

Stop Codon

С

Deletion

Fig S1: RNA mapping to confirm the single nucleotide deletion in the *H. moniliformis MAT1-2-7*. This mapping was generated using three sets of RNAseq data from a sporulating *H. moniliformis* isolate (Wilson et al 2018). A) Overview of the mapping across the entire gene. B) Mapping of the 5' region of the gene, indicating the start codon as well as the region where the deletion took place (indicated by the light green annotation). C) Mapping of the 3' region of the gene, indicating the region where the deletion took place as well as the in frame stop codon (indicated by the light blue annotation and box). There are various SNPs apparent when comparing the RNAseq reads to the assembled contig. Some of these (particularly those indicated with a black triangles) are likely sequencing errors produced during the transcriptome sequencing- especially considering they often occur in homopolymeric regions. These errors are often only supported by one or two reads. The mapping was produced using the CLC Genomics Workbench V22.0 Map Reads to Contigs function within the De Novo Sequencing module. The parameters were all set to default, except the minimum length and similarity fractions, which were each set to 0.9.

FIGURE S2					
Species	Protein structure				
H. abstrusa	a1RGVDQSSGCSVMRGVDQSSGCSVMRGVDQSSGCTLMRGVDQSSGCTLMa2RGVDQSSGCSVMRGVDQSSGCSVMRGVDQSSGCTVMRGVDQSSGCTVMa3RGVDQSSGCSVMRGVDQSSGCSVMRGVDQSSGCTVMRGVDQSSGCTVMa4RSINQSSPCTVMRSINQSSPCNVMRTVNQSGPCNVMRTVNQSGPCNVMa5RTVNQSGPCNVMRTVNQSGPCNVMRTVNQSGPCNVMRTVNQSGPCNVMa6RTVNQSGPCNVMRTVNQSGPCNVMRTVNQSGPCNVMRTVNQSGPCNVMa7RTVNQSGPCNVMRTVNQSGPCNVMRTVNQSGPCNVMRTVNQSGPCNVM				
H. omanensis	a1RGVDQSNPCAVMRGVDQSNPCAVMRGVDQSNPCTVMRGVDQSNPCTLMa2RGVDQSNGCAVMRGVDQSNGCTVMa3RGVDQSNPCAVMRGVDQSNPCAVMRGVDQSNPCTVMRGVDQSNPCTVMa4RTVNQSSPCTVMRSINQSTPCNVMa5RVANQSNPCNVMRTANQSNPCTVMRTGNQSNPCVVMRTGNQSNPCNVMa6MRTGNQSNPCTVMRTGNQSNPCVVMRTGNQSNPCNVM-a7 RVANQSNPCNVM				
H. bhutanensis	a1RGVDQSNPCNVMRGVDQSNPCAVMRGVDQSNPCTVMa2RGVDQSNPCNVMa3RGVDQSNPCSVMRGVDQSNPCAVMRGVDQSNPCTVMa4RTFNQSSPCTVMRTINQSSPCNVMa5RAASQSNPCNVMRAASQSNPCTVMRAASQSNPCNVMa6RAASQSNPCNVMRAASQSNPCTVMRAASQSNPCNVM				
H. decipiens	a1RGVDQSNGCSVMRGVDQSNGCTVMRGVDQSNGCTVMRGVNQSNGCTVMRGVNQSNGCTLMRGVDQSNGCAVMRGVDQSNGCSVMRGVDQSNGCTVMRGVDQSNGCTLMa3RGVDQSNGCSVMRGVDQSNGCTVMRGVDQSNGCTVMRGVNQSNGCTLMa4RTVNQSGPCTVMRSINQSSPCNVM				
H. savannae	a1RGVDQSTPCSVMRGVDQSTPCNVMRGVDQSTPCNVMRGVDQSTPCTVMa2RGVDQSTPCSVMa3RGVDQSTPCSVMRGVDQSTPCNVMRGVDQSTPCNVMa4RSVNQSTPCTVMRSINQSTPCNVMRGVDQSTPCNVMa5RGVNQSTPCNVMRGVNQSTPCNVMRGVNQSTPCNVMa6RGVNQSTPCNVMRGVNQSTPCNVMRGVNQSTPCNVMa7RGVNQSTPCNVMRGVNQSTPCNVMRGVNQSTPCNVM				
H. moniliformis	a4RGVTQAPP CNVM RGVTQAPP CNVM				
H. fecunda	a3RGVTQAPP CNVM a4RGVTQAPP CNVM RGVTQAPP CNVM				
H. tyalla	a4RGVTQAPP CNVM RGVTQAPP CNVM				

Fig S2: The structure of the Huntiella a-factor pheromone proteins and the sequence of the putative mature repeats. The repeat units are represented by coloured squares and while the structure schematics are not drawn to scale, they are representative of the length of the non-repeat harbouring N-terminal.

FIGURE SE	3
-----------	---

		20		40		60		80
H. abstrusa	ATGGCCGCTA	TCAAGAACAC	CACCTCCTCC	AAGAACGCCG	сссбсббсбт	CGACCAATCC	AGCGGATGCA	GCGTCATGCG 80
H. omanensis	ATGGCCGCTA	TCAAGAACAC	CACCACCTCC	AAGAACGCCG	сссбсбссбт	TGACCAGTCC	AACCCCTGCG	CCGTCATGCG 80
H. bhutanensis	ATGGCCGCTA	TCAAGAACAT	САССТССТСС	AAGAACGCCG	сссбсббсбт	CGACCAGTCC	AACCCGTGCA	ACGTCATGCG 80
H. decipiens	ATGGCCGCTA	TCAAGAACAT	сасстсстсс	AAGCACGCCG	сссбсбссбт	CGACCAATCC	AACGGATGCT	CCGTCATGCG 80
H. savannae	ATGGCCTCTG	TCAAGAACAT	САССТССТСС	AAGCACGCCG	сссбсбсст	CGACCAATCC	ACCCCTTGCA	GCGTCATGCG 80
H. moniliformis	ATGGCCTCCG	TCAAGAACAC	тасстсттсс	AAGACTGCCG	ACCGTGGCGT	CACCCAGGCT	CCCCCGTGAA	ATGTTATGCG 80
H. fecunda	ATGGCCTCCG	TCAAGAACAC	тасстсттсс	AAGACTGCCG	ACCGTGGCGT	CACCCAGGCT	CCCCCGTGAA	ATGTTATGCG 80
H. tyalla	ATGGCCTCCG	TCAAGAACAC	тасстсттсс	AAGACTGCCG	ACCGTGGCGT	CACCCAGGCT	CCCCCGTGAA	ATGTTATGCG 80
		100		120		140		160
H. abstrusa	TGGCGTTGAC	CAGTCCAGCG	бттбстссбт	CATGCGCGGT	GTTGACCAGT	CCAGCGGCTG	CACCCTCATG	CGCGGTGTTG 160
H. omanensis	CGGCGTTGAC	CAGTCCAACC	сстбсбстбт	CATGCGCGGC	GTCGACCAGT	ССААССССТС	CACTGTCATG	СБСББТБТТБ 160
H. bhutanensis	TGGTGTTGAC	CAGTCCAACC	сбтбсбстбт	CATGCGCGGT	GTTGATCAGT	ССААССССТС	CACCGTCATG	150
H. decipiens	CGGTGTTGAC	CAATCCAACG	GTTGCACCGT	CATGCGCGGT	GTTGACCAGT	CCAACGGCTG	CACTGTCATG	CGCGGTGTTA 160
H. savannae	TGGTGTTGAC	CAGTCTACCC	CGTGCAACGT	CATGCGTGGT	GTTGACCAGT	CCACCCCGTG	CAACGTCATG	CGCGGTGTTG 160
H. moniliformis	CGGCGTTACC	CAGGCCCCGC	CTTGCAACGT	CATGCGTGGT	GTTACCCAGG	стсстссстс	CAACGTCATG	150
H. fecunda	CGGCGTTACC	CAGGCCCCGC	CTTGCAACGT	CATG				114
H. tyalla	CGGCGTTACC	CAGGCCCCGC	CTTGCAACGT	CATGCGCGGC	GTTACCCAGG	CCCCGCCTTG	CAACGTCATG	CGTGGTGTTA 160

H. abstrusa	ACCAGTCCAG	CGG	 	T	TGCACCCTCA	TGTAA	189

H. omanensis	ACCAGTCCAA	C			CCG	TGCACCCTCA	TGTAA 189
H. bhutanensis							TAA 153
H. decipiens	ACCAGTCCAA	CGGCTGCACT	GTCATGCGCG	GTGTTAACCA	GTCCAACGGT	TGCACCCTCA	TGTAA 225
H. savannae	ACCAGTCCAC	CCCTTGCACC	G			TCA	TGTAA 189
H. moniliformis							TAA 153
H. fecunda							TAA 117
H. tyalla	CCCAGGCTCC	TCCCTGCAAC	G			TCA	TGTAA 189

Fig S3: An alignment of the *a1* a-factor pheromone factor genes from all eight *Huntiella* species considered in this study. All three unisexual *Huntiella* species harboured a mutation that converted the TGC codon (Cys) into the TGA stop codon. This alignment was produced using the CLC Main Workbench V22.0 Create Alignment function within the Alignments and Trees module. The parameters were all set to default.

Fig S4: RNA mapping to confirm in frame stop codons in the *a1* and *a6* a-factor pheromone factor genes from the unisexual *H. moniliformis*. A) Overview of the mapping across the first *H. moniliformis* a-factor pheromone locus (*a1, a3* and *a4*). Both *a1* and *a4* are expressed, while there is no evidence that the *a3* gene is expressed. B) Mapping of the *a1* gene, indicating the start codon as well as the in frame stop codon (indicated by the light blue arrow and box). C) Mapping of the *a6* gene, indicating the start codon as well as the in frame stop codon (indicated by the light blue arrow and box). C) Mapping of the *a6* gene, indicating the start codon as well as the in frame stop codon (indicated using the CLC Genomics Workbench V22.0 Map Reads to Contigs function within the De Novo Sequencing module. The parameters were all set to default, except the minimum length and similarity fractions. These values were set to 0.9 for the mappings in A and B, and were set to 1.0 in the mapping in C.

					FIGUR	E S5					
4	A <i>H. abstrusa</i>	ATGGCCTCTG	20 TCAAGAACAC	САССТССТСС	40 C AAGACTGCTG	сссбсбссбт	60 I CGACCAGTCC	AGCGGCTGCT	80 I CTGTCATGCG	ссссттси	AC 90
	H. omanensis	ATGGCCTCTG	TCAAGAACAT	САССТССТСС	C AAGACTGCCG	сссбсбссст	CGACCAGTCT	AACCCCTGCG	CTGTCATGCG	тосстсо	AC 90
	H. bhutanensis	атддсстстд	TCAAGAACAT	тасстсстсо	C AAGGCTGCCG	сссбсбссбт	CGACCAGTC-				59
	H. decipiens	ATGGCCTCTG	TCAAGAACAT	САССТССТСС	AAGAACGCCG	сссбсбссбт	CGACCAGTCC	AACGGTTGCA	GCGTCATGCG	тсстстси	AC 90
	H. savannae	ATGGCCTCTG	TCAAGAACAT	САССТССТСС	AAGCACGCCG	сссбсбссбт	CGACCAATCC	ACCCCTTGCA	GCGTCATGCG	тсстстси	AC 90
	H. moniliformis	ATTACCGTTA	TCAAGAACAC	тасстсстсо	AAGACCGCAG	AGAGCGGCGT	TACCCAGGCT	CCTCCCTGCA		AGATGTT	87
	H. fecunda	ATGGCCGTTA	TCAAGAACAC	тасстсстсо	AAGACCGCAG	AGCGCGGCGT	TACCCAGGCT	CCTCCCTGCA	ACGTCATGTA	AGATGTT	87
	H. tyalla	ATTACCGTTA	TCAAGAACAC	тасстсстсо	C AAGACCGCAG	AGAGCGGCGT	TACCCAGGCT	CCTCCCTGCA	ΑCGTCATG	AGATGTT	87
	B			20			40		60		
	H. abstrusa	MASVKNTT	SS KTAAR	GVDQS SG	CSVMRGVD	QSSGCSVMR	G VDQSSGO	CTVM R	GVDQ S	SGCTVM*	63
	H. omanensis	ΜΑSVKNIT	SS KTAAR	GVDQS NP	CAVMRGVD	QSNPCAVMR	G VDQSNPO	CAVM R	GVDQ S	NPCTVM*	63
	H. bhutanensis	ΜΑSVKNIT	SS KAAAR	GVDQS NP	CSVMRGVD	QSNPCAVMR	G VDQSNPO	2		T V M *	51
	H. decipiens	ΜΑSVKNIT	SS KNAAR	GVDQS NG	CSVMRGVD	QSNGCTVMR	G VDQSNGO	CTVM R	GVNQ S	NGCTLM*	63
	H. savannae	ΜΑSVKNIT	SS KHAAR	GVDQS TP	CSVMRGVD	QSTPCNVMR	G VDQSTPO	CNVM R	GVDQ S	TPCNVM*	63
	H. moniliformis	ΙΤΥΙΚΝΤΤ	SS KTAES	GVTQA PP	CNVM*DVF	T S S N – – – L L	S ISSKCLO	CLSY RLYT	SLTSPR S	SETHNRS	65
	H. fecunda	ΜΑΥΙΚΝΤΤ	SS KTAER	GVTQA PP	CNVM*DVF	T S S N – – – L L	S ISSKCLO	CLSY RLYT	SLTSPR S	SETHNRS	65
	H. tyalla	ΙΤΥΙΚΝΤΤ	SS KTAES	GVTQA PP	CNVM*DVF	T S S N – – – L L	S ISSKCLO	CLSY RLYT	SLTSPR S	SETHNRS	65

Fig S5: An alignment of the *a3* a-factor pheromone from all eight *Huntiella* species considered in this study. All three unisexual species harboured a stop codon at the position corresponding to the 27th amino acid of the protein, a codon not present in the heterothallic species (indicated by the red blocks). Additionally, *H. moniliformis* and *H. tyalla* also harboured a mutation that converted the ATG codon (start methionine) into an ATT codon (IIe), potentially producing an untranslatable mRNA (indicated by the light blue blocks). A) A gene alignment of the first 90 nucleotides of the *a3* a-factor pheromone gene. B) A protein alignment of the full-length a3 a-factor pheromone protein. This alignment was produced using the CLC Main Workbench V22.0 Create Alignment function within the Alignments and Trees module. The parameters were all set to default.

Fig S6: RNA mapping to determine expression of the multiple a-factor pheromone genes from *H. abstrusa*. A) Expression of the genes present at the first a-factor pheromone locus. B) Expression of the genes present at the second a-factor pheromone locus, with inserts zoomed in on the three a-factor pheromones. The mappings were produced using the CLC Genomics Workbench V22.0 Map Reads to Contigs function within the De Novo Sequencing module. The parameters were all set to default, except the minimum length and similarity fractions. These values were both set to 1.0.

Fig S7: RNA mapping to determine expression of the multiple a-factor pheromone genes from *H. omanensis*. A) Expression of the genes present at the first a-factor pheromone locus. B) Expression of the genes present at the second a-factor pheromone locus, with inserts zoomed in on the three a-factor pheromones. The mappings were produced using the CLC Genomics Workbench V22.0 Map Reads to Contigs function within the De Novo Sequencing module. The parameters were all set to default, except the minimum length and similarity fractions. These values were both set to 1.0.

Fig S8: RNA mapping to determine expression of the multiple a-factor pheromone genes from *H. moniliformis*. A) Expression of the genes present at the first a-factor pheromone locus. B) Expression of the genes present at the second a-factor pheromone locus. The mappings were produced using the CLC Genomics Workbench V22.0 Map Reads to Contigs function within the

FIGURE S9							
Species	Protein structure	Repeat sequences	Number of repeats				
H. abstrusa		NSNGGLPGELLYSNGGLPGELL	12				
H. omanensis		 DSNGGLPGELL NSNAGLPGELL YSNAGLPGELL 	8				
H. bhutanensis		NSNGGLPGELLDSNGGLPGELL	11				
H. decipiens		NSNGGLPGELLDSNGGLPGELL	7				
H. savannae		NSNGGLPGELLDSNGGLPGELL	10				
H. moniliformis		DANGGLPGELFDAWGGLPGELF	6				
H. fecunda		DANGGLPGELFDAWGGLPGELF	6				
H. tyalla*	▶∎-?-?-∎-∎-	DANGGLPGELFDAWGGLPGELF	6				
Fig S9: The structure of the <i>H</i> represented by the light pink to contig could not be fully asserted by the	untiella α -factor pheromones from the various Huntiella species a triangle and the repeat units are represented by coloured squares nbled.	along with the sequences of the putat . The structure schematics are not drav	ive mature repeats. The signal peptide i wn to scale. * The <i>H. tyalla</i> α -pheromon				