Additional File 2

Figures 1-9 show the protein sequence alignments of the alternative exons. The upper sequences, termed Mhc1, Mhc3, and Mhc4, respectively, represent either the variant "a" exons (e.g. Figure 1 or Figure 3) or the corresponding parts of constitutive exons (e.g. Figure 2).

Figure 2 and Figure 6A: Most genes do not have introns at the positions corresponding to the alternatively spliced Dap, Tic, Pdc, and Bm exons. Because these exons span the variable loop-1 (Figure 2) and loop2 (Figure 6A) regions their start and end positions are not conserved. In Figure 6A, the variant "b" sequences of Bm, Dap, Pdc, and Tic have been directly aligned with their corresponding variant "a" sequences.

Figure 9: Alignment of the potential carboxy-termini of the Mhc genes. For better understanding a gap (-) has been introduced between the last constitutive exon and the following alternative exons. In the case of AeaMhc3, CpqMhc3, CpqMhc4, and AngExon15 the carboxy-termini are elongations of the last constitutive exon and not separated exons.

The alignments of the sections of the Mhc1 genes of Figure 1 (main manuscript) showing the relationship between the exon-intron structures of the regions containing the alternatively spliced exons have been taken from Figure 2 (main manuscript) for better comparison. Continuous lines connect variants that are almost identical and thus expected to be derived from a common ancestor. Bold lines connecting alternative exons in regions containing multiple variants per Mhc1 gene highlight particularly conserved exons in these sets. Dotted lines represent putative connections between certain variants although their identity is not very strong on the protein level.

For the construction of the figures showing the comparison of the sequence identity between each exon and all variant exons of every other Mhc1 proteins see Materials and Methods in the main manuscript. For interpretation, the figures have to be read in columns. The highest identity between an exon listed on top and any variant of a certain Mhc1 protein listed on the left side has been set to 1 (red color) while the differences of the values of the lower identity exons to the value of the highest identity have been plotted for the other combinations of exons. Thus, in every column the highest identity of the named exon to one of the variants of the other Mhc1 proteins is visualized.

Figure 1
 - TKDFKKDLVGQVNPPKYEKCEDMSNLTYLNDASVLHNLRERYRARLI Y

- CKDFKKDLVGQVNPPKYEKCEDLSNLTYLNDASVLHNLRERYRAQLI -CKDFKKDLVGQVNPPKYEKCEDLSNLTYLNDASVLHNLRERYRAQLIY - EKNFKKELISQVNPPKFEKVEDMADLTYLNEAAVLHNLRQRYYSKLIY - TKQFRKEQLAQVNPPKYEKTEDMADLTFLNEASVLHNLKQRYYSNLIY - EKNFKKEQLSQVNPPKFEKVEDMADLTYLNEAAVLHNLRQRYYSKLIY - EKTFKKDQLSQVNPPKFEKVEDMADLTYLNDAAVLHNLRQRYYAKLIY - ERTMKKDLISQANPPKFEKVEDMADLTYLNEAAVLHNLRQRYYCKMIY NEKMVKKDQCFPVNPPKFEKVEDMADLTYLNDAAVLHNLRQRYYHKLIY NEKMVKKDQCFPVNPPKFEKVEDMADLTYLNDAAVLHNLRQRYYHKLIY
$-V R D$ IKSEKVEKVNPPKFEKIEDMADMTVLNTPCVLHNLRQRYYAKLI Y - VRDIKSEKVEKVNPPKFEKIEDMADMTVLNTPCVLHNLRQRYYAKLIY - VKTFEKDQIGQVNPPKFEKVEDMADLTYLNEAAVLHNLKSRYYSKLIY - EKPFKKENVHQVNPPKYEKVEDMADLTYLNEAAVLHNLRQRYYAKLIY - TKDFKKDLVSQVNPPKYEKCEDMSNLTYLNDASVLHNLRERYRAKLIY - TKDFKKDQLQQVNPPKYEKCEDMSNLTYLNDASVLHNLKQRYYAKLIY - TKDFKKDLVSQVNPPKYEKCEDMSNLTYLNDASVLHNLRQRYYAKLIY - TKDFKKDQVAQVNPPKYEKCEDMSNLTYLNDASVLYNLKQRYYHKLIY - TKDFKKDLVGQVNPPKYEKCEDMSNLTYLNDASVLHNLRERYRAKLIY - EKTFKKDQCSQVNPPKYEKCEDMSNLTYLNDASVLWNLKARYTNQLIY - EKTFLKKDQCSQVNPPKYEKCEDMSNLTYLNDASVLWNLKARYTNQLIY - VRDVKKDLLQQVNPPKYEKAEDMSNLTYLNXASVLHNLKQRYYHKLIY - EKQFKKDQVAQVNPPKYEKCEDMSNLTYLNDASVLYNLKQRYYHKLIY - EKNFKKEQVGQVNPPKYEKCEDMSNLTYLNDASVLHNLKQRYYAKLIY

Figure 2

Figure 3

AeaMhc3
CpqMhc3
CpqMhc4
CpqMinc4 AeaMhc1 AmMhc1
AngMhc1
BmMhc1
CpqMhc1
DapMhc1
DmMhc1
NavMhc1
PdcMhc1
TicMhc1 AeaExon6b AeaExon6b AmExon8b AngExon6b BmExon8b CpqExon6b DapExon10b DapExon10c
DmExon7b
NavExon8b TicExon9b AeaExon6c AeaExon6c AmExon8c
AngExon6c
CpqExon6c BmExon8c DmExon7c NavExon8c AeaExon6d AmExon8d AngExon6d AngExon6d CpqExon6d BmExon8d DapExon10d DmExon7d NavExon8d PdcExon9b TicExon9c

10
20
$\stackrel{20}{1}$
DMCLLSNDIYDYHNVAQGKVTIPNVDDGEECRLT EMCYLSNDIYDYYNVSQGKVT।PNVDDGEECALTD DMCYLSND।YDYYNVSQGKVTIPNVDDGEECLLTD EKCLLSNN I YDYMVVAQGKTTIPNVDDGEEMSLTD EMCCLTND I HDYVFVSQGKTT। PNVDDGEECTLTD EKCFLSNDVYDYM। IAQGKTT।PNVDDGEEMGLTD EKCFLSNDVYDYMIIAQGKTTIPNVDDGEEMGLTD
EMCMLSND।YDYY IVSQGK। TIPNVDDGEECVLTD EKCFLSNN I YDYMV।AQGKTT।PSVDDGEEMELTD ADCCLVDD I YQYNFVSQGK।TIPSMDDSEEMALTD D I CLLTDNIYDYHIVSQGKVTVASIDDAEEFSLTD EMCLLSNNVQDYYFVAQGKTTIPGVDDGEECELTD AMCLLSDNIQDYYFVSQGKTTIPNVDDGEELILTD EQCLLSNDVYDYHYVAQGKTTIPNVDDAEEMRLTD EMCMLSNNIHDYHIVSQGKTTIPSVDDGEEMLGTE EMLLLSNN I HDYYFVSQGKTT।PGLDDGEELL। TD EKCLLSNN।HDYH।VAQGKTT।PSVDDGEEMQ। TD A I CLLSNDVMDYN IVSQGKTV I PGVDDGEEMR I TD EICFLSNNIHDYHIVSQGKTTIPSVDDGEEMQ। TD ADCSLVDD I YTYNFVSQGKITIPSMDDSEEMGLTN ADCRLVDD I Y TYNYVSQGKITIPSMDDNEEMGLTD EYCLLSNNIYDYRIVSQGKTTIPSVNDSEEWVAVD EKCLLSKNINDYHFVSQGKTSIPGLDDGEEMLITD EMCLLSNNVSDYYFVAQGKTTIPNVDDAEELLITD ELTMLSTR।SDYPT।TQGKTR।PGVNDAEELESLD ELTLLSNR।GDYWY।SQGKTR।PGVNDAADMEETD ELTLLSSRISDYPT।TQGKTRIPGVNDAEEFEQLD ELTLLSTRISDYPT।TQGKTRIPGVNDAEELETLD EVTMLGNRISDYPIVSQGKTR।PGVNDAAQFDVTV EMVFLGQHIGDYPGICQGKTRIPGVNDGEEFELTD EMTFLSNRIGDYYYISQGKTRIPGVNDGEDMEDTD DMCFLSND I YDYYNVAQGK। TIPNVDDGEECLLTD DMCLLSNNIYDYVNVSQGK।TIPNVDDGEECVLTD EMCFLSND I YDYNSVSQGK।TIPNVDDGEECLLTD EMCFLSND I YDYYNVSQGKVTIPNVDDGEECQLTD EKCLLSNDVHDYY।VSQGKVT।PNVDDGEEC।LTD AMCSLSDN I YDYPFVSQGKVTVPSIDDSEEMQMAD EMCFLSDNIYDYYNVSQGKVTVPNMDDGEEFQLAD EMCYLSNNIYDYYNVSQGKITIPGIDDNEEMGLTD AMCLLSNNINDYHFVSQGKTAIPGVDDGEEMLITD ENCLLSDNVYDYNFVSQGKVTIPGVDDAEELELTD

Figure 4

Figure 5
 YNGFEQLCINFTNEKLQQFFNHHMFVLEQEEYKKEGIVWAFIDFGMDLLACIELIER YNGFEQLCINFTNEKLQQFFNHHMFVLEQEEYKKEGIVWAFIDFGMDLLACIELIER YNGFEQLCINFTNEKLQQFFNHHMFVLEQEEYKKEGINWAFIDFGMDLLACIELIEK YNGFEQLCINFTNEKLQQFFNHHMFVLEQEEYKKEGIVWQFIDFGMDLAAC।ELIEK FNGFEQLCINFTNEKLQQFFNHHMFVLEQEEYKKEGINWAFIDFGMDLLACVELIEK YNGFEQLC।NFTNEKLQQFFNHHMFVLEQEEYTKEG।QWAFIDFGMDLLAC।DL।EK YNGFEQLCINFTNEKLQQFFNHHMFVLEQEEYKKEGINWAFIDFGMDLLAC।ELIEK YNGFEQLCINFTNEKLQQFFNHHMFVLEQEEYKKEGIDWVFMDFGMDLQAC।ELMEK YNGFEQLCINFTNEKLQQFFNHIMFVMEQEEYKKEGINWDFIDFGMDLLACIDLIEK YNGFEQLCINFTNEKLQQFFNHHMFVLEQEEYKKEGINWAFIDFGMDLLACIELIEK FNGFEQLCINFTNEKLQQFFNHHMFVLEQEEYQREGIQWAFIDFGMDLLAC।ELIEK YNGFEQLCINFTNEKLQQFFNHHMFVLEQEEYEREGITWVFIDFGMDLLACIELIEK YNGFEQLCINFTNEKLQQFFNHHMFVLEQEEYKKEGINWAFIDFGMDLLACIDLIEK FNSFEQLCINFTNEKLQQFFNHHMFVLEQEEYTKEGIHWEFIDFGMDLLACIELIEK FNGFEQLCINFTNEKLQQFFNHHMFVLEQEEYKKEGIVWQFIDFGMDLASCIELIEK FNGFEQLC।NFTNEKLQQFFNHHMFVLEQEEYKKEG।NWAF।DFGMDLLAC।DL।EK YNGFEQLC।NFTNEKLQQFFNHHMFVLEQEEYKKEGINWAFIDFGMDLLACIDL।EK FNGFEQLCINFTNEKLQQFFNHHMFVLEQEEYKREGIEWTFIDFGMDLLAC।ELIEK YNGFEQLCINFTNEKLQQFFNHHMFVLEQEEYKREGIDWAFIDFGMDLLACIDLIEK FNSFEQLCINFTNEKLQQFFNHHMFVLEQEEYTKEGIEWSFIDFGMDLLACIELIEK FNGFEQLCINFTNEKLQQFFNHHMFVLEQEEYTKEGIEWAFIDFGMDLLAC।ELIEK FNGFEQLC।NFTNEKLQQFFNHHMFVLEQEEYQREGIEWSFIDFGMDLAAC।ELIEK YNGFEQLC।NFTNEKLQQFFNHHMFVLEQEEYKAEGIQWTF।DFGMDLLAC।ELIEK FNGFEQLCINFTNEKLQQFFNHHMFVLEQEEYQREG।EWAFIDFGMDLLAC।ELIEK FNGFEQLCINFTNEKLQQFFNHHMFVLEQEEYKKEG।EWVFMDFGMDLQAC।ELMEK FNSFEQLC।NFTNEKLQQFFNHHMF।LEQEEYQREG।EWTF।DFGMDLQQT।DL।EK YNGFEQLCINFTNEKLQQFFNHHMFVLEQEEYQREG।EWTFIDFGMDLQQC।ELIEK YNGFEQLCINFTNEKLQQFFNHHMFVLEQEEYQREGIEWTFIDFGMDLQQC।ELIEK FNGFEQLCINFTNEKLQQFFNHHMFVLEQEEYQREGIEWTFIDFGMDLQQCIELIEK FNGFEQLCINFTNEKLQQFFNHHMFVLEQEEYQREGIEWTFIDFGMDLQNCIDLIEK YNGFNQLCINYTNERLQQFFNHFMFILEQEEYEREGIQWTFIDFGLDLQPTIDLIEK FNSFEQLCINFTNEKLQQFFNHHMFILEQEEYKREGIEWTFIDFGMDLQQTIDLIEK NNGFNQLCINFTNERLQQFFNHYMFILEQEEYEREGIQWTFIDFGLDLQPTIDLIEK YNGFNQLCINFTNERLQQFFNHYMFILEQEEYEREGIQWTFIDFGLDLQPT।DLIEK MNGFNQLCVNFANEKLQQYFNHYMFVLEQENYEHEG।LWTFMDFGLDLQPT।DL।EK YNGFEQLCINFTNEKLQQFFNHHMFVLEQEEYKREGIEWTFIDFGMDLQNT।DLLEK YNGFEQLCINFTNEKLQQFFNHHMFVLEQEEYQREGIEWTFIDFGMDLQLCIDLIEK FNSFEQLCINFTNEKLQQYFNHFMFVLEQEEYETEGISWTFIDFGMDLQSTIELIEK FNSFEQLCINFTNEKLQQFFNHHMFVLEQEEYQSEGIEWSFIDFGMDLVATIELIEK YNGFNQLCINYSNEKLQQFYNHHMFILEQEEYEREG।TWTFIDFGLDLQPCIDLIEK

Figure 6

A

B

AmapMhc1

Figure 7

PdcMhc1

DapMhc1

BmMhc1

TicMhc1

NavMhc1

AmMhc1

DmMhc1

AngMhc1

AeaMhc1

CpqMhc1

Figure 8

	10					
AeaMhc3	AEHDRANMYNELNNTRSACDQLSREK					
CpqMhc3	AEHDRANMYNELNKTRSSCDQLARDK					
CpqMhc4	AEHDRANMYNELNNTRSACDTLAREK					
AeaMhc1	AEHDRANMYNELNNTRSACDTLAREK					
AmMhc1	AEKGRHDIHAELNNSRAATDQVSREK					
AngMhc1	AEHDRANMYNELNNTRTACDQLSREK					
BmMhc1	AEHDRAACYNELNNTRAAVDQVAREK					
CpqMhc1	AEHDRANMYNDLNNTRTACDQLAREK					
DapMhc1	AEKDRSQFAGENNDLRAAMDHVSSDK					
DmMhc1	AEHDRQTCHNELNQTRTACDQLGRDK					
NawMhc1	AEKGRNDIHVELNNARAAVDVVAREK					
PdcMhc1	AEKEKIQYYTELNDLRATLDHLSNEK					
TicMhc1	AERDRASIYTELQQTRSAVEQVGREK					
AngExon14b	AEKERTQYFAELNDARIGCDQLSNEK					
AmExon20b	VEKDKVQYFSELNDMRASVDQLSNEK					
AeaExon13b	AEKERSQYYAEMNDARLSLDHMANEK					
CpqExon13b	AEKERGQYFAELNDSRLSLDHLANEK					
BmExon22b	AEKERAQYFSEVNDLRAGLDHLSNEK					
DapExon27b	AEKDRSSMKNQVDDFKAATDHMTAEK					
DmExon15b	AEKEKNEYYGQLNDLRAGVDHITNEK					
NavExon19b	IEKEKVQYFSELNDMRASVDHLSNEK					
TicExon20b	AEKEKAAYFGELNDLRASVDHLANEK					

Figure 9


```
AeaExon16
AeaExon17
AngExon15
AngExon16
AngExon17
AmExon26
RGGSAARGLSPPA - PHRPAFKPQLDGSAFPPRFDLQPDGEL*
BmExon28 RAGSAARGVSPA - AS I KGRP *
BmExon29 RAGSAARGVSPA - PQRSRPALADGFGTFPPRFDLAPEDF*
CpqMhc3 ASSTAQSGGGGSAR*
CpqMhc4 RGGSAGRGASPAVSTI*
CpqExon16 RAGSVQRGASPA - PSVIRA*
CpqExon17 RAGSVQRGASPA - PQRQSAMPSLAALGLPTFDDHAF *
DapExon30 RGGSASR - LSPP - PQMKPRSKRDFE*
DmExon18 RAGSVGRGASPA - ।*
DmExon19 RAGSVGRGASPA - PRATSVRPQFDGLAFPPRFDLAPENEF*
NavMhc1 RGGSAARGISPA-PHRPVNRPQFDGSAFPPRFDLMPDGL*
PdcExon33 RAGSAPRALSPA - PPQNRSRLALE*
PdcExon34 RAGSAPRALSPA - HHRPPRPQLDGMMAFPPRFDFHPEGEL*
TicExon22 RGGSVARGGSPA - PPRQRPQMDGLTFPPRFDLAPDE | *
```

