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Abstract: - During the COVID-19 pandemic, it is important to promote the skills needed for analyzing the 
disease course, including determining the relevance of vaccinations, especially among people who are 
unfamiliar with computer programming. This paper describes the basic epidemiological model (SIR), its 
extensions that allow vaccinations, and the emergence of renewed waves of disease growth. It also discusses a 
literature model, extended SEIRD, which includes a more detailed division of the population into susceptible, 
latent, symptomatic, and asymptomatic infected, recovered, and dead in eight age groups. Modifying the 
SEIRD model as shown on the basic SIR model, we analyzed five vaccination strategies, considering the 
limited vaccine supply, the number of vaccinations performed per day, and their effectiveness. The analysis 
was performed for a group of one million people, using the parameters of the model characteristic of the 
COVID-19 pandemic and Sweden's generational structure. We analyzed in terms of reducing both the number 
of deaths and the incidence of symptomatic infections, which represent the main burden of healthcare. 
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1 Introduction 
The goal of this study is to popularize scientific 
research on the course of the pandemic. There are 
various methods for studying the course of the 
pandemic, including deterministic models such as 
those based on ordinary differential equations, [1], 
stochastic models, [2] and statistical models, [3]. 
We chose to employ the system of ordinary 
differential equations (ODE). However, it is 
challenging to solve the majority of mathematical 
models analytically without making additional 
assumptions, [4]. Nevertheless, they can be solved 
numerically. Since this work is dedicated to 
everyone interested in the subject of pandemic 
analysis, including those who cannot program on 
their own, we created and made available a ready-
to-use program for this purpose. Instructions for 
using the program are available at: 

https://github.com/BlankTiger/SEIRD_model/releas
es/download/v1.0.3-rust/Instructions.docx 

 
The basic model of the epidemic (SIR) 

The basic model used to study the course of the 
epidemic is the Kermack–McKendrick model, which 
is often referred to as the SIR model, [5]. The SIR 
model contains simplifications that do not allow 
effective prognosis of disease development in the 
case of many diseases, but it enables to the creation 
of more complex models. This model describes the 
disease development in a closed population of N 
people divided into groups as susceptible to infection 
(S), infected (I), and recovered (R). If we want to 
include deaths due to the studied disease, the number 
of fatal cases should be added to the group of 
recovered because they are no longer transmitting 
the disease. The SIR model generates a system of 
three ordinary differential equations that describe the 
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kinetics of changes in the S, I, and R groups. This 
model is based on the following assumptions: 
 The probability of direct contact is the same for 

each pair of individuals.  
 The decrease in the number of susceptible cases 

(S) depends on their number, the number of 
infected (I), and the coefficient describing the 
infection rate (here β).  

 The change in the number of infected people (I) 
depends on two terms: the one describing 
increasing I, which is proportional to S, I, and β; 
and the one describing decreasing I, which is 
proportional to I and coefficient recovery rate 
(here γ). 

 The increase in recovered (R) and dead due to 
infection is proportional to the number of 
infected I and coefficient γ. 

 The incubation period is negligibly short, so 
immediately after the infection the susceptible 
person becomes infected and can infect others, 
which makes it difficult to realistically assess the 
disease variability over time. 
In line with these assumptions, the SIR model 

can be written as Equations 1–3: 
 

   S/dt=-βSI               (1) 
 
   dI/dt=βSI-γI  (2) 

 
   dR/dt=γI       (3) 
 

To solve these equations, we have to assume the 
initial conditions. Most often, they meet the 
condition S + I = N, which means that there are no 
people in the R group at the beginning. Since this 
model should be able to predict the development of 
the disease, it is worth assuming that at the initial 
moment t0 the given population already had a small 
group of infected people, I(t0) > 0. Since the SIR 
model cannot be solved analytically (although the 
modified SIR model is analytically solvable), [4], it 
can be easily solved numerically, yielding time 
dependencies in the S, I, and R groups. 

To solve the SIR equations, it is also necessary 
to assign values to parameters β and γ. If we consider 
one day as the unit of time, then parameter γ, which 
is the rate of healing, can be defined as the reciprocal 
of the recovery time for an individual patient’s 
infection. According to Equation 3, the values of γ 
are expressed in day–1 units. On the other hand, the 
value of parameter β will be expressed in units day–1 
* number of people–1 (based on Equation 1). The 
appropriate value of β can be found by considering 
the changes in the number of infected, as described 
by Equation 2. If the number of infected people does 

not change, i.e. dI/dt = 0, then, based on Equation 2, 
the product βS = γ. If we take the initial value of S = 
S (t0), then a comparison of the product of βS(t0) 
with γ will allow assessing whether the infection will 
develop or be inhibited. If βS(t0) > γ, the epidemic 
will continue to develop; otherwise, it will be 
inhibited. From the equality βS(t0) = γ, the limit 
value of β can be determined for a given S(t0) and γ. 
The basic reproduction number R0 is also used to 
assess the development or inhibition of the infection, 
which for the SIR model is defined by β, γ, and S 
values: R0 == βS(t0)/γ. R0 specifies the number of 
people who are secondarily infected in the 
susceptible group S by one person who was initially 
infected at time t0. If R0 > 1, the epidemic will 
continue to develop; otherwise, it will be inhibited.  

 
 

2   Problem Formulation 
 

2.1 Extension of the SIR Model to Include 
Vaccinations 

The mathematical models allowing the exploration 
of the significance of vaccinations in preventive 
measures that reduce the risk of epidemic 
development have been described in [1]. In this 
work, they demonstrate how to determine the 
vaccination threshold for the population to curb 
infections. The analysis also examines the 
importance of the loss of immunity acquired through 
vaccinations, the variability of infectious factors, and 
the limited capacity for daily vaccinations. A simple 
method for modeling the significance of vaccinations 
is described in [6], in which the group of recoverers 
(R) resulting from natural immunity is separated 
from the group acquiring immunity through 
vaccination. However, this model specifically 
pertains to preventive vaccination conducted in 
newborn groups. 

The basic SIR model does not explicitly consider 
the presence of a subset of the population (S) 
exhibiting natural immunity. However, in cases 
where the epidemic under consideration does not 
result in fatalities, the parameter γ, representing the 
recovery rate, can also be interpreted as indicative of 
natural immunity. This is because it is through this 
parameter that we observe the decline and eventual 
extinction of the epidemic. However, epidemics can 
be effectively controlled through vaccination 
campaigns, which contribute to an increase in the 
number of individuals resistant to infection and/or 
experiencing mild symptoms. In this work, we have 
demonstrated how to easily modify the SIR model to 
analyze the importance of vaccinations, considering 
their effectiveness and the limited number of 
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vaccinations performed each day. Assuming 
permanent immunity obtained through vaccination, 
vaccinated people should be transferred from group 
S to group R, taking into account the effectiveness of 
vaccination and the speed of vaccination of the 
population. For this purpose, we have modified 
Equations 1 and 3. Since in the case of COVID-19 
vaccines, the effectiveness ranges from 70.4% to 
95%, [7], in the example shown in Figure 1, we 
assumed a vaccination effectiveness (ef) of 90%. 
Moreover, we had to assume the number of 
vaccinations performed each day (vac), and select 
the day of the epidemic when vaccination started. To 
study the importance of the timing of vaccination 
initiation and completion, Heaviside function (Hev) 
(Appendix) can be beneficial. If t1 is the day of 
vaccination initiation and t2 is the day of vaccination 
completion, then Equation 1 should be supplemented 
with the expression: –ef * vac * Hev(t, t1) * (1 – 
Hev(t, t2)). The same expression should be added to 
Equation 3. So the SIR model including vaccination 
would take the form of Equations 4–6: 

 
dS/dt=-βSI-ef vac Hev(t,t1)(1-Hev(t,t2))  (4) 

 
dI/dt=βSI-γI     (5) 

 
dR/dt=γI+ef vac Hev(t,t1)(1-Hev(t,t2))  (6) 

 
Since the number of people in each group must 

be positive, we must select the number of 
vaccinations performed per day and the duration of 
vaccination accordingly. 

 
2.2 Modeling an Epidemic with Multiple 

Incidence Waves 
As a result of temporally limited immunity, whether 
acquired naturally or through vaccination, there are 
recurring waves of increasing numbers of individuals 
falling ill. This can be observed firsthand and is also 
the subject of modeling studies, [8], [9]. Building 
upon the basic SIR model, it is also possible to 
illustrate recurring waves of increased infections. 

The consequence of temporally limited 
immunity, whether acquired naturally or through 
vaccination, is the recurrence of waves with 
increased numbers of infected individuals. Currently, 
every person can observe this phenomenon, which is 
also the subject of modeling studies, [8], [9]. 
Additionally, based on the basic SIR model, it is 
possible to illustrate these recurring waves of disease 
increases. 

To analyze the epidemic development with 
multiple waves of increase in the number of infected 

based on the SIR model, the following assumptions 
should be made: 
1. No one dies due to the infection, i.e. there are only 
recovered in group R. 
2. Recovered individuals lose immunity after tx days 
with a certain probability a. 

This problem can be solved based on the SIR 
model by gluing the solutions after each time unit, 
e.g. after each day. After the SIR equations are 
solved, the number of recovered R(ti) should be 
noted after each day ti. Then, the initial conditions 
for the next solution (for the next day) should be 
changed. Thus, for ti tx, the equations are solved 
with the initial conditions: S(t0), I(t0), and R(t0), 
while for ti > tx the initial conditions for the 
following step ti are S(t0) = S(ti) + a * R(ti – tx), I(t0) 
= I(ti), and R(t0) = R(ti) – a * R(ti – tx).  

 
2.3 An Epidemiological Model with the Age 

Structure of the Population and 
Intergenerational Contacts (SEIRD) 

The SIR model includes many simplifications, 
including grouping recovered and deceased 
individuals in the same group. In addition, it is not 
always true that people who become ill acquire 
permanent immunity after their recovery and that 
the incubation time is short enough to be skipped. 
To make the basic SIR model more appropriate for 
analyzing the current state of the COVID-19 
pandemic, [10], it is necessary to extend it by 
including additional groups, i.e. those in the latent 
phase E, and divide the infected group into 
symptomatic (Is) and asymptomatic (Ia). 
Furthermore, it is important to clearly distinguish 
convalescents (R) and individuals who died due to 
infection (D). For the inclusion of an additional 
latent (E) group, we must take into account an 
additional coefficient of transition from this group 
to the infected group I. Since the course of the 
disease and mortality significantly differ by age 
groups, the age structure of the population under 
study should also be introduced, due to the need for 
differentiation of susceptibility to infection and 
mortality. When dividing the population under 
consideration into age groups, we also consider the 
differences in contacts within a given age group and 
between groups. The application of such a model for 
the analysis of the course of the COVID-19 
pandemic has already been demonstrated in [10]. 
The analyzed model is a system of six differential 
equations (Equations 7–12), for age groups 0–9, 10–
19, 20–29, 30–39, 40–49, 50–59, 60–69, and 70+ 
years, for n = 1, 2, 3, 4, 5, 6, 7, and 8, respectively. 
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where: 
n—index denotes age groups 1–8, 
Sn—susceptible, 
En—latent, 
Is,n—symptomatic cases among age group n, 
Ia,n—asymptomatic cases among age group n, 
Rn—recovered, 
Dn—dead,  
σn—susceptibility of age group n, 
β—transmission coefficient, 
kn,m—an element of the contact matrix between age 
group n and m, 
ε—progression rate from latent to infectious,  
fs —symptomatic cases, 
γ—recovery rate, and 
δn—mortality rate in age groups. 
 

To determine the values of the kn,m parameter 
(matrix of contacts of various age groups), data 
collected in studies conducted in 152 countries were 
used, [11]. 

As mentioned above, the basic reproduction 
number R0 is an important factor in the emergence of 
the epidemic. For the discussed SEIRD model, the 
value of this parameter for each age group can be 
calculated based on Equation 13 (Appendix): 
 

 
 (13) 

 
If R0n is >1 within a given age group n, then an 

epidemic will develop. Thus, for the established 
values of parameters fs, γa, γs, and δn, size of the Sn(t0) 
age of susceptible groups, and social contact matrix, 
epidemic development will depend on the product 
βϬn. 
 
 
 
 
 

3   Problem Solution 
 
3.1  SIR model with Vaccination 
For the proposed extension of the SIR model, it was 
assumed that the vaccinated subjects achieve 
sustained immunity. The modified SIR model can be 
used to analyze the impact of vaccination rate and 
the time of vaccination commencement on epidemic 
extinction. 

Figure 1 shows two examples of vaccination 
with 90% effectiveness, started on day 50 of the 
pandemic for parameters S(t0) = 1000,000; I(t0) = 1; 
R(t0) = 0; β = 4 x 10–7; days of recovery = 5; R0 = 2:  
a) 20,000 vaccinations/day; duration of vaccination 

= 21 days; number of vaccinated = 420,000 
(solid lines); and 

b) 10,000 vaccinations/day; duration of vaccination 
= 42 days; number of vaccinated = 420,000 
(dotted lines).  

 

 
Fig. 1: Vaccination effect as measured by the SIR 
model. S(t0) = 1000,000; I(t0) = 1; R(t0) = 0; β = 4  
10–7; days of recovery = 5; R0 = 2; start of 
vaccination = 50 days of the epidemic: 
a) 20,000 vaccinations/day; duration of vaccination 
= 21 days; number of vaccinated = 420,000 (solid 
lines); Imax = 77545 on the64th day; and 
b) 10,000 vaccinations/day; duration of vaccination 
= 42 days; number of vaccinated = 420,000 (dashed 
lines); Imax = 106980 on the 66th day. 
 

Doubling the vaccination period combined with 
twice fewer vaccinations per day results in an 
increase in the number of I and R and a decrease in 
the number of S, while the maximum number of 
infected people appears two days later. 

 
3.2 The SIR Model with Multiple Incidence 

Waves 
Figure 2 shows an example for the initial conditions 
S(t0) = 1000,000, I(t0) = 1, R(t0) = 0, for two cases of 
loss of  immunity with the same probability a = 0.01, 
after 30 and 60 days. 
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Fig. 2: Impact of the loss of immunity to the 
solutions of the SIR model. 
S(t0) = 1000,000; I(t0) = 1; R(t0) = 0; β = 4  10–7; 
days of recovery = 5; γ = 0.2; R0 = 2;  
a) duration of immunity = 30 days with 
probability 0.99 (solid line); and  
b) duration of immunity = 60 days with 
probability 0.99 (dashed line). 
 

For a longer period of natural immunity, there 
are greater variations in the number of S, R, and I in 
the next wave of the epidemic. If immunity resulting 
from vaccination is of similar duration, then similar 
changes in numbers in groups S, I, and R should be 
expected. 

 
3.3 Analysis of Selected Vaccination 

Strategies based on the SEIRD Model 
Based on epidemiological data related to the 
COVID-19 pandemic, we simulated selected 
vaccination strategies in a closed population of 106 
people. To start the simulation, we had to give 
values to the parameters of the SEIRD model. 
According to the World Health Organization 
(WHO), [12], the average incubation time of a virus 
in an infected organism is 5–6 days, but it may even 
extend up to 14 days. We assumed that the time of 
transition from latent group E to infected group I is 
5.5 days; therefore, coefficient ε = 1/5.5 [day–1]. As 
asymptomatic cases may even account for 40–45% 
of all infection cases, [13], we assumed that 
coefficient fs, which determines symptomatic cases, 
can range from 0.55 to 0.6. The original guidelines 
of the WHO indicated that an infected person should 
be quarantined for 14 days. Thus, it can be assumed 
that 14 days is the duration of infection in a patient. 
Consequently, we estimated that the value of the 
recovery rate coefficient in symptomatically 
affected individuals (γs) is 1/14. However, 
asymptomatic people who are infected can infect 
others for longer than 14 days, [13]. Therefore, we 
assumed that the recovery time for this group is 16 

days. Accordingly, the estimated value of the 
recovery rate coefficient of asymptomatic patients 
(γa) is 1/16. The COVID-19 mortality rate δ was 
determined for each age group based on the data 
from Sweden, [14]. According to Equation 7, 
epidemic development is mainly determined by the 
product of β and Ϭn; therefore, to differentiate age 
groups based on susceptibility to disease 
development, different values of Ϭn can be adopted 
while maintaining β value constant for all n. 

During the first wave of the Covid-19 
pandemic, Sweden, compared to other countries, 
adopted the least drastic measures to prevent the 
spread of the disease, [15]. However, the number of 
deaths per 1 million inhabitants in 2020 in Sweden 
was lower than in Germany, France, or Spain. It is, 
therefore, worth conducting a simulation of selected 
vaccination strategies based on detailed data for the 
Swedish population, [16].  To evaluate various 
vaccination strategies and analyze potential 
observed effects, it's necessary to adjust the model 
parameters to reflect the characteristics of the 
Swedish population accurately. This adjustment 
aims to achieve a good fit with the known pandemic 
trajectory in Sweden in 2020, a period when 
vaccines were not yet available. The parameters ε, 
fs, γs, γa take the values 0.18, 0.6, 0.07, and 0.06, 
respectively, [11], [12], [13], [14], [15], [16]. The 
parameter β = 6  10-6 was selected to align with the 
literature data, [15], aiming to observe the highest 
number of daily fatal cases approximately 60 days 
after the appearance of the first infected person (12 
cases per 1 million). The parameter responsible for 
mortality in individual age groups was estimated 
based on the relationship between crude case-
fatality rates (CFR), mortality rate δn, and recovery 
rate γs: CFR = δn/(δn+γs), [10], and the values of 
CFR were extracted from [14]. However, the values 
of this parameter calculated in this manner resulted 
in ten times the overall total number of fatal cases 
during the first pandemic wave in 2020. A tenfold 
decrease in its value for all age groups leads to a 
mortality rate similar to reality. Finally, the 
parameter δn takes values of [2.8  10-7, 2  10-6, 5  
10-6, 8.58  10-6, 2.22  10-5, 7.58  10-5, 3.4  10-4, 
18.7  10-4] for individual age groups n. The 
parameter ϭn was also modified. Setting the same 
value for all age groups leads to an overestimation 
of mortality cases in the oldest age groups 7 and 8. 
The best reproduction of the pandemic course in 
Sweden in 2020 was achieved by adopting the 
following values for this parameter for subsequent 
age groups: σn = [1, 1, 1, 1, 1, 1, 0.1, 0.01]. To 
perform simulations, the initial values for the 
Swedish population, [16], should also be adopted: 
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Sn(0) = [119000, 110000, 130000, 128000, 127000, 
128000, 109000,148000] 
En(0) = [0, 0, 0, 0, 0, 0, 0, 0] 
Isn(0) = [0, 0, 0, 1, 0, 0, 0, 0] 
Ian(0) = [0, 0, 0, 0, 0, 0, 0, 0] 
Rn(0) = [0, 0, 0, 0, 0, 0, 0, 0] 
Dn(0) = [0, 0, 0, 0, 0, 0, 0, 0]. 
 

The Swedish social contact matrix is provided 
in the Appendix. 

We assumed that in a group of a million people, 
the pandemic begins with a single person in the age 
group 4 (Is4) who is symptomatically infected. For 
such assumptions, we solved the system of 
equations of the SEIR model using our application 
https://github.com/BlankTiger/SEIRD_model/releas
es/download/v1.0.3-rust/SEIRD_model.exe.These 
solutions are shown in Figure 3. 

After 12 days, there is a significant decline in 
the number of susceptible cases (Sn) in age groups 
1-6 for about 8 days. This decrease is accompanied 
by a significant increase in group E for about 6 days 
in age groups 1-6, followed by a decrease in the 
next 14 days. With a slight delay—i.e., starting from 
12 days after the first appearance of Is4—Is begins to 
increase until day 22 in age groups 1-6, and then 
decreases within 50 days. Similar changes are 
observed in the Ia group (1-6). 

In the oldest age groups 7 and 8, the growth of Is 
begins later, specifically after 17 and 20 days, and 
lasts longer, extending to 35 and 45 days, 
respectively. Similarly, Ia changes in these age 
groups.  

From days 15 and 20 of the pandemic for age 
groups 7 and 8 respectively, the number of 
recoveries also begins to increase, reaching 
asymptotic values after about 80 days. Fatalities 
begin to occur between days 15 and 20 of the 
pandemic. 

The eighth age group has the highest mortality 
rate of about 0.4%, whereas in groups 1-7, the 
mortality rate is significantly lower. The value of 
the R0 parameter for age groups 1–7 is >1 and for 
group8 is <1.The results of the simulation are 
presented in Table 1, where the R0 parameter was 
given for each age group, the maximum number of 
Isn, asymptomatic Ian, and the number of fatal cases, 
Da. The analysis of the results collected in Table 1 
indicates the highest mortality in the 8, 7, and 6 age 
groups. 

Based on the presented analysis of pandemic 
development (Figure 3 and Table 1), we compared 
five vaccination strategies, assuming the following: 
we have 150000 doses of vaccines and can 
vaccinate 10000 people per day, and the 

effectiveness of the vaccine is 90%. Vaccinations 
will be performed from days 1 to 15 (from the 
moment the first case of a symptomatically infected 
person is noted). Since the previous analysis 
revealed the highest mortality in age groups 8, 7, 
and 6, it is worth examining the potential effects of 
vaccinating these age groups first.  

Given the constraints imposed (limited 
availability of vaccinations per day), it is valuable to 
compare the outcomes with other vaccination 
strategies. These strategies may include limiting 
vaccinations to only two groups of the oldest people 
(8 and 7), vaccinating only group 8, administering 
vaccines evenly across all age groups (1 to 8), and 
comparing results with vaccinations targeted at age 
groups highly active in the labor market and those 
maintaining frequent intergenerational contacts, 
specifically groups 4 and 5. In summary, we will 
compare the results of the following vaccination 
strategies: 
a)  Vaccination of 3333 people per day in age 

groups 8, 7, and 6 
b)  Vaccination of 5000 people per day in age 

groups 8 and 7 
c)  Vaccination of 10000 people per day in age 

group 8 
d)  Vaccination of 1250 people per day in all age 

groups  
e)  Vaccination of 5000 people per day in age 

groups 4 and 5. 
Because mortality and the number of 

symptomatically ill people are the most important 
social parameters, the numbers of symptomatic 
patients and the number of fatal cases in each age 
group are presented in Table 2, Table 3, Table 4, 
Table 5 and Table 6. The bold values are lower than 
the number of cases in the absence of vaccinations. 
The percentage change from the predicted number 
of unvaccinated cases is shown in parentheses. From 
Table 2, Table 3, Table 4, Table 5 and Table 6, it 
can be understood that the greatest total decrease in 
deaths (i.e. about 53%) can be achieved by 
vaccinating only people in age group 8. However, 
this results from a 91.8% decrease in mortality in 
this group. A similar high decrease in the number of 
symptomatically infected cases can be seen in group 
8. By evenly vaccinating age groups 8, 7, and 6 and 
8, 7, the total number of deaths can be reduced by 
approximately 38.8% (Table 2) and 49.6% (Table 
3), respectively. However, by extending the 
vaccination campaign to all age groups, a more than 
19% decrease in mortality and a decrease in the 
number of symptomatic patients from 13% to 23% 
in various age groups (Table 5).  
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Fig. 3: Solutions of SEIRD model for Swedish 

 
 

Considering the global decline in the number of 
symptomatic patients (who constitute the greatest 
burden for medical services), simultaneous 
vaccination of all age groups can reduce the total 
number of symptomatic cases by 14.7% (Table 5), 
which is 12.5% (Table 4) higher compared to the 
decline achieved with vaccination of only age group 
8. For strategies b (Table 3) and a (Table 2), the 
number of symptomatic cases decreases by 7.6 and 
10.7%, respectively. When limiting vaccinations to 
groups 4 and 5, the most significant reduction in the 
number of symptomatic patients (17.4%) is 
observed, alleviating the burden on the health 
service the most. However, this approach leads to 
the lowest decrease in mortality (11.5%) for the 
entire population. 

 
Table 1. Summary of the results of the non-

vaccination seird model 
Number 
of age 
group 

R0n Maximum 
of Isn 

Maximum 
of Ian 

Number 
of Dn 

1 57.9 38385 27022 0 
2 78.1 35581 25039 1 
3 90.2 42053 29593 5 
4 92.3 41405 29137 9 
5 87.4 41072 28906 24 
6 84.4 41371 29126 83 
7 4.4 27778 19981 313 
8 0.42 6606 4931 598 

Total  274251 193735 1033 
 
 
 
 

Table 2. Summary of the results of the SEIRD 
model solutions taking into account vaccinations of 
age groups 8, 7, and 6 (3333 vaccinations per day in 

each group with 90% efficiency). 
Number of 
age group 

Maximum of 
Isn 

Number of Dn 

1 38366 0 
2 35569 1 
3 42031 5 
4 41382 9 
5 41047 24 
6 26769 (–35) 53 (–36) 
7 15667 (–43.5) 182 (–42) 
8 4012 (–39) 358 (–40) 

Total 244843 (–10.7) 632 (–38.8) 
 
Table 3. Summary of the results of the SEIRD model 

solutions taking into account vaccinations of age 
groups 8 and 7 (5000 vaccinations per day in each 

group with 90% efficiency). 
Number of 
age group 

Maximum of 
Isn 

Number of Dn 

1 38384 0 
2 35581 1 
3 42053 5 
4 41404 9 
5 41071 24 
6 41370 83 
7 10265 (–63) 118 (–62) 
8 3199 (–51.6) 280 (–53) 

Total 253327 (–7.6) 520 (–49.6) 
 
 
 

 

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE 
DOI: 10.37394/23208.2024.21.4

Maciej Urban, Julia Jodłowska, 
Joanna Balbus, Krystian Kubica

E-ISSN: 2224-2902 35 Volume 21, 2024



Table 4. Summary of the results of the SEIRD model 
solutions taking into account vaccinations of only age 

group 8 (10000 vaccinations per day with 90% 
efficiency) 

Number of 
age group 

Maximum of 
Isn 

Number of Dn 

1 38385 0 
2  35581 1 
3 42053 5 
4 41405 9 
5 41072 24 
6 41371 83 
7 27746  312   
8 564 (–91.5) 49 (–91.8) 

Total 268177 (–2.2) 483 (–53.2) 
 

Table 5. Summary of the results of the SEIRD 
model solutions taking into account vaccinations of 
all age groups (1250 vaccinations per day in each 

group with 90% efficiency) 

 
Table 6. Summary of the results of the seird model 
solutions taking into account vaccinations of age 

groups 4 and 5 (5000 vaccinations per day in each 
group with 90% efficiency) 

Number of 
age group 

Maximum of 
Isn 

Number of Dn 

1 38199 0 
2 35477  1 
3 41890  5 
4 19404 (-53.1) 4 (-55.5) 
5 19080 (-53.5) 11 (-54) 
6 41179  83 
7 25772 (–7.2) 309  
8 5383 (–18.5) 501 (-16.2) 

Total 226384 (–17.4) 914 (–11.5) 
 

 
4   Conclusion 
The expected vaccination results can be assessed 
from the point of view of reducing mortality rates 
across various age groups, and/or reduction in the 
number of infected in individual groups of a given 
population. Considering the availability of vaccines, 
their effectiveness, and restrictions on the number of 
vaccinations per day, articulating an optimal 

vaccination strategy becomes challenging, requiring 
consideration of ethical, financial, and social 
criteria. The COVID-19 pandemic was declared by 
the WHO, [17], on 11th March 2020, and the first 
vaccines were only available at the end of 2020. 
Therefore, during the period without vaccines, 
significant emphasis was placed on isolating 
infected individuals from the healthy population. 
Due to financial and/or organizational constraints, 
different quantities of diagnostic tests were 
conducted by healthcare services in various 
countries. These tests were intended to form the 
basis for the mandatory isolation of infected 
individuals and the identification of a group of 
healthy but susceptible individuals, who would be 
vaccinated, [18]. In many countries, individuals 
were qualified for vaccination based on a medical 
interview, which did not allow for the identification 
of individuals from the latent group or those 
infected asymptomatically. This led to significant 
variations in individual responses to vaccinations, 
including post-vaccination symptoms, [19]. 
Analyzing the solutions of the SEIRD model 
excluding vaccinations, it becomes apparent that 
individuals in groups E (who had already come into 
contact with the infecting factor) and Ia appear 
almost simultaneously with group Is. Thus, without 
specialized tests, people from groups S, E, and Ia 
will be eligible for vaccination. This suggests that 
extensive testing is required to detect groups E and 
Ia, for whom vaccination is not advisable. 

Analyzing the values of the R0 reproduction 
number for all age groups, it should be noted that 
only for the oldest age group 8 is its value less than 
1 – thus, the expected effect should be the absence 
of pandemic development in this group. It should 
also be noted that intergenerational contact matrices 
were published over 17 years ago during a 
pandemic-free period. During this time, there have 
also been socio-cultural changes in many countries 
around the world, which likely result in changes to 
the estimated values of contact matrices. 

Since the appearance of vaccines on the market, 
it was necessary to establish rules for their global 
distribution and carry out widespread awareness 
campaigns about the importance of vaccination. 
Unfortunately, in various countries, anti-vaccination 
movements also developed, leading to the 
underutilization of purchased vaccine doses. In the 
quest for an optimal vaccination strategy, 
considering the limited vaccine supply, the 
organization of vaccination campaigns (the possible 
number of vaccinations per day) should also take 
into account the organizational efficiency of the 
healthcare system in a given country. This includes 

Number of 
age group 

Maximum of 
Isn 

Number of Dn 

1 32824 (–14.5) 0 
2 30033 (–15.6) 1 
3 36495 (–13) 4 
4 35848 (–13.4) 8 
5 35515 (–13.5) 20 (-16.6) 
6 35814 (–13.4) 72 (-13.2) 
7 22355 (–19.5) 262 (-16,3) 
8 5050 (–23.5) 461 (-23) 

Total 233934 (14.7) 828 (–19.8) 
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the speed of establishing temporary hospitals, the 
capacity for medical transport, monitoring the 
isolation of infected individuals, and ensuring the 
effectiveness of protecting healthcare workers as a 
top priority. Prioritizing vaccinations for groups 
with the highest mortality rate (given limited 
vaccine supply) results in a smaller decline in the 
total number of symptomatically infected 
individuals compared to vaccinations carried out 
initially in groups with the highest professional and 
familial engagement (groups 4 and 5). This may 
lead to limited access to medical services unrelated 
to COVID-19, ultimately resulting in an increase in 
mortality compared to the pre-pandemic period.  

In the future, comprehensive literature studies in 
search of reliable epidemiological data on COVID-
19 in different countries will allow for the 
comparison of outcomes from selected vaccination 
strategies, taking into account cultural customs, 
social relations, and the level of national income. 
According to the data presented in the publication, 
[20], the number of COVID-19 vaccine doses varies 
from 0 to 120 per 100 people in different countries 
and is not correlated with the gross domestic 
product (GDP) per capita. Understanding the current 
values of the SEIRD model parameters, which vary 
with successive waves of epidemic growth caused 
by other variants of the SARS-CoV-2 virus, will 
enable the analysis of the pandemic's progression 
with multiple recurrent waves. 
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APPENDIX 
 
Heaviside function 
The Heaviside function is defined as: 





 τtfor
τ<tfor

=(t)H τ 1
0

  
Using this function, it is possible to control the 
course of vaccinations, starting on t1 and ending on 
t2, with vaccination rate and effectiveness ef: ef * 
vac * Hev(t, t1) * (1 – Hev(t, t2)). 
 

SEIRD model 

Denote Rn0  (n=1,2,…,8) as the basic reproduction 
number for each age group.  
To calculate Rn0  we use the method described in 
[21].  
The models SIR and SEIRD are the ODEs of the 
following type  

      (1) 
 
where  and . 
Let  be  infected population groups of 

 compartments in .  
Let  be the rate of appearance of new 
infections in the i-th compartment, and let  be 
the rate of the transition rates in the i-th 
compartment.  
 
Then, Equation (1) takes a form: 

 
 
Define  and  

for  where  is the 
disease-free equilibrium.  
 
Then,  where  is the 
spectral radius of the matrix . 
(the spectral radius of the matrix can be defined as 
the largest eigenvalue of the matrix). 
 
The model SIR can be written as: 

 
Define  as disease-free equilibrium. 
Then,  and . Hence  

. 
  
The SEIRD model  we rewrite as 
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    for n=1,2,…,8 
 
Let  be a disease-free equilibrium. 
 
Then,  

                 

(n=1,….,8) 
and 

                   

(n=1,…,8) 
 
Therefore 

 

           
(n=1,…,8) 
 

Matrices of contacts between age groups (social 

contact matrix) 

Table IA presents social contact matrices for 
Sweden—based on the literature data, [11]. 
n is the number of age groups (each 10-year). The 
values of kn,m are average values calculated based on 
the contact matrix for the population divided into 5-
year groups (data from publication, [11], —16  16 
matrices), e.g. the value k1,1 = 2.583 for contacts of 
people from the n = 1 group with people of the same 
age group is the mean value calculated based on 16 
 16 matrix: (k1,1 + k1,2 + k2,1 + k2,2)/4. 
 

Table IA. Swedish Social Contact matrix 
n 1 2 3 4 5 6 7 8 
1 2.583 0.450 0.399 0.986 0.459 0.217 0.169 0.061 
2 0.496 4.615 0.690 0.644 0.912 0.279 0.092 0.046 
3 0.292 0.933 2.895 1.443 1.160 0.721 0.104 0.043 
4 0.811 0.655 1.267 2.523 1.582 0.780 0.210 0.061 
5 0.448 1.091 1.058 1.624 2.175 0.884 0.174 0.076 
6 0.479 0.893 1.082 1.289 1.531 1.526 0.322 0.092 
7 0.393 0.349 0.448 0.716 0.579 0.587 1.108 0.253 
8 0.231 0.353 0.192 0.346 0.474 0.365 0.579 0.606 
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