
Appendix for “Free Riding, Network Effects, and Burden Sharing in
Defense Cooperation Networks”

Contents

A1 Computational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A1.1 Parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

A1.2 Equilibrium analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

A2 Stochastic Actor-Oriented Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

A2.1 Goodness of fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

A3 Robustness Checks and Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . 12

A4 Table of Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A5 Variable importance by country . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A1 Computational Model

Consider a finite set of nodes or agents, N = {1, 2, . . . , n}, where connections or ties between agents
are defined by the n × n network matrix, g ∈ {0, 1}. A nonzero entry, gij = 1, indicates that a
network tie exists between row agent i and column agent j. The matrix is symmetric, such that
gij = gji. Because agents cannot form ties with themselves, gii = 0 ∀ i ∈ N . Substantively,
the g matrix represents the DCA network at a given moment in time. Further consider an n × 1
matrix, r ∈ {1, . . . ,M}, which defines a node-level or individual behavior, scaled across M ordinal
categories. The r matrix represents country-level defense effort in a given year, where larger ri
values indicate that the focal agent i expends more effort on defense (e.g., in terms of spending as
a percentage of GDP).

The agent-based model (ABM) of network-behavior coevolution assumes that agents are myopically
utility maximizing (Snijders and Steglich 2015: 233). That is, agents select network ties and
behaviors in a way that maximizes their immediate subjective utility. They do so by optimizing
two distinct objective functions, corresponding to the g network and r behavior. First consider
the g network. When given an opportunity to make a change to g, an agent i may create a new
tie, terminate an existing tie, or make no change at all. Let g+ be the network that exists after
i has been given an opportunity to change its ties. If i chooses not to change its ties, g+ = g.
Otherwise, g+ differs by one tie, such that, for a given j partner, g+ij = 1 − gij . Assume that i
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chooses the network g+ that maximizes the function fneti (g, g+, r) + ϵneti (g, g+, r), where ϵneti is a
random disturbance term that represents unexplained change. If we further assume that ϵneti follows
a type I extreme value or Gumbel distribution (Maddala 1983), which is a common assumption in
random utility models (Snijders 2001: 363), then the choice probabilities for i can be expressed as

Pi(g
+) =

exp(fneti (g+, r))
n∑
k=1

exp(fneti (g+k, r))

, (A1)

where the sum in the denominator refers to all possible g+k states of the network, or the options
available to i for toggling its network ties (Snijders and Steglich 2015: 233). This probability is the
same as that used in multinomial logit models (Maddala 1983), and it allows agents to maximize
their utility by choosing whichever tie offers the greatest payoff.

Because DCAs are nondirected, agent i cannot unilaterally impose network ties but must have its
proposed ties accepted by their respective targets. Assume that i’s preferred g+ network involves
a new ij tie, and let g− represent the network without the ij tie. The target node j must then
choose between g+ and g−. The probability that j will accept the tie proposed by i is given by

Pj(g
+) =

exp(fnetj (g+, r))

exp(fnetj (g−, r)) + exp(fnetj (g+, r))
, (A2)

where exp(fnetj (g+, r)) is the agent-oriented network objective function applied to j rather than
i. Thus, the more that g+ increases node j’s utility relative to g−, the more likely j is to accept
the offer. This method of modeling symmetric ties is known as “unilateral initiative and recipro-
cal confirmation” (Snijders and Pickup 2016), and it is a reasonable approximation of real-world
treatymaking processes (Kinne 2013). The same choice probabilities have been used to model
preferential trade agreements (Manger et al. 2012), military alliances (Warren 2010, 2016), and
bilateral agreements across multiple issue areas (Kinne 2013).

The ABM models behavior choice probabilities in a similar way. When given an opportunity, i
selects an ri behavior so as to maximize the function fbehi (g, r, r+) + ϵbehi (g, r, r+), where r+ is the
n× 1 matrix of behaviors that results after i has decided whether to change its behavior, and ϵbehi

is again a random disturbance. The probability of i changing its behavior is thus

Pi(r
+) =

exp(fbehi (g, r+))
M∑
k=1

exp(fbehi (g, r+k))

, (A3)

where the sum in the denominator refers to all possible next behavior states (Steglich et al.
2010: 350). By assuming an ordinal behavior variable, the ABM can model both network rela-
tions and individual behavior from a common statistical framework—i.e., a continuous-time Markov
chain with a discrete outcome space (Niezink et al. 2019: 296).

The ABM implements these functions as linear combinations of effects,

fneti (g, g+, r) =
Lg∑
h

βneth sneth (i, g, g+, r) (A4)
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fbehi (g, r, r+) =

Lr∑
h

βbehh sbehh (i, g, r, r+), (A5)

where the statistics sh are specified by the user on the basis of theory, and Lg and Lr indicate
the number of unique terms in each function. These statistics may include endogenous effects
of the r behavior (e.g., autocorrelation); features of the g network, such as closed triangles; or
exogenous monadic and/or dyadic covariates. The βh parameters are weights that determine the
extent to which agents attempt to achieve a network-behavioral state that yields large values for
the corresponding sh statistics. For example, if the βnet1 parameter for the statistic snet1 is positive,
agents choose ties in a way that increases the calculated value of snet1 in the simulated networks.
If βnet1 is negative, agents work to decrease the value of that statistic. Table A1, reproduced from
the main paper, summarizes the ABM terms, including formal definitions of each statistic.

Table A1: Summary of ABM Terms
Variable Parameter Name Definition Description

Defense spending equation

ri αbeh Constant ri Baseline defense spending behavior,
or cost of defense effort

di γ DCA Degree ri
∑n

j gij Effect of bilateral DCAs on i’s de-
fense effort

qi ψ DCA Dense Triads ri
∑n

j,k gijgikgjk Effect of DCA triangles on i’s de-
fense effort

zi η DCA Triads Effort qiri
∑n

j gijrj Effect of DCA triangles conditional
on partners’ defense effort

ci π Monadic covariate rici Exogenous influences at the coun-
try level

DCA network equation

gi• αnet Density
∑n

j gij Baseline tendency to form ties, or
cost of DCAs

aij τ Total Degree
∑n

j gij(gj• + gi•) Selection of partners based on total
# of DCAs signed

bij δ Transitive Triads
∑n

j<k gijgikgjk Selection of partners based on clo-
sure of triangles

rj ζ Defense Spendingj

∑n
j gijrj Selection of high-spending partners

cj ϕ Monadic covariate
∑n

j gijcj Exogenous country-level influences
on partner selection

wij ξ Dyadic covariate
∑n

j gijwij Exogenous country-pair influences
on partner selection

The opportunity for agent i to change either a network tie or its behavior is determined by two
separate rate functions drawn from the exponential distribution with parameters λi(ρg, g) and
λi(ρr, r). Any such opportunity for an agent to make a change is known as a “micro step” (Steglich
et al. 2010: 348). The network and behavior co-evolve in continuous time as a result of a series
of micro steps, where agents sequentially change their ties or behavior. Once an agent takes a
micro step, the network and associated behaviors update accordingly for the next agent, such that
network-behavior coevolution follows a Markov process (Steglich et al. 2010).

The ρg and ρr parameters play a crucial role in identifying equilibrium network and behavior
properties (Stadtfeld et al. 2020). These are user-specified “basic parameters” that determine
the average number of opportunities an agent has to make changes to its ties or behavior in a
single iteration of the ABM (Snijders and Steglich 2015: 233). Higher values of ρ offer agents
more opportunities for change, which in turn facilitates the emergence of statistical equilibria—
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i.e., equilibrium distributions where mean behavior remains stable even as the model continues to
iterate (De Marchi and Page 2014). For all results shown in the main paper, we use ρg and ρr
values of at least 100. Opportunities to make changes are uniformly distributed across agents, and
are equally divided between networks and behavior. Section A1.2 below shows that these values
are sufficient to generate stable equilibria.

We calibrate the ABM using observed empirical data on the DCA network and defense effort for the
year 2000.1 The initial g matrix is thus the observed DCA network, where gij = 1 indicates a DCA in
force, and the initial r matrix is country-level defense spending as a percentage of GDP, discretized
at 1% increments, plus a residual category for spending above the 10% level, [0, 0.01, . . . , 0.1, 1],
which yields an 11-point scale of defense effort (M = 11). discretization is necessary to implement
the behavior choice probabilities expressed in Eq. A2. Conversion of continuous data to discrete
data is common in applications where continuous data would impose a substantial computational
burden, such as machine learning (Catlett 1991; Chmielewski and Grzymala-Busse 1996). In this
case, a continuous behavior variable implies a virtually infinite number of choices in the probability
function, which is computationally impossible. Section A3 below discusses discretization further
and shows that, when extended to the empirical analysis, discretization has no substantive impact
on the results.

The full ABM consists of (1) the g network and r behavior, with year 2000 values designated as
the t = 0 initial state of a stochastic process; (2) the rate functions λ(ρ, g) and λ(ρ, r); and (3) the
choice probabilities P (g) and P (r). Together, these components of the model define a continuous-
time Markov chain over a discrete outcome space, where all possible combinations of network ties
and behaviors constitute the state space (Steglich et al. 2010: 355).

As a Markov chain, the model can be fully described by the steps in a single iteration of the
algorithm, as follows:

• Begin with time= t0, and set r = r0 and g = g0 at observed year 2000 values

1. For all N = {1, . . . , n} agents, sample waiting times from λ(ρ, g) and λ(ρ, r)

2. Determine from waiting times whether the next micro step will be a network or behavior
change, and find the i ∈ {1, . . . , n} node with the shortest waiting time

a. If i has an opportunity to change its network ties:

a1. Sample prospective j targets in proportion to fneti (g+, r)

a2. If i chooses to add or remove a tie, and j accepts, then g+ij = 1− gij ; otherwise,

g+ = g

a3. Update the network matrix, g = g+

b. If i has an opportunity to change its behavior:

b1. Determine the value of ri that maximizes fbehi (g, r+)

b2. If i chooses to increase or decrease its behavior, then r+i = ri ± 1; otherwise
r+ = r

b3. Update the behavior matrix, r = r+

3. Increment time = time + t

4. Return to step 1 and repeat until time = tend

• Return final network and behavior matrices

1 The choice of year is inconsequential to the results presented here.
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A1.1 Parameter values

As described in the main paper and summarized above in Table A1, we specify the full behavior
objective function as,

fbehi (g, r, r+) = αbehri + πci + γdi + ψqi + ηzi, (A6)

and the network objective function as,

fneti (g, g+, r) = αnetgi• + ϕci + ξwij + ζrj + τaij + δbij . (A7)

Table A2 summarizes the parameter values used in the simulations, corresponding to Figures 5,
6, and 7 in the main paper. In setting parameter values, we draw on existing empirical research
on defense spending and DCAs (e.g., Kinne 2018; Whitten and Williams 2011). In the behavior
equation, ri is agent i’s current level of defense spending, and the αbeh parameter thus reflects
governments’ baseline tendency toward spending on defense. We set αbeh at a negative value to
reflect the nonzero costs of defense products (Sandler and Hartley 2001: 873). The quantity ci is
an n × 1 random variable with an exponential distribution, which represents exogenous, country-
specific demands for defense spending, such as variations in national income and/or exposure to
security threats (Sandler 1993). We set the corresponding π parameter at a constant positive value
to reflect exogenous upward pressures on defense spending.

Table A2: ABM Terms and Parameter Profiles
Statistic Parameter Model 1 Model 2 Model 3 Model 4∗ Model 5

Behavior (defense spending)

ri αbeh -0.5 -0.5 -0.5 -0.5 -0.5
di γ [−0.05, . . . , 0] [0, . . . , 0.05] 0.025 0.025 0.025
qi ψ 0 0 [−0.005, . . . , 0.005] [−0.005, . . . , 0.005] [−0.005, . . . , 0]
zi η 0 0 0 0 [−0.0001, . . . , 0]
ci π 0.75 0.75 0.75 0.75 0.75
Network (DCAs)

gi• αnet 0 0 -4 -6 -4
aij τ 0 0 0.1 0.35 0.1
bij δ 0 0 0.5 -0.75 0.5
rj ζ 0 0 0.025 0.025 0.025
cj ϕ 0 0 0.1 0.1 0.1
wij ξ 0 0 0.1 0.1 0.1
ABM results in... Fig. 5(a) Fig. 5(b) Fig. 6(a) Fig. 6(b) Fig. 7
∗ The aij quantity is defined only as target (j) nodal degree in this model.

The crucial quantity di is calculated as agent i’s nodal degree in the DCA network and thus
corresponds to spillin—or anticipated contributions from one’s partners—in the public-goods model
(Conybeare et al. 1994). The associated parameter, γ, moderates the effect of DCA partnerships on
i’s own defense spending. As discussed in the main paper, we vary γ at incremental negative values,
γ ∈ {−0.05, . . . , 0}, in ABM Model 1, which yields standard public-goods expectations (Figure 5(a)
of the main paper). In Model 2, we instead set γ at incremental positive values γ ∈ {0, . . . , 0.05},
which accounts for detection and punishment (Figure 5(b)).

The other crucial quantity in the behavior equation is qi, which is a count of the number of transitive
triads in agent i’s local network. In both ABM Model 3 and Model 4—results illustrated in Figures
6(a) and 6(b), respectively, of the main paper—we set the corresponding ψ parameter at incremental
values ψ ∈ {−0.005, . . . , 0.005}, which reflect a wide range of potential influence for dense local
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networks on country-level defense effort. The zi statistic is a conditional variant of transitive triads,
such that the influence of i’s dense local network depends on the defense spending of i’s j DCA
partners. The parameter η determines i’s triangle-based responsiveness to the spending of those
partners. Considering ψ and η together, as in Figure 7 of the main paper, allows us to derive
distinct hypotheses for the proposed efficiency and free-riding mechanisms, respectively.

Because the DCA and behavior equations are functions of one another, the calculated values of the
qi and zi statistics depend on the structure of the network. And that structure is determined by the
network objective function specified in Eq. A7. The αnetgi• term reflects agents’ baseline tendency
toward forming network ties. We set αnet at a negative value to reflect the costs of tie creation,
such as negotiating and signing bilateral DCAs (Kinne 2018, 2020; Smaldino et al. 2018). Both
cj and wij are exponentially distributed random variables—one monadic, the other dyadic. We
set their corresponding parameters—ϕ and ξ, respectively—at positive values to reflect exogenous
upward pressures on DCA formation. Note that these exogenous terms can easily be expanded
into multiple monadic and/or dyadic covariates, with differing positive and negative parameters
for each, without substantively altering the results of the ABM. (The empirical analysis effectively
expands these terms via inclusion of multiple monadic and dyadic covariates.)

The ζrj term reflects the tendency of agents to select partners that spend on defense at high levels.
Inclusion of this term further accounts for endogenous selection-influence dynamics. That is, the
model allows not only for the possibility that an accumulation of DCAs influences defense spending,
but also that states select partners on the basis of their spending levels. We set the ζ parameter
at a positive value to reflect the attraction of states, ceteris paribus, for high-spending nodes.

Finally, the terms τaij and δbij are endogenous network selection effects, corresponding to mutual
attraction between high-degree nodes (Maoz 2012; Newman 2002) and tendencies toward transitive
closure (Holland and Leinhardt 1971). In ABM Model 3 (Figure 6(a) of the main paper), which
generates the main hypothesis regarding the influence of transitive triads on defense spending,
we set τ = 0.1 and δ = 0.5. These values reflect the empirical reality that states in the DCA
network prefer to form ties both to high-degree nodes and to partners of partners (Kinne 2018).
In ABM Model 4 (Figure 6(b)), we specify an alternative network formation process, dominated
by preferential attachment and aversion to transitive closure (Barabási and Albert 1999). In that
case, we increase τ to 0.35 and decrease δ to -0.75. Note that Model 4 also defines the aij degree
quantity solely in terms of the j target node’s degree (i.e., as opposed to mutual ij degree), which
better reflects the logic of preferential attachment (Barabási and Albert 1999).

A1.2 Equilibrium analysis

The ABM generates statistical equilibria, where macro-level patterns of network tie formation
and mean behavior remain stable even as the model continues to iterate and, at the micro level,
individual nodes continue to adjust their ties and behavior (De Marchi and Page 2014: 10–11). The
key mechanism in achieving stable equilibria is the rate function, which determines the “rate of
change” in network-behavior coevolution, or the number of opportunities that agents have to change
their ties and/or behavior. In the ABM, this function is set by the parameters ρg for the network
and ρr for behavior. We simulated the ABM at incremental values of the ρ parameters ranging
from 1 to 500, and we found that network-behavior coevolution typically reaches an equilibrium
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state with rates of 100–150. We thus set ρg and ρr at no less than 100 in all ABM simulations,
depending on computational feasibility (i.e., higher ρ values increase computational intensity).

Figure A1: ABM Equilibrium Analysis
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Figure A1 illustrates equilibria with regard to one behavior statistic and three network statistics.
The results show not only that the ABM converges relatively quickly on stable macro-level states,
but that these states correspond to plausible values of the specified network properties and are not
an artifact of model degeneracy (Schweinberger 2011).

A2 Stochastic Actor-Oriented Model

The empirical model, which is a stochastic actor-oriented model (SAOM) of network-behavior
coevolution, combines the simulation architecture of the ABM with a method-of-moments estimator
(Snijders 2001: 372). In short, the SAOM empirically validates the ABM. See Snijders (2001, 2005)
for a rigorous technical treatment of the model; Snijders et al. (2010) for a minimally technical
overview; Steglich et al. (2010) for the network-behavior specification of the SAOM; and Snijders
and Steglich (2015) for the treatment of SAOMs as ABMs. The below summary of the model draws
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primarily on Snijders (2001, 2005).

As discussed in the main paper, the empirical versions of the objective functions can be written as

fgi (g, r) =

Lg∑
h

βghs
g
ih(g, r), (A8)

and

fri (g, r) =
Lr∑
h

βrhs
r
ih(g, r), (A9)

where g and r refer to stacked n×n and n×1 matrices, respectively, of empirical DCA and defense
spending data, observed over T time periods. (Lg and Lr again indicate the number of unique
terms in each function.) While the ABM simulates network-behavior coevolution under various
user-specified parameter values in order to generate statistical equilibria, the SAOM instead uses
empirically constrained simulations to derive expected values for the method-of-moments estimator.
Specifically, the SAOM simulates network-behavior coevolution while stochastically sampling from a
parameter space, with the goal of locating those β̂ parameter estimates that minimize the difference
between simulated and observed networks/behaviors (Steglich et al. 2010: 355–358).

The model first uses empirical data to calculate target values for each of the sih statistics in the
above objective functions. These target values are calculated by summing the relevant statistics
over all nodes and time periods in the data. For example, target values for the g network are
defined as

sobsh =
T−1∑
t=1

n∑
i=1

sih(g
obs(t+ 1)), (h = 1, . . . , Lg), (A10)

with the full set of observed Lg target values collected in the sobs vector.

The method-of-moments estimator works by fitting the target values of these statistics to their
expected values. Expected values are not known ex ante and must be generated through simulations.
As a preliminary, define the distance between any two arbitrary networks, x and y, as the sum of
their pairwise differences, ∥x− y∥ =

∑
ij |xij − yij |. Then define

ct = ∥gobs(t+ 1)− gobs(t)∥, (A11)

which is the distance between two sequential observations of the empirical g network. For each
t = 1, . . . , T − 1, take the initial observed network, gobs(t), as the starting point. Then, for a
given parameter vector β = (B1, . . . , βLg) and a rate function λ(g), simulate network-behavior
coevolution, as described in the above presentation of the ABM, until the first time point, denoted
Rt, where ∥gsimt (Rt) − gobs(t)∥ = ct. Or, in words, run the simulation until the distance between
the observed network at t and the simulated network is equal to the distance between the observed
network at t and the observed network at t+ 1. Then calculate the following statistics:

Sh =

T−1∑
t=1

n∑
i=1

sih(g
sim
t (Rt)), (h = 1, . . . , Lg). (A12)

This procedure yields a random variable, S = S1, . . . , SLg . The goal of this estimation procedure
is to find the β̂ vector that satisfies the moment equation,

εβ̂S = sobs, (A13)
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where the identified parameter estimates yield simulated networks identical to the observed net-
works. Thus, while the SAOM leverages the same simulation architecture as the ABM, the ABM
only uses empirical data to calibrate the model, as a starting point for the coevolutionary process,
with parameters fully determined by the user. By contrast, the SAOM simulations are constrained
throughout by observed longitudinal networks and behaviors, and the parameters are estimated
through method of moments.

The SAOM implements a stochastic Robbins-Monro algorithm to search the parameter space for
β̂ values that produce the best fit. Steglich et al. (2010: 357) document each step of the estimation
algorithm. Standard errors are obtained by holding β = β̂ and continuing to simulate the network
in order to generate a matrix of simulated covariances for the statistics of the objective functions,
and taking the square root of the diagonal elements. Null hypotheses can then be tested with a

standard t-statistic, th = β̂h
s.e.(β̂h)

.

A2.1 Goodness of fit

Like other inferential network models (Hunter et al. 2008b; Minhas et al. 2019), SAOMs pose unique
challenges in assessing goodness of fit (GoF). Traditional regression statistics, such as R2, cannot
be calculated. The most commonly used approach, especially for models that rely on simulations,
is to assess fit by comparing relevant statistical features of the simulated networks with those same
features in the observed networks (Hunter et al. 2008a). Ideally, the statistics used for this purpose
should not be directly included in the modeling equations. In this way, goodness of fit is a matter
of determining how well the model generates simulated networks that share emergent properties
and topological features with the real-world networks, even though those features are not explicitly
modeled in specified equations (Lospinoso and Snijders 2019). Put differently, the model should
generate well-fitting networks at the macro level via specifying network formation processes at the
local level.

Figure A2 illustrates goodness of fit for our main empirical model (i.e., SAOM Model 3 in the main
paper) across a range of statistics. Note that, in this context, p-values test the null hypothesis
that the simulated networks do not differ significantly from the observed networks. Thus, large
p-values—specifically, p-values larger than 0.05—indicate that the specified model is a good fit to
the observed data. P-values in the range of 0.01–0.05 suggest potential fit problems, while p-values
less than 0.01 necessitate reconsideration of the model specification.

The top-left panel of Figure A2 illustrates fit with regard to the behavior distribution, i.e., defense
spending. The close match between observed and simulated values, as well as the high p-value,
indicate an excellent fit. The top-right panel assesses fit with regard to network-behavior autocor-
relation. This diagnostic is especially helpful in SAOMs that include both network and behavior
equations (De La Haye et al. 2011; Kretschmer et al. 2018). We calculated Moran’s statistic for
dependence of behavior r on network g for neighborhoods of order d ∈ {1, 2, 3}. The fit is excellent.
The dependence between DCA networks and defense spending in the real-world data closely mirrors
that in the SAOM simulations. Given our primary focus on defense spending, the results of these
first two diagnostics are reassuring.

The remaining panels show goodness of fit with respect to the DCA network, which is largely a
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Figure A2: Goodness of Fit
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simulated networks. All results derived from Model 3 of the main paper.

matter of the specification of the network objective function. The fits are again uniformly strong,
especially for the triad census and geodesic distance. The fit for the degree distribution is the
weakest—though the p-value is nonetheless higher than the 0.05 threshold. Given that the other
fits are extremely strong, especially with regard to behavior and network-behavior autocorrelation,
the fit for degree distribution is not concerning.

We also assessed SAOM fit using out-of-sample prediction (Kinne 2013; Leifeld and Cranmer 2019).
Though this approach has recently attracted controversy when applied to SAOMs (Block et al.
2018), we include it here due to the prevalence of out-of-sample validation in analysis of political
phenomena (Ward 2016). We used the same method used by Kinne and Bunte (2020). We removed
the final year of data from the analysis (2010), re-estimated Model 3 on the 1990–2009 data (training
set), and generated out-of-sample predictions for 2010 (validation set). To compare the SAOM
results to standard regression approaches, we estimated two additional models: an ordered logit
model of defense effort, and a binary logit model of DCA membership with an AR1 autoregressive
term.

We first compare the SAOM to the ordered logit model by comparing incorrect predictions for each
category of defense spending, as illustrated in Figure A3. The SAOM predicts the true defense
spending category for approximately 85% of countries. The ordered logit model, by contrast,
correctly classifies only about 55% of countries. Although the logit model contains the same terms
as the behavior equation of the SAOM—including terms for DCA degree and local DCA triangles—
it performs very poorly. Incorporating the coevolutionary network-behavior dynamics of DCA
membership and defense spending sharply improves fit. The SAOM is not merely an academic
exercise but instead allows us to predict defense spending across countries with great accuracy.
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Figure A3: Out-of-sample prediction, defense spending
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SAOM RMSE=0.397. Logit RMSE=0.828.

Though we are less concerned with out-of-sample prediction of DCA membership—and the pre-
dictive benefits of the network approach have been shown elsewhere (Kinne 2013; Minhas et al.
2019; Ward et al. 2007)—we also plot receiver-operating characteristic (ROC) and precision-recall
(PR) curves for the out-of-sample predictions of network ties. As Figure A4 illustrates, the SAOM
greatly improves on binary logit.

Figure A4: Out-of-sample prediction, DCA network ties
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A3 Robustness Checks and Sensitivity Analysis

We estimated a battery of additional models to assess the robustness of our main results. Although
DCAD covers the 1980–2010 period, the DCA network is sparse in the 1980s, and largely dominated
by the United States. This sparseness poses a challenge for the SAOM. Further, the outsize role of
the US suggests a structural break in the network-formation process between the 1980s and 1990s.
We thus estimated our main models on data for the period 1990–2010. As a robustness check, we
estimated a model on the 1981–2010 period.2 Model A1 of Table A3 lists the estimates.

We also considered alternative versions of the DCA variable. The main analysis uses the “dca-
GeneralV1” variable from DCAD, which includes only general DCAs coded with high confidence
(Kinne 2020). We estimated a model using “dcaAnyV1,” which includes both general and sector
DCAs, again coded with high confidence. And we estimated a model using the most generous DCA
variable, “dcaAnyV2,” which includes all DCAs, whether general or sector, regardless of coding
confidence. The results for these two estimations are in Models A2 and A3 of Table A3.

Model A4 returns to the specification used in the main paper, but with an additional term, Ally
Spillin, to capture alliance-based defense contributions (Smith 1995: 72). This term is defined as
the sum of the defense spending, relative to GDP, of the focal node’s alliance partners.

Kinne and Bunte (2020) show that DCAs coevolve with bilateral lending. Incorporating bilat-
eral loans as an additional network layer would entail estimating a SAOM with three separate
equations—DCAs, loans, and defense spending—and is thus beyond the scope of this paper, but
we nonetheless estimated a model that controls for bilateral loans (Model A5 in Table A3). We
included a binary dyadic term, Bilateral Loan, in the network equation, and a log-transformed
count of country-year bilateral loans in the behavior equation.3

Model A6 uses a log transformation of the defense spending variable. Because some countries spend
zero dollars on defense, we must add a small value to this variable before taking the log. We add
a constant equal to the smallest observed nonzero level of defense spending. We then discretize at
integer values of the log-transformed metric.

To account for the potential influence of foreign-policy ideology on defense effort, Models A7 and
A8 include UNGA ideal point estimates in the defense spending equation (Bailey et al. 2017).
The concern here is that the apparent influence of network structure may be epiphenomenal to
ideological clustering.4 That is, if states enter into DCAs with partners that are ideologically similar
to themselves, then dense local networks may be dominated by ideologically aligned states. In such
a case, states may reduce spending not because of policy convergence, but because commitments
among like-minded states are more credible and trustworthy, thus strengthening perceptions of
security (cf. Bearce and Bondanella 2007; Deutsch et al. 1957; Macon et al. 2012; Pauls and
Cranmer 2017).

We account for this possibility in two ways. First, we include monadic (i.e., country level) UNGA

2 For the specific version of the DCA variable we use here, the network is static from 1980 to 1981, and so 1980
must be removed from the analysis.

3 We thank an anonymous reviewer for suggesting this model.

4 We thank the IO editors for suggesting this possibility.
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ideal points as a covariate, UNGA Ideal Point, in the spending equation. Second, we derive a
measure of the ideal point distance between i and its triangle partners. The resulting variable,
UNGA Sim. Triangles, essentially weights i’s DCA triangles by i’s ideological similarity to its
triangle partners. To derive this variable, we inverted the UNGA ideal-point difference metric such
that larger values indicate less distance in foreign-policy ideologies. Thus, larger values of UNGA
Sim. Triangles indicate greater ideological similarity in dense local networks.

The estimate for UNGA Ideal Point is positive and significant (A7), indicating that countries
aligned more closely with the US-led liberal order are more likely to increase their defense effort.
The estimate for DCA-UNGA Sim. Triangles is not statistically significant (A8). In both cases,
the estimates for DCA Degree and DCA Dense Triads remain significant in the expected directions.

These results obtain, we believe, because foreign-policy ideology is only loosely related to defense
policy coordination. For example, Bailey et al. (2017: 449) caution that UN votes address “issues
of global importance” and, further, that “measures based on UN votes are only useful if we believe,
theoretically, that a state’s position on global issues matters for the outcome under consideration.”
Defense policy is narrowly focused on security issues of immediate interest. And while macro-
level strategic policy—i.e., which threats to prioritize and how to address them—may overlap with
ideology, defense policy also includes highly technical concerns like interoperability, logistics &
supply, information-sharing protocols, procurement and acquisition standards, and so on. These
fine-grained aspects of defense policy facilitate concrete cooperative activities in a way that broad
similarities in foreign-policy preferences likely do not.
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Table A3: Robustness Checks, DCAs and Defense Expenditures
Model A1 Model A2 Model A3 Model A4 Model A5 Model A6 Model A7 Model A8

DCA Equation

Main effects

Transitive Triads 0.200∗∗∗ 0.203∗∗∗ 0.150∗∗∗ 0.199∗∗∗ 0.199∗∗∗ 0.211∗∗∗ 0.199∗∗∗ 0.196∗∗∗

(0.049) (0.041) (0.024) (0.046) (0.047) (0.048) (0.048) (0.047)
Total Degree 0.050∗∗∗ 0.039∗∗∗ 0.016∗∗∗ 0.051∗∗∗ 0.051∗∗∗ 0.049∗∗∗ 0.051∗∗∗ 0.050∗∗∗

(0.005) (0.004) (0.003) (0.005) (0.005) (0.004) (0.005) (0.004)
Defense Spendingj −0.020 0.031 0.028 −0.018 −0.015 0.224∗ −0.017 −0.017

(0.049) (0.043) (0.031) (0.052) (0.052) (0.092) (0.050) (0.050)
Control variables

Distance −0.829∗∗∗ −0.857∗∗∗ −0.839∗∗∗ −0.838∗∗∗ −0.835∗∗∗ −0.841∗∗∗ −0.836∗∗∗ −0.834∗∗∗

(0.062) (0.060) (0.046) (0.064) (0.066) (0.063) (0.066) (0.064)
Alliance (non-NATO) 0.985∗∗∗ 0.821∗∗∗ 0.581∗∗∗ 0.958∗∗∗ 0.954∗∗∗ 0.910∗∗∗ 0.959∗∗∗ 0.952∗∗∗

(0.122) (0.111) (0.086) (0.127) (0.125) (0.124) (0.124) (0.127)
NATO −2.945∗∗∗ −3.184∗∗∗ −2.430∗∗∗ −3.249∗∗∗ −3.244∗∗∗ −3.369∗∗∗ −3.252∗∗∗ −3.210∗∗∗

(0.288) (0.295) (0.208) (0.314) (0.318) (0.339) (0.312) (0.309)
UNGA Ideal Point Diff. −0.555∗∗∗ −0.593∗∗∗ −0.371∗∗∗ −0.542∗∗∗ −0.545∗∗∗ −0.621∗∗∗ −0.542∗∗∗ −0.538∗∗∗

(0.061) (0.060) (0.044) (0.061) (0.069) (0.073) (0.069) (0.065)
Trade 0.086∗∗ 0.086∗∗∗ 0.021 0.072∗∗ 0.070∗ 0.072∗∗ 0.071∗∗ 0.072∗

(0.027) (0.025) (0.018) (0.028) (0.029) (0.026) (0.027) (0.028)
Bilateral Loan 0.064

(0.130)
Democracyj 1.527∗∗∗ 1.338∗∗∗ 0.912∗∗∗ 1.451∗∗∗ 1.454∗∗∗ 1.523∗∗∗ 1.454∗∗∗ 1.441∗∗∗

(0.223) (0.177) (0.113) (0.215) (0.218) (0.224) (0.231) (0.210)
Capabilitiesj 0.828∗∗∗ 0.757∗∗∗ 0.772∗∗∗ 0.793∗∗∗ 0.788∗∗∗ 0.768∗∗∗ 0.792∗∗∗ 0.789∗∗∗

(0.061) (0.057) (0.045) (0.060) (0.066) (0.061) (0.065) (0.064)
Density −5.669∗∗∗ −5.006∗∗∗ −3.804∗∗∗ −5.373∗∗∗ −5.364∗∗∗ −5.354∗∗∗ −5.363∗∗∗ −5.354∗∗∗

(0.195) (0.168) (0.094) (0.196) (0.205) (0.205) (0.208) (0.197)

Defense Spending Equation

Main effects

DCA Degree 0.069∗∗∗ 0.075∗∗∗ 0.046∗∗∗ 0.085∗∗∗ 0.080∗∗∗ 0.059∗∗ 0.070∗∗ 0.080∗∗∗

(0.019) (0.020) (0.014) (0.022) (0.023) (0.022) (0.023) (0.023)
DCA Dense Triads. −0.019∗∗ −0.016∗∗ −0.007∗ −0.022∗∗ −0.020∗∗ −0.013∗ −0.018∗ −0.024∗∗

(0.006) (0.006) (0.003) (0.007) (0.007) (0.006) (0.007) (0.009)
Control variables

Democracy −0.366∗∗∗ −0.490∗∗∗ −0.448∗∗∗ −0.481∗∗∗ −0.499∗∗∗ −0.206 −0.839∗∗∗ −0.495∗∗∗

(0.109) (0.134) (0.132) (0.130) (0.129) (0.113) (0.151) (0.131)
GDP Growth −1.372∗ −2.126∗ −2.197∗∗ −2.106∗ −2.072∗ −1.063 −1.656∗ −2.128∗

(0.614) (0.829) (0.836) (0.831) (0.839) (0.898) (0.830) (0.870)
Allies (non-NATO) −0.008∗∗ −0.009∗∗ −0.009∗∗ −0.009∗∗ −0.009∗∗ −0.003 −0.012∗∗∗ −0.009∗∗

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
NATO Member 0.884∗∗∗ 0.854∗∗∗ 0.879∗∗∗ 0.846∗∗∗ 0.796∗∗∗ 0.416∗ 0.558∗∗∗ 0.835∗∗∗

(0.126) (0.161) (0.149) (0.155) (0.172) (0.175) (0.167) (0.159)
Military Regime 0.059 0.252 0.242 0.244 0.249 0.459∗ 0.353 0.240

(0.137) (0.186) (0.194) (0.187) (0.184) (0.229) (0.190) (0.188)
MIDs 0.070 0.153 0.137 0.163 0.142 0.173 0.101 0.163

(0.074) (0.084) (0.087) (0.090) (0.087) (0.105) (0.091) (0.088)
Spatial Lag 8.763∗∗∗ 7.364∗∗ 7.398∗∗ 5.315 7.375∗∗ 17.611∗∗∗ 8.140∗∗ 7.331∗∗

(2.219) (2.702) (2.765) (3.490) (2.800) (4.861) (2.880) (2.758)
Ally Spillin 3.749

(3.695)
Bilateral Loans 0.004

(0.004)
UNGA Ideal Point 0.415∗∗∗

(0.085)
UNGA Sim. Triangle 0.004

(0.008)
Constant −1.037∗∗∗ −1.155∗∗∗ −1.152∗∗∗ −1.150∗∗∗ −1.144∗∗∗ −0.198∗∗ −1.159∗∗∗ −1.113∗∗∗

(0.056) (0.074) (0.076) (0.076) (0.074) (0.071) (0.080) (0.101)
Constant2 0.007 −0.033 −0.035 −0.036 −0.035 −0.486∗∗∗ −0.046 −0.033

(0.014) (0.024) (0.025) (0.024) (0.024) (0.048) (0.027) (0.023)
Iterations 2,971 2,640 2,640 2,661 2,677 2,640 2,661 2,661
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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As discussed above, both the ABM and the empirical model require an ordinal behavior dependent
variable. Modeling the coevolution of a discrete network and a continuous individual behavior
poses formidable methodological challenges; to our knowledge, there are not yet established em-
pirical models capable of accomplishing this task.5 This methodological limitation sets up a clear
trade-off between a traditional regression approach and the SAOM. While a linear regression model
would of course allow for a continuous spending variable, regression models assume identical, in-
dependently distributed (i.i.d.) observations and therefore cannot account for essential aspects of
the data generating process, including but not limited to (1) coevolution between network ties and
individual behavior; (2) endogenous influences within the DCA network itself, such as transitivity
and degree effects; and (3) endogenous influences on individual behavior, particularly network-
dependent responses to the behavior of other nodes. These phenomena comprise the core of our
theory. Further, the SAOM analysis shows that they play a central role in real-world burden shar-
ing. In short, not only would a standard regression model prevent us from testing the hypotheses,
but it would also suffer from severe omitted variable bias.

Scholars routinely face data constraints when attempting to model dynamic, highly complex social
processes, as the available methodologies often utilize systems of interdependent equations and
computationally intensive simulation algorithms. Discretization of continuous data is required
for many applications in neural networks (Kim and Han 2000), data mining (Liu et al. 2002),
and machine learning (Catlett 1991; Chmielewski and Grzymala-Busse 1996; Dougherty et al.
1995). Discretization is also common in high-profile political science research (e.g., Beck et al.
2002; Enamorado et al. 2019; Gelman and Park 2009; Hainmueller et al. 2019; Knox and Lucas
2021; Marquardt and Pemstein 2018; Weschle 2018). The growing body of research that uses
SAOMs to model the coevolution of social networks and individual behavior likewise relies on
conversion of continuous to discrete data (e.g., Berardo 2013; Chyzh 2016; Kinne 2016; Manger
and Pickup 2016; Wang and Yang 2019; Warren 2016).

The two most potentially serious problems with discretization are information loss and arbitrary
cutpoints (Niezink et al. 2019). To assess the sensitivity of our results to these two issues, we
implement a wide variety of discretization techniques, which vary both the cutpoints imposed and
the amount of information lost. We also estimate a simple linear regression model of (continuous)
defense spending and show that the same divergent DCA effects discussed in the main paper appear
in this simpler model.

We first note that our preferred discretization, which bins defense spending into ordinal categories
of defense effort based on 1% spending increments, plus a residual category for spending over 10%,
has a number of strengths. Using absolute values as cut points retains the underlying distribution
of the data, as recommended by Ripley et al. (2021), while also limiting the number of categories
to a manageable level. As Figure A5 shows, the skewed distribution of the discretized data mirrors
the skewed continuous distribution, which reflects the empirical reality that most countries spend
relatively little on defense. Further, binning the small number of extreme values (i.e., for spending
over 10%) in a single category minimizes outlier influence. Finally, as illustrated in the right-
hand panel of Figure A5, the discretized data exhibit a significant amount of over-time variation.
From one year to the next, anywhere from 10% to 30% of countries change their defense spending
behavior, with decreases and increases occurring with similar frequency. And because the data

5 Scholars have recently begun considering precisely this problem (e.g., Niezink and Snijders 2017; Niezink et al.
2019). However, these approaches are exploratory, not widely used, computationally intensive, and frequently
suffer from problems like nonconvergence of estimation algorithms.
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are binned, these changes likely represent substantive shifts in defense policy rather than trivial
changes due to budgetary politics, economic conditions, or other unrelated influences. Overall, the
discretized data offer strong face validity as a measure of defense effort.

Figure A5: Ordinal versus Continuous Data
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We first considered the sensitivity of the main results to increases and decreases in the number of
ordinal categories. Model A9 of Table A4 shows estimates from a model with only five categories
of defense effort (M = 5), which reduces information even further than our preferred M = 11
discretization. Models A10 and A11, by contrast, increase the number of categories to 15 and 25,
respectively, which retains more information. In Model A12, we implement a “semi-continuous”
specification that uses expenditure data at three decimal places of precision to define over 100
categories of defense effort. The high precision of this metric reduces information loss to trivial
levels. This model is extremely computationally intensive and is thus not a practical replacement
for the models specified in the main paper, but the results nonetheless support the conclusion that
the estimated relationship between network structure and defense spending is not an artifact of
information loss. Indeed, for all of these models, the signs of the estimates are unchanged, and the
estimates remain significant at conventional levels.

We next considered discretization applied to total defense spending, calculated in constant 2010 US
dollars, rather than spending as a percentage of GDP. This approach defines defense effort in terms
of a wholly different metric and thus provides a novel set of sensitivity checks on cutpoints and
information loss. Model A13 discretizes total defense spending into M = 11 categories, and Model
A14 discretizes the log transformation of total defense spending at integer values. Interestingly,
these specifications affect the estimates for many of the covariates, rendering them weaker or even
insignificant. Yet, the estimated relationships between DCAs and defense spending remain stable.

Model A15 implements discretization at decile values, which provides yet another perspective on
cutpoint sensitivity and information loss. We disfavor decile discretization for two reasons. First,
the true observed distribution of the continuous defense spending variable is right skewed—or, in
the case of logged values, normally distributed. Binning observations by decile instead imposes a
uniform distribution. Second, individual countries may shift deciles even if they make no change
to their defense effort. For example, if other countries substantially increase spending, then a
focal country that leaves its spending unchanged may move to a lower decile, implying a change in
spending. Given that we explicitly model decreases and increases in defense spending, this feature
of the decile data may produce estimates that are misleading, substantively ambiguous, or simply
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biased. Nonetheless, the estimates from this model clearly show the same basic pattern found
elsewhere. (Results for log-transforming the data before binning into deciles are identical to those
shown in Model A15, as the log transformation does not affect decile binning.)

Table A4: Sensitivity Analysis of discretization Methods

Model A9 Model A10 Model A11 Model A12 Model A13 Model A14 Model A15

DCA Equation

Main effects

Transitive Triads 0.197∗∗∗ 0.193∗∗∗ 0.200∗∗∗ 0.202∗∗∗ 0.202∗∗∗ 0.240∗∗∗ 0.385∗∗∗

(0.044) (0.049) (0.049) (0.048) (0.047) (0.053) (0.106)
Total Degree 0.051∗∗∗ 0.051∗∗∗ 0.050∗∗∗ 0.051∗∗∗ 0.051∗∗∗ 0.047∗∗∗ 0.048∗∗∗

(0.004) (0.005) (0.005) (0.005) (0.004) (0.005) (0.005)
Defense Spendingj −0.245 −0.028 0.023 0.001 0.019 0.658∗∗∗ 0.963∗∗∗

(0.173) (0.054) (0.023) (0.005) (0.059) (0.163) (0.226)
Control variables

Distance −0.841∗∗∗ −0.832∗∗∗ −0.831∗∗∗ −0.838∗∗∗ −0.839∗∗∗ −0.897∗∗∗ −1.082∗∗∗

(0.067) (0.069) (0.066) (0.067) (0.063) (0.072) (0.123)
Alliance (non-NATO) 0.987∗∗∗ 0.955∗∗∗ 0.925∗∗∗ 0.941∗∗∗ 0.950∗∗∗ 0.915∗∗∗ 1.475∗∗∗

(0.129) (0.118) (0.124) (0.125) (0.125) (0.126) (0.199)
NATO −3.237∗∗∗ −3.186∗∗∗ −3.251∗∗∗ −3.269∗∗∗ −3.277∗∗∗ −3.624∗∗∗ −4.676∗∗∗

(0.325) (0.311) (0.316) (0.321) (0.313) (0.364) (0.685)
UNGA Ideal Point Diff. −0.518∗∗∗ −0.530∗∗∗ −0.570∗∗∗ −0.554∗∗∗ −0.556∗∗∗ −0.706∗∗∗ −0.674∗∗∗

(0.064) (0.068) (0.064) (0.071) (0.066) (0.079) (0.085)
Trade 0.068∗ 0.072∗ 0.074∗∗ 0.073∗∗ 0.070∗ 0.042 −0.042

(0.027) (0.028) (0.027) (0.027) (0.027) (0.028) (0.038)
Democracyj 1.425∗∗∗ 1.415∗∗∗ 1.463∗∗∗ 1.464∗∗∗ 1.454∗∗∗ 1.467∗∗∗ 1.713∗∗∗

(0.213) (0.212) (0.221) (0.223) (0.209) (0.216) (0.317)
Capabilitiesj 0.805∗∗∗ 0.788∗∗∗ 0.773∗∗∗ 0.786∗∗∗ 0.769∗∗∗ 0.507∗∗∗ 0.252∗∗

(0.062) (0.064) (0.062) (0.064) (0.088) (0.093) (0.090)
Density −5.403∗∗∗ −5.360∗∗∗ −5.330∗∗∗ −5.363∗∗∗ −5.362∗∗∗ −5.470∗∗∗ −7.152∗∗∗

(0.198) (0.201) (0.193) (0.203) (0.202) (0.209) (0.777)

Defense Spending Equation

Main effects

DCA Degree 0.175∗∗ 0.089∗∗∗ 0.025∗∗ 0.007∗ 0.070∗∗ 0.134∗∗∗ 0.059∗∗

(0.061) (0.022) (0.009) (0.003) (0.023) (0.037) (0.020)
DCA Triads −0.063∗ −0.023∗∗ −0.006∗ −0.002∗ −0.017∗∗ −0.033∗∗ −0.014∗∗

(0.025) (0.007) (0.003) (0.001) (0.006) (0.011) (0.005)
Control variables

Democracy −1.239∗∗ −0.517∗∗∗ −0.083 −0.016 0.008 0.019 0.015
(0.426) (0.132) (0.048) (0.013) (0.104) (0.142) (0.085)

GDP Growth −4.174 −2.260∗∗ −0.399 −0.278∗∗∗ 1.213 1.899 1.545∗∗

(2.183) (0.824) (0.321) (0.083) (0.717) (1.049) (0.573)
Allies (non-NATO) −0.012 −0.010∗∗ −0.001 −0.000 −0.002 −0.003 0.001

(0.009) (0.003) (0.001) (0.000) (0.003) (0.004) (0.002)
NATO Member 0.910 0.883∗∗∗ 0.176∗ 0.043∗ 0.223 0.433 0.194

(0.528) (0.166) (0.071) (0.022) (0.165) (0.246) (0.146)
Military Regime 0.502 0.250 0.210∗ 0.051 0.166 0.225 0.150

(0.385) (0.178) (0.089) (0.029) (0.190) (0.285) (0.145)
MIDs 0.395 0.124 0.059 0.003 0.044 0.265 0.108

(0.206) (0.090) (0.041) (0.012) (0.095) (0.139) (0.080)
Spatial Lag 20.514∗∗ 5.876∗ 2.447 0.294 0.969 5.017 −1.695

(7.549) (2.737) (1.526) (0.365) (2.987) (5.093) (2.619)
Constant −3.245∗∗∗ −1.147∗∗∗ −0.183∗∗∗ −0.058∗∗∗ −0.215∗∗∗ −0.177 −0.041

(0.245) (0.074) (0.027) (0.009) (0.063) (0.091) (0.051)
Constant2 0.193 −0.040 −0.039∗∗∗ −0.002∗∗∗ −0.049∗∗ −0.322∗∗∗ −0.001

(0.117) (0.024) (0.005) (0.000) (0.015) (0.052) (0.009)
Iterations 2,640 2,640 2,640 3,416 2,640 2,640 2,640
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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As a final sensitivity check, we estimated a standard linear regression model of defense spending
with a (log transformed) continuous dependent variable, and with the DCA network terms specified
as exogenous covariates. As with regression models generally, this model assumes i.i.d. random
variables. Thus, given the myriad known dependencies in the data, as well as endogenous terms
on the right-hand-side of the equation, this model is misspecified. Nonetheless, the goal of this
analysis is to assess whether the network terms improve model fit in a regression model in the same
way they do in the SAOM.

Figure A6: Linear regression model of defense spending

Regression model
Variable Estimate (s.e.)

DCA Degree 0.007 (0.003)∗∗

DCA Dense Triads −0.002 (0.001)∗

Democracy −0.024 (0.014)
GDP Growth −0.080 (0.088)
Allies (non-NATO) −0.000 (0.000)
NATO Member 0.048 (0.022)∗

Military Regime 0.060 (0.027)∗

MIDs 0.019 (0.013)
Spatial Lag 1.305 (0.516)∗

Lagged Spending 0.887 (0.008)∗∗∗

Intercept 0.314 (0.028)∗∗∗

N 2, 944
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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The left panel of Figure A6 displays the estimated regression coefficients and standard errors.
Despite bias in parameter estimates, the signs of the estimates reveal the same basic pattern as in
the SAOM. Bilateral DCAs increase defense spending while DCA triangles reduce spending. To
assess improvement in fit, we again turn to out-of-sample prediction. We first specify a “baseline”
model that includes only a one-period lag of the dependent variable on the right-hand-side of
the regression equation. We then individually add model terms and assess each variable’s unique
contribution to model fit. As the right-hand panel of Figure A6 illustrates, the two network terms,
DCA Degree and DCA Dense Triads, produce the greatest improvement in model fit (i.e., in terms
of the root-mean-square error (RMSE) of the out-of-sample predictions). Overall, even with a
misspecified model, we find evidence of a divergent influence for DCAs on defense effort, and we
find that the network terms substantially improve model fit.
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A4 Table of Main Results

Table A5 contains the full, unscaled estimates from SAOM Models 1, 2, 3, and 4 in the main
paper. The table also includes convergence diagnostics for each parameter estimate, denoted Φ
in the accompanying columns. As a general guideline, values of Φ below 0.1 indicate excellent
convergence of the estimation algorithm (Ripley et al. 2021). All diagnostics fall well below that
threshold.
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Table A5: Stochastic Actor-Oriented Model of DCAs and Defense Expenditures
Model 1 Φ Model 2 Φ Model 3 Φ Model 4 Φ

DCA Equation

Main effects

Transitive Triads 0.198∗∗∗ −0.04 0.199∗∗∗ 0.009 0.198∗∗∗ 0.005
(0.047) (0.049) (0.047)

Total Degree 0.051∗∗∗ −0.021 0.051∗∗∗ 0.016 0.051∗∗∗ 0.013
(0.005) (0.005) (0.005)

Defense Spendingj 0.015 0.011 −0.020 0.001 −0.020 0.009 −0.020 −0.001
(0.054) (0.053) (0.052) (0.050)

Control variables

Distance −0.944∗∗∗ −0.003 −0.834∗∗∗ 0.033 −0.835∗∗∗ 0.012 −0.835∗∗∗ 0.003
(0.067) (0.066) (0.065) (0.067)

Alliance (non-NATO) 1.398∗∗∗ −0.003 0.956∗∗∗ −0.009 0.957∗∗∗ −0.006 0.956∗∗∗ −0.001
(0.141) (0.123) (0.123) (0.126)

NATO −2.503∗∗∗ −0.01 −3.237∗∗∗ −0.03 −3.246∗∗∗ −0.012 −3.239∗∗∗ 0.018
(0.268) (0.321) (0.312) (0.318)

UNGA Ideal Point Diff. −0.507∗∗∗ 0.009 −0.539∗∗∗ 0.013 −0.539∗∗∗ 0.017 −0.539∗∗∗ −0.018
(0.067) (0.066) (0.065) (0.066)

Trade 0.045 0.013 0.072∗∗ −0.023 0.073∗∗ 0.012 0.073∗ 0.001
(0.030) (0.027) (0.028) (0.028)

Democracyj 2.238∗∗∗ −0.021 1.438∗∗∗ 0.02 1.442∗∗∗ 0.027 1.441∗∗∗ −0.002
(0.239) (0.216) (0.216) (0.219)

Capabilitiesj 0.946∗∗∗ 0.003 0.789∗∗∗ −0.018 0.790∗∗∗ 0.007 0.790∗∗∗ 0
(0.062) (0.063) (0.062) (0.064)

Density −3.984∗∗∗ 0 −5.367∗∗∗ 0.009 −5.371∗∗∗ 0.01 −5.364∗∗∗ 0.018
(0.196) (0.197) (0.193) (0.205)

Defense Spending Equation

Main effects

DCA Degree 0.016 0.004 0.016 0.012 0.085∗∗∗ 0.025 0.085∗∗∗ 0.022
(0.009) (0.008) (0.022) (0.022)

DCA Dense Triads −0.022∗∗ 0.015 −0.021∗∗ 0.022
(0.007) (0.007)

DCA Triads Effort 0.001 −0.008
(0.000)

Control variables

Democracy −0.445∗∗∗ −0.005 −0.445∗∗∗ 0.004 −0.498∗∗∗ 0.02 −0.494∗∗∗ 0.038
(0.131) (0.128) (0.132) (0.131)

GDP Growth −2.076∗ −0.026 −2.072∗ −0.003 −2.092∗ −0.017 −2.162∗ 0
(0.819) (0.808) (0.834) (0.842)

Allies (non-NATO) −0.007∗ −0.021 −0.007∗ 0.041 −0.009∗∗ −0.005 −0.010∗∗ 0.027
(0.003) (0.003) (0.003) (0.003)

NATO Member 0.900∗∗∗ −0.038 0.903∗∗∗ 0.02 0.852∗∗∗ 0.019 0.899∗∗∗ 0.022
(0.156) (0.157) (0.164) (0.162)

Military Regime 0.224 −0.002 0.219 0.003 0.235 −0.01 0.241 −0.012
(0.191) (0.184) (0.190) (0.191)

MIDs 0.225∗∗ 0.018 0.226∗∗ −0.009 0.159 0.016 0.161 0
(0.083) (0.086) (0.088) (0.086)

Spatial Lag 6.791∗ −0.004 6.776∗ −0.007 7.330∗∗ 0.034 7.461∗∗ 0.019
(2.736) (2.817) (2.803) (2.860)

Constant −1.049∗∗∗ −0.004 −1.047∗∗∗ 0.016 −1.148∗∗∗ 0.061 −1.153∗∗∗ 0.003
(0.071) (0.069) (0.075) (0.076)

Constant2 −0.030 −0.012 −0.030 −0.013 −0.034 0.016 −0.036 0.006
(0.024) (0.023) (0.024) (0.024)

Iterations 9, 666 9, 858 9, 862 9, 992
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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A5 Variable importance by country

Figure A7 shows the relative importance of DCA network variables for individual countries. For
some states, such as the less integrated countries of sub-Saharan Africa, DCA Degree exercises
substantial influence while DCA Dense Triads plays a minor role. By contrast, for many countries
in regions characterized by dense webs of overlapping defense partnerships, such as Central and
Eastern Europe, transitive triads are more influential. Nonetheless, for most countries both factors
are important determinants of defense spending. Overall, the importance of the DCA variables
indicates that the complex, multilevel relationship between DCAs and defense expenditures is not
merely a statistical curiosity. Rather, this relationship is a key driver of states’ defense efforts.
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Figure A7: Importance of DCA Network Variables by Country, 2010

DCA Degree

Low High

DCA Dense Triads

Note: Variable importance as calculated by the Indlekofer-Brandes method. Estimates based on Model 3.
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