕık M., Ďurǐs F. et al. (2019) Dante: genotyping of known complex and expanded short tandem
repeats[J]. Bioinformatics, 35(8), 1310-1317.


