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Abstract 

The problem of measuring sentence similarity is an essential issue in the natural language 

processing area. Semantic similarity between words is a crucial task for many applications. 

The emerging of word embedding encourages calculating similarity between words based on 

the new semantic word representation. On the other hand, WordNet is widely used to find 

semantic distance between words. There are many approaches to measuring sentence 

similarity. The semantic analysis field has a crucial role to play in the research related to the 

text analytics. The semantic similarity differs as the domain of operation differs. In this study, 

we propose a state-of-the-art algorithm for measuring the semantic similarity of word pairs 

using novel combinations of word embeddings, WordNet, and the concept dictionary 4lang. 

We evaluate our system on the SimLex-999 benchmark data. Our top score of 0.76 is higher 

than any published system that we are aware of, well beyond the average inter-annotator 

agreement of 0.67, and close to the 0.78 average correlation between a human rater and the 

average of all other ratings, suggesting that our system has achieved near- human performance 

on this benchmark. 

 

Keywords: Natural Language Processing, WordNet, Word Embedding, Semantic Similarity, 

4lang 

 

Introduction 

We present a hybrid system for measuring the se- mantic similarity of word pairs. The system 

relies both on standard word embeddings, the WordNet database, and features derived from 

the 4lang concept dictionary, a set of concept graphs built from entries in monolingual 

dictionaries of English. 4lang-based features improve the performance of systems using only 

word embeddings and/or WordNet, our top configurations achieve state-of-the-art results on 

the SimLex-999 data, which has recently become a popular benchmark of word similarity 

metrics. 

 

In Section 1 we summarize earlier work on measuring word similarity and review the latest 

results achieved on the SimLex-999 data. Section 2 describes our experimental setup, Sections 

2.1 and 2.2 documents the features obtained using word embeddings and WordNet. In Section 

3 we briefly introduce the 4lang resources and the formalism it uses for encoding the meaning 

of words as directed graphs of concepts, then document our efforts to develop novel 4lang- 

based similarity features. Besides improving the performance of existing systems for 

measuring word similarity, the goal of the present project is to examine the potential of 4lang 

representations in representing non-trivial lexical relationships that are beyond the scope of 

word embeddings and standard linguistic ontology’s. 
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Section 4 presents our results and provides rough error analysis. Section 5 offers some 

conclusions and plans for future work. All software presented in this paper is available for 

download under an MIT license at http://github.com/recski/wordsim. 

 

1 Background 

 

Measuring the semantic similarity of words is a fundamental task in various natural language 

processing applications. The ability to judge the similarity in meaning of any two linguistic 

structures reflects on the quality of the representations used. Vector representations (word 

embeddings) are commonly used as the component encoding (lexical) semantics in virtually 

all NLP applications. The similarity of word vectors is by far the most common source of 

information for semantic similarity in state-of-the-art systems, e.g. nearly all top-scoring 

systems at the 2015 SemEval Task on measuring semantic similarity (Agirre et al., 2015) rely 

on word embeddings to score sentence pairs (see e.g. (Sultan et al., 2015; Han et al., 2015)). 

 

Hill et al. (2015) proposed the SimLex-999 dataset as a benchmark for word similarity, arguing 

that pre-existing gold standards measure association, not similarity, of word pairs; e.g. the 

words cup and coffee receive a high score by annotators in the widely used wordsim353 data 

(Finkelstein et al., 2002). SimLex has since been used to evaluate various algorithms for 

measuring word similarity. Hill et al. (2015) reports a Spearman correlation of 0.414 achieved 

by an embedding trained on Wikipedia using word2vec (Mikolov et al., 2013). Schwartz et al. 

(2015) achieves a score of 0.56 using a combination of a standard word2vec-based embedding 

and the SP model, which encodes the co occurrence of words in symmetric patterns such as X 

and Y or X as well as Y. 

 

Banjade et al. (2015) combined multiple word embeddings with the word similarity algorithm 

of (Han et al., 2015) used in a top-scoring SemEval system, and simple features derived from 

WordNet (Miller, 1995) indicating whether word pairs are synonymous or antonymous. Their 

top sys- tem achieved a correlation of 0.64 on SimLex. The highest score we are aware of is 

achieved using the Paragram embedding (Wieting et al., 2015), a set of vectors obtained by 

training pre-existing embeddings on word pairs from the Paraphrase Database (Ganitkevitch et 

al., 2013). The top correlation of 0.69 is measured when using 300-dimension embedding 

created from the same GloVe-vectors that have been introduced in this section (trained on 840 

billion tokens). Hyper-parameters of this database have been tuned for maximum performance 

on SimLex, another version tuned for the WS-353 dataset achieves a correlation of 0.667. 

 

2 Setup 

Our system is trained on a variety of real-valued and binary features generated using word 

embeddings, WordNet, and 4lang definition graphs. Each class of features will be presented in 

detail below. We perform support vector regression (with RBF kernel) over all features using 

the numpy library, the model is trained on 900 pairs of the SimLex data and used to obtain 

scores for the remaining 99 pairs. We compute the Spearman correlation of the output with 

SimLex scores. We evaluate each of our models using tenfold cross- validation and by 

averaging the ten correlation figures. The changes in performance caused by previously used 

feature classes are described next, the performance of all major configurations are summarized 

in Section 4. 
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A. Word embeddings 

Features in the first group are based on word vector similarity. For each word pair the cosine 

similarity of the corresponding two vectors is calculated for all embeddings used. Three sets of 

word vectors in our experiments were built using the neural models compared by Hill et al. 

(2015): the SENNA1 (Collobert and Weston, 2008), and Huang2 (Huang et al., 2012) 

embeddings contain 50-dimension vectors and were downloaded from the authors’ webpages. 

The word2vec (Mikolov et al., 2013) vectors are of 300 dimensions and were trained on the 

Google News dataset3. 

 

We extend this set of models with GloVe vectors4 (Pennington et al., 2014), trained on 840 

billion tokens of Common Crawl data5, and the two word embeddings mentioned in Section 1 

that have recently been evaluated on the SimLex dataset: the 500-dimension SP model6 

(Schwartz et al., 2015) (see Section 1) and the 300-dimension Paragram vectors7 (Wieting et al., 

2015). The model trained on 6 features corresponding to the 6 embeddings mentioned achieves 

a Spearman correlation of 0.72, the performance of individual embeddings is listed in Table 1. 

 

B. Wordnet 

Another group of features are derived using WordNet (Miller, 1995). WordNet-based metrics 

proved to be useful in the Semeval-system of Han et al. (2013), who used these metrics for 

calculating a boost of word similarity scores. The top system of Banjade et al. (2015) also 

includes a subset of these features. We chose to use four of these metrics as binary features in 

our system; 

      
1http://ronan.collobert.com/senna/  
2http://www.socher.org 
3https://code.google.com/archive/p/word2vec/ 
4http://nlp.stanford.edu/projects/glove/ 
5https://commoncrawl.org/ 
6http://www.cs.huji.ac.il/˜roys02/papers/sp_embeddings/sp_embeddings.html 

    7http://ttic.uchicago.edu/˜wieting/ 

 

System Spearman’s ρ 

Huang 0.14 

SENNA 0.27 

GloVe 0.40 

Word2Vec 0.44 

SP 0.50 

Paragram 0.68 

6 embeddings 0.72 

 

  Table 1: Performance of word embeddings on SimLex 

 

These indicate whether one word is a direct or two-link hypernym of the other, whether the 

two are derivationally related, and whether one word appears frequently in the glosses of the 

other (and its direct hypernym and its direct hyponyms). Each of these features improved our 

system independently; adding all of them brought the system’s performance to 0.73. A model 
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trained on the 4 WordNet-based features alone achieves a correlation of 0.33. 

 

3 4lang 

The 4lang theory of semantics was introduced and motivated in Kornai (2010) and Kornai 

(2012). The name refers to the initial concept dictionary, which had bindings in four languages, 

representative samples of the major language families spoken in Europe; Germanic (English), 

Slavic (Polish), Romance (Latin), and Finno-Ugric (Hungarian). Today, bindings exist in over 

40 languages (A´ cs  et  al.,  2013). We only present a bird’s-eye view here, and refer the reader 

to the book-length presentation (Kornai, in preparation) for details. In brief, 4lang is an algebraic 

(symbolic) system that puts the emphasis on lexical definitions at the word and sub-word level, 

and on valency (slot-filling) on the phrase and sentence level. Paragraphs and yet higher 

(discourse) units are not well worked out, but these play no role in any of the approaches to 

analogy and similarity that we are aware of. 

 

Historically, 4lang falls in the AI/KR tradition, following on the work of Quillian (1969), 

Schank (1975), and more recently Banarescu et al. (2013). Linguistically, it is closest to 

Wierzbicka (1972), Goddard (2002) and to modern theories of case grammar and linking theory 

(see Butt (2006) for a summary). Computationally, 4lang is in the finite state tradition 

(Koskenniemi, 1983), except it relies on an extension of finite state automata (FSA) introduced 

by Eilenberg (1974) to machines. 

 

In addition to the usual state machine (where letters of the alphabet correspond to directed edges 

running between the states), an Eilenberg machine will also have a base set X, with each letter 

of the alphabet corresponding to a binary relation over X. As the machine consumes letters one 

by one, the corresponding relations are composed. How this mechanism can be used to account 

for slot- filling in a variable-free setting is described in Kornai (2010). 

 

Central to the goals of the current paper is the structure of X. As a first approximation, X can be 

thought of as a hyper graph, where each hyper node is a lexeme (for a total of about 105 such 

hyper nodes), and hyper edges run from (hyper) node a to b if b appears in the definition of a. 

Since the definition of fox includes the word clever, we have a link from fox to clever, but not 

conversely, since the definition of clever does not refer to fox. Edges are of three types: 0, 

corresponding both to attribution and IS A relations; 1, corresponding to grammatical subjects; 

and 2, corresponding to grammatical objects. Indirect objects are handled by the decomposition 

methods pioneered in generative semantics, without recourse to a ‘3’ link type (Kornai, 2012). 

 

Each lexeme is a small Eilenberg machine, with only a few states in its FSA, so the state space 

X of the entire lexicon is best viewed as a large graph with about 106 states (assuming 10 states 

per hyper node). This base set is shared across the individual machines and functions 

analogously to the blackboard long familiar from AI (Nii, 1986). The primary purpose of the 

machine apparatus is to formalize the classical distributed model of semantic interpretation, 

spreading activation (Collins and Loftus, 1975; Nemeskey et al., 2013), by a series of changes 

in the hyper- node activation levels, described by the relations on X. Manual grammar writing 

in this style can lead to very high precision high recall grammars (Karlsson et al.,  1995;  

Tapanainen and Ja¨rvinen, 1997), but for now we rely on the Stanford Parser (Chen and 

Manning, 2014) to produce the dependency structures that we process into simplified 4lang 

representations (ordinary edge-colored directed graphs rather than hyper graphs) we call 
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definition graphs and describe briefly in Section 3.1.  

 

We derive several similarity features from pairs of definition graphs built using the 4lang 

library8. Words that are not part of the manually built 4lang dictionary9 are defined by graphs 

built from entries in monolingual dictionaries of English using the Stanford Dependency Parser 

and a small hand-written mapping from dependency relations to 4lang connections (see Recski 

(2016) for details). The set of all words used in definitions of the Longman Dictionary of 

Contemporary English (Bullon, 2003), also known as the Longman Defining Vocabulary 

(LDV), is included in the ca. 3000 words that are defined manually in the 4lang dictionary.  

Recski and A´ cs (2015) used a word similarity metric based on 4lang graphs in their best STS 

submission, their findings served as our starting point when defining features over pairs of 4lang 

graphs. 

 

 
 

   Figure 1: 4lang definition of bird. 

    

   3.1 The formalism 

 

For the purposes of word similarity calculations we find it expedient to abstract away from some 

of the hypergraph/machine aspects of 4lang discussed above and represent the meaning of both 

words and utterances as directed graphs, similarly to the Abstract Meaning Representations 

(AMRs) of Banarescu et al. (2013). Nodes correspond to language-independent concepts; edges 

may have one of three labels (0, 1, and 2). 0-edges represent attribution (dog → friendly), the 

IS A relation (hypernymy) (dog → animal), and unary predication (dog 0 bark). Since concepts 

do not have grammatical categories, phrases like water freezes and frozen water would both be 

represented as water → freeze.  1- and 2-edges connect binary predicates to their arguments, 

e.g. cat ← catch → mouse). The meaning of each 4lang concept is represented as a 4lang graph 

over other concepts, e.g. the concept bird is defined by the graph in Figure 1. 

 

   3.2 Graph-based features 

 

We experimented with various features over pairs of 4lang graphs as a source of word 

  
8http://www.github.com/kornai/4lang 
9http://hlt.bme.hu/en/resources/4lang_dict 

  

similarity. The simple metric defined by Recski and  A´ cs  (2015)  is  based  on  the  intuition  

that similar concepts will overlap in the elementary configurations they take part in: they might 

share a 0-neighbor, e.g.  train →vehicle ←car, or they might be on the same path of 1- and 2-

edges,   e.g.     park ←IN →town and street IN town. The metric used by  Recski  and  A´ cs  
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(2015)  defines  the  sets  of predicates of each concept based on this intuition: given the example 

definition of bird in Figure 1, predicates of the concept bird (P (bird)) are vertebrate; (HAS, 

feather); (HAS, wing); (MAKE, egg). Predi- cates are also inherited via paths of  0-edges, e.g. 

(HAS, wing) will be a predicate of all concepts for which bird holds. 

 

Our first feature extracted for each word pair is the Jaccard similarity of the sets of predicates 

of each concept, i.e. 

Sim(w1, w2)  =
|P(w1) ∩  P(w2)|

|P(w1) ∪  P(w2)|
 

 

A second similar feature takes into account all nodes accessible from each concept in its defini- 

tion  graph.   Recski  and  A´ cs  (2015)  observe  that this allows us to capture minor similarities 

between concepts, e.g. the definitions of casualty and army do not share predicates but do have 

a common node war (see Figure 2). 

 

Based on boosting factors in the original met- ric we also generated three binary features. The 

links contain feature is true iff either concept is contained in a predicate of the other, nodes 

contain holds iff either concept is included in the other’s definition graph, and 0 connected is 

true if the two nodes are con- nected by a path of 0-edges in either definition graph. All features 

are listed in Table 2. 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Overlap in the definitions of casualty 

(built from LDOCE) and army (defined in 4lang) 

 
 

Figure 3: Expanded 4lang definition of forget. 

Nodes of the unexpanded graph are shown in 

gray. 
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Table 2: 4lang word similarity features 

 
 

 

Figure 4: 4lang definition of forget and its 

modified version 

 

The dict to 4lang module used to build graphs from dictionary definitions allowed us to perform 

expansion on each graph, which involves adjoining the definition graphs of all words to the initial 

graph; an example is show in Figure 3. 

 

Using only these features in initial experi- ments resulted in many “false positives”: pairs of 

antonyms in SimLex were often assigned high similarity scores because this feature set is not 

sensitive to the 4lang nodes LACK, representing negation  (dumb →−0  intelligent →−0  LACK), 

and BEFORE, indicating that something was only true in the past (forget →−0  know →−0  

before), We attempt to model the effect of these nodes in two ways. First, we implement the is 

antonym feature, a binary set to true if one word is within the scope (i.e. 0-connected to) an 

instance of either lack or before in the other word’s graph. 

 

Next, we transform the input graphs of remaining features so that all nodes within the scope of 

lack or before are prefixed by lack and are not considered identical with their non-negated 

counterparts when computing each of the features in Table 2. An example of such a transformation 

is shown in Figure 4.  

Early experiments show that a system trained on 4lang-based features only can achieve a Pearson 

correlation in the range of 0.32 0.34 on the SimLex data, this was increased to 0.38 by the handling 

of LACK and BEFORE described above. This score is competitive with some word embeddings, 

but well below the 0.58 0.68 range achieved by the state-of-the-art vector-based systems cited in 

Section 1 and reproduced in Section 2.1. 

 

After testing 4lang features’ impact on purely vector-based configurations we came to the 

conclusion that the only 4lang-based features that improve their performance significantly are 0-

connected and is antonym. Adding these two features to the vector-based system brings 

correlation to 0.76. 

 

4 Results 

Performance of our main configurations is pre- sented in Table 3. The system relying on word 

em- beddings achieves a Spearman correlation of 0.72. WordNet and 4lang features both improve 

the vector-based system, combining all three feature classes yields our top correlation of 0.76, 
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higher than any previously published results. Since the average correlation between a human rater 

and the average of all other raters is 0.78, this figure suggests that our system has achieved near-

human performance on this benchmark. 

 

 
 

Table 3: Performance of major configurations on SimLex 

 

For the purposes of error analysis we sorted word pairs by the difference between gold similar- 

ity values from SimLex and the output of our top-scoring model. The top of this list is clearly 

dominated by two error classes. The largest group consists of (near-)synonyms that have not been 

identified as related by our model, Table 4 shows the top 5 word pairs from this category. The 

second error group contains word pairs that have been falsely rewarded for being associated, but 

not similar by the definition used when creating the SimLex data. Table 5 shows the top 5 word 

pairs of this error class. This second error class is an indication of a well-known shortcoming of 

word similarity models: (Hill et al., 2015) observes that similarity of vectors in word embeddings 

tend to encode association (or relatedness) rather than the similarity of concepts. 

 

word1 word2 output gold diff 

bubble suds 2.97 8.57 5.59 

dense dumb 1.71 7.27 5.56 

cop sheriff 3.50 9.05 5.55 

alcohol gin 3.43 8.65 5.22 

rationalize think 3.50 8.25 4.75 

 

Table 4: Top 5 “false negative” errors 

word1 word2 output gold diff 

girl maid 7.72 2.93 -4.79 

happiness luck 6.59 2.38 -4.21 

crazy sick 7.49 3.57 -3.92 

arm leg 6.74 2.88 -3.86 

breakfast supper 8.01 4.40 -3.61 

 

Table 5: Top 5 “false positive” error 

 

Since our main purpose was to experiment with 4lang representations and identify its 

shortcomings, we examined 4lang graphs of top erroneous word pairs. As expected, the value of 

the 0-connected feature was 1 for each “false negative” pair, i.e. word pairs such as those in Table 

4 were not on the same path of 0- edges. In most cases this is due to the current lack of simple 

inferencing on 4lang representations. For example, suds are defined in LDOCE as the mass of 

bubbles formed on the top of water with soap in it, yet the resulting 4lang subgraph bubble ←1 

HAS →2 mass 0 suds will not trigger any mechanism that would derive suds 0 bubble. Inference 

will also be responsible for deriving all uses of polysemous words, the 4lang representation of 

dense is therefore built from its first definition in LDOCE: made of or containing a lot of things 

or people that are very close together. A method of inference that will relate this definition with 

that of dumb is clearly out of reach. Better short-term results could be obtained by using all 

definitions in a dictionary to build 4lang representations, for dense this would include its third 

definition: not able to understand things easily. 

 

Other shortcomings of 4lang representations are of a more technical nature, e.g. the lemmatizer 
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used to map words of definitions to concepts failed to map alcoholic to alcohol in the definition 

of gin: a strong alcoholic drink made mainly from grain. Yet other errors could be addressed by 

rewarding the overlap between two representations, e.g. that the graphs for cop and sheriff both 

contain → officer. 

 

5 Conclusions and future work 

 

The purpose of experimenting with 4lang-based features was to gain a better understanding of 

how 4lang may implicitly encode semantic relations that are difficult to model with standard tools 

such as word embeddings or WordNet. We found that simple features describing the relation 

between two concepts in 4lang improve vector- based systems significantly. Since less explicit 

relationships may be encoded by more distant relationships in the network of 4lang concepts, in 

the future we plan to examine portions of this network larger than the union of two (expanded) 

definition graphs. Errors made by 4lang-based systems also indicate that a more sophisticated 

form of lexical inference on 4lang graphs may be necessary to establish the more distant 

connections between pairs of concepts. In the near future we plan to experiment with features 

defined on larger 4lang networks. We also plan to extend our system to include the task of 

measuring phrase similarity, which can also be pursued using supervised learning given new 

resources such as the Annotated-PPDB and ML-Paraphrase datasets introduced by (Wieting et al., 

2015). 
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