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Abstract: - In this study, we examine the dynamics of the Susceptible Infected Recovered (SIR) model in the 
context of the COVID-19 outbreak in Nigeria during the year 2020. The model is validated by fitting it to data 
on the prevalence and active cases of COVID-19, sourced from a government agency responsible for disease 
control. Utilizing the parameters associated with the disease prevalence, we calculate the basic reproduction 
number 𝑅𝑐𝑟, revealing its approximate value as 10.84. This suggests an average infection rate of around 10 
human individuals, indicating the endemic nature of the disease in Nigeria. The impact of variation of recovery 
rate via treatment is examined, demonstrating its effectiveness in reducing disease prevalence when 𝑅𝑐𝑟 is 
below or above unity. To numerically implement the model, we employ the Sumudu Decomposition Method 
(SDM) and compare its results with the widely used Runge–Kutta fourth-order (RK4) method, implemented 
through the Maple software. Our findings indicate a mutual efficiency and convergence between the two 
methods, providing a comprehensive understanding of the COVID-19 dynamics in Nigeria. 
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1   Introduction       
Deterministic models use the concept of 
mathematical techniques to develop an accurate 
depiction of a system. Epidemiologically, models 

enable the description of the evolution and 
transmission of infection, future-term behavior, and 
possible control strategies to eradicate disease 
spread. Several works on mathematical modeling of 
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diseases have been developed together with 
determinant factors like incidence, spread, and 
persistence, [1]. The SIR model was first studied by 
[2] and [3], where the impact of demographic 
factors like births, deaths, and migration are studied. 
Later, SIR models with vital dynamics, [4] and other 
forms of extensions with vaccination, treatment, 
relapse, susceptibility, etc., are studied by different 
authors [3], [5], [6], [7], [8], [9]. 

A novel disease named coronavirus (COVID -
19) disease evolved in Wuhan, China, December 
2019. This disease became the most devastating 
health challenge experienced in the world after the 
1918/1919 pandemic of influenza. The World 
Health Organization (WHO) announced the disease 
as a pandemic on March 11, 2020, and by the end of 
the year 2020, over 90 million cases have been 
recorded and more than two million lives lost, as a 
result of the COVID – 19 menace. Nigeria is one of 
the most affected countries in Africa with COVID-
19 cases. By the end of year 2020, 87607 and 1361 
cases of COVID – 19 infection and casualties were 
recorded, [10], [11], [12], [13], while efforts by the 
WHO are ongoing to circulate vaccines and possible 
drugs across the world to treat and minimize the 
high rate of the infection spread.  

Several deterministic and stochastic models 
have been derived to explain and predict the 
transmission of COVID – 19 in Nigeria. A study, 
[14], formulated a model with Non-Pharmaceutical 
Strategies (NPIs) fitted to the prevalence date as of 
March 30, 2020. Their results show that COVID – 
19 can be effectively mitigated using a moderate 
level of compliance with NPIs to avoid a second 
wave of the pandemic. In [15], derivation of a 
model was done to forecast COVID – 19 dynamics 
using the prevalence data as of March 16, 2020. 
Their results reveal that if at least 55 percent of 
humans can adhere to social distancing and face 
mask usage, the disease will be eradicated. Also if 
the case findings for humans with symptoms are 
increased to 0.8 per day associated with social 
distancing will lead to a reduction of COVID-19  
disease incidence. The studies in [16] and [17], 
considered the effect of optimal management in 
minimizing COVID – 19 infection in Nigeria. Other 
works on the formulation of COVID – 19 using 
qualitative and quantitative techniques include the 
works of [18], [19], [20], [21]. The SIR model is the 
basic framework for describing disease spread in 
population dynamics. The recent coronavirus 
(COVID-19) disease across the world has majorly 
been described using the SIR model, [22], as well as 
other diseases in [23], [24] and [25]. The idea of 
SDM was first conceived in [26]. Also, the studies 

[2] and [27], employed hybrid methods of SDM and 
Laplace to compute the system of ordinary 
differential equations, other works on the 
application of SDM can be seen in the works of 
[27], [28] and [29], while works on the modification 
of SDM, using the other semi-analytical approaches 
can be seen in [30], [31], [32] and [33].    

Inspired by the cited works on the mathematical 
modeling approach to COVID – 19 disease spread 
in Nigeria together with different applications of 
numerical methods to obtain approximate solutions 
of models, in this work we consider fitting a SIR 
model to the COVID – 19 prevalent and active cases 
in Nigeria in relation to year 2020 utilizing the non-
linear least square method by the use of MAPLE 
computational software, such that the estimated and 
fitted values were used to analyze and obtain the 
value of 𝑅𝑐𝑟 [25]. Also, the numerical solution of 
the model using the SDM in comparison with the 
RK4 method is obtained. It is to the best 
understanding of the authors that this has not been 
done by the aforementioned authors. The 
subsequent parts of the article are sectionalized. 
Section 2 involves the model formulation and 
analysis and data fitting analysis. Section 3 involves 
the numerical implementation of the model 
equations by the use of  SDM and RK4 methods, 
while Section 4 discusses the results and conclusion. 
See also a study in [34] as a case study of Lagos 
State, Nigeria. 

 
 

2   Model Formulation 
The model is divided into the Susceptible 𝑆𝑐(𝑡); 
Infected 𝐼𝑐(𝑡); and Recovered 𝑅𝑐(𝑡), where the 
whole human population 𝑁(𝑡) yields 𝑁(𝑡) =

𝑆𝑐(𝑡) + 𝐼𝑐(𝑡) + 𝑅𝑐(𝑡). ∏ denotes the crude birth 
rate, β represents the transmission rate per COVID – 
19 infective, ϕ is the recovery rate for COVID – 19 
infection, κ is the mortality related to COVID – 19 
infection and µ is the natural death rate. Using these 
descriptions, the model is expressed as: 

𝑑𝑆𝑐

𝑑𝑡
 =   ∏ − 𝛽𝑆𝑐𝐼𝑐 − 𝜇𝑆𝑐 

𝑑𝐼𝑐

𝑑𝑡
=  𝛽𝑆𝑐𝐼𝑐 − (𝜇 + 𝜙 + 𝜅 + 𝜎)𝐼𝑐        (1) 

𝑑𝑅𝑐

𝑑𝑡
= 𝜙𝐼𝑐 − 𝜇𝑅𝑐 

Analytically, Eq. (1) is positively invariant and 
well posed in the region: 
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∆∗= {(𝑆𝑐 , 𝐼𝑐 , 𝑅𝑐) ∈ ℝ+
3 : 𝑆𝑐 + 𝐼𝑐 + 𝑅𝑐 ≤

∏

𝜇
}       (2)

  
The average time of COVID - 19 infection is 
1

(𝜇+𝜙+𝜅+𝜎)
 and since the infectious individual 

transmits COVID - 19 disease at the rate β, then  
𝑅𝑐𝑟 is computed to be  ∏𝛽

(𝜇+𝜙+𝜅+𝜎)
. 𝑅𝑐𝑟 measures the 

number of secondary COVID-19 infectious humans 
per COVID-19 index case in a naive population of 
vulnerable human population. Solving for 
equilibrium solutions in Eq.(1) when independent of 
time, yields 

𝑒1 = (𝑆𝑐 , 𝐼𝑐 , 𝑅𝑐) = (
∏

𝜇
, 0,0)              (3a) 

𝑒2 = (𝑆𝑐
∗, 𝐼𝑐

∗, 𝑅𝑐
∗) = (

𝜇

𝑅0
,

𝜇

𝛽
(𝑅𝑐𝑟 − 1),

𝜙

𝛽
(𝑅𝑐𝑟 − 1))

                  (3b) 

Where 𝑒1 and 𝑒2 represent the COVID – 19 free 
and endemic equilibrium points respectively. If 
𝑅𝑐𝑟 < 1, then the disease vanishes, but if 𝑅𝑐𝑟 > 1, 
then the infection becomes persistent in the human 
and environment host population. 

 
2.1  Model Fitting 
To validate the model system Eq. (1), Data on 
cumulative and active cases of COVID-19 in 
Nigeria, reported by NCDC [12] for the year 2020 is 
applied. The parameters estimated are the 
transmission rate 𝛽 and progression rate. The 
parameters were obtained from the literature. For 
instance, ∏ is the crude birth rate of Nigeria , which 
is estimated to be 37.269 per 1000 people, and the 
death rate in Nigeria is taken to be 11.577, so that ∏

𝜇
 

= 3.2192 year-1 is the restricted human population in 
a COVID-19 free community and 1

𝜇
= 0.0863 year-1. 

Also, the total COVID-19 induced death rate 𝜅 in 
Nigeria for year 2020 is 1,361, where 1

𝜅
=

0.00073/day [12]. To apply the non-linear least 
square method for model validation using the 
available data, at time t, vector z of Eq. (1) and  
vector 𝜃 of the unknown parameter, Eq. (1) follows 
the form: 

 𝑧1 = 𝑓(𝑡, 𝑧, 𝜃),    𝑧(𝑡0) = 𝑧0.  (4) 

Also, the residual form of Eq.(4) is expressed as: 

Residual (𝜃) = 𝑓(𝑡𝑖, 𝑧(𝑖), 𝜃) − 𝑧𝑟𝑒𝑎𝑙(𝑖)   (5) 

and  the error is given by: 

Error (𝜃) = ∑ (𝑧(𝑖) − 𝑧𝑟𝑒𝑎𝑙(𝑖))
2

𝑖=1 ,             (6) 

where 𝑧𝑟𝑒𝑎𝑙(𝑖) is denoted by the actual data and 
𝑦(𝑖) = 𝑦(𝑡𝑖 , 𝑧) is the solution to Eq. (4) for 𝜃. In 
addition, the minimization function is given by: 
 

min error (𝜃) based on Eq. (4)            (7) 
 

is applied to compute the optimal parameters. 
 
2.1.1  A  Non Linear Algorithm For  Estimation 

of the Parameter 

The non-linear algorithm governing the parameter 
estimation applied to obtaining the fitted values is 
given below.  
1.  Take up state and parameter values. 
2.  Compute Eq.(1) by the use of RK4 method 

together with step 1. 
3.  Check the error. 
4.  Minimize to derive a new set of parameter 

values of Eq.(1) to agree with actual data. 
5.  Investigate convergence. If it doesn’t converge, 

return to 2. 
6. Continue iteration, till the convergence for the 

acquired parameters are achieved. 
 

The model fit simulation using the data in [25], 
via the non-linear least square algorithm is 
displayed in Figure 1 and Figure 2. 
 

 
Fig. 1: Model fit of cumulative cases of COVID – 
19 in Nigeria relative to the year 2020  
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Fig. 2: Model fit of active cases of COVID – 19 in 
Nigeria in relation to the year 2020. 
 
 
3   Numerical Implementation 
 

3.1  The SDM and RK4 Method 
To understand the essentials of SDM, we consider 
the denotation of in-homogenous non-linear 
ordinary differential equation with its initial data as: 
 𝐻𝑐 + 𝐾𝑐 + 𝑀𝑐 = 𝑔(𝑡),    𝑙(𝑡) = 𝑎. (8) 

 
Where 𝐻𝑐 represents the derivative of first order, 𝐾𝑐 
represent a differential operator, 𝑀𝑐 denotes the 
non-linear term, while 𝑢(𝑡) is the source term, [24].  
 
On the application of SDM to Eq. (8) yields: 

𝑆∗[𝐻𝑐] + 𝑆∗[𝐾𝑐] + 𝑆∗[𝑀𝑐] = 𝑆∗[𝑙(𝑡)]             (9) 
 
Also, following the same procedure,  Eq. (9) yields: 
𝑆∗[𝐻𝑐] = 𝑎 + 𝑢[𝑆∗[𝑙(𝑡)] − 𝑆∗[𝐾𝑐] − 𝑆∗[𝑀𝑐]].          

                                                                      (10) 
 
The inverse of Eq. (10), yields: 

𝑐(𝑡) = 𝑆∗−1 [𝑢[𝑆∗[𝑙(𝑡)] − 𝑆∗[𝐾𝑐] − 𝑆∗[𝑀𝑐]]]. 
             (11) 

 
So that Eq. (11) is denoted as an infinite series given 
by:  

𝑐(𝑡) = ∑ 𝑐𝑛(𝑡)∞
𝑛=0 .                       (12) 

 
Also, the non-linear term in Eq.(11) can be 
expressed as: 

𝑀𝑐(𝑡) = ∑ 𝐴𝑛
∗∞

𝑛=0 .                       (13) 
 

Where 𝐴𝑛
∗ are Adomian polynomials of 𝑐0, 𝑐1, 𝑐2,… 

such that: 
𝐴𝑛

∗ =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛 [𝑀(∑ 𝜆𝑖𝑐𝑖
∞
𝑖=0 )]

𝑝=0
,𝑛 = 0,1,2…. 

                                    (14) 
 
Putting Eqs. (13) and (14) into Eq. (12), we have: 

∑ 𝑐𝑛(𝑡)∞
𝑛=0 = 𝑃(𝑡) − 𝑆∗−1[𝑐𝑆∗[𝐾 ∑ 𝑐𝑛(𝑡)∞

𝑛=0 +

∑ 𝐴𝑛
∗(𝑡)∞

𝑛=0 ]].            (15) 
 
Where 𝑃(𝑡) is the expression arising from the 
source term and the initial data. 
Making use of the Adomian Decomposition Method 
(ADM) to Eq.(15), we obtain: 

𝑐0(𝑡) =  𝑃(𝑡),                         (16) 

𝑐1(𝑡) = −𝑆∗−1[𝑐𝑆∗[𝐾𝑐0(𝑡) + 𝐴0
∗]],           (17) 

𝑐2(𝑡) = −𝑆∗−1[𝑐𝑆∗[𝐾𝑐1(𝑡) + 𝐴1
∗]],           (18) 

𝑐𝑛+1(𝑡) = −𝑆∗−1[𝑐𝑆∗[𝐾𝑐𝑛(𝑡) + 𝐴𝑛
∗]].        (19) 

 
From Eqs. (16-19), we obtain the values of 𝑐0, 𝑐1, 
𝑐2. We implement the SDM on Eq. (1) by using the 
values; ∏ = 3.2192, 𝛽 = 0.830, 𝜇 = 0.0863, ϕ=
0.1429, 𝜅 = 0.001137 and 𝜎 = 0.016. For the 
purpose of illustration, let 𝑆𝑐(0) = 0.87607,
 𝐼𝑐(0) = 0.13610, 𝑅𝑐(0) = 0.67507. 
 
The SDM of Eq. (1) yields:  

(𝑆�̇�) =
𝑆∗(𝑆𝑐(𝑡)−𝑆𝑐(0))

𝑆𝑐
= 𝑆∗[∏ − 𝛽𝑆𝑐𝐼𝑐 − 𝜇𝑆𝑐]  

𝑆∗(𝐼�̇�) =
𝑆∗(𝐼𝑐(𝑡)−𝐼𝑐(0))

𝐼𝑐
=   𝑆∗[𝛽𝑆𝑐𝐼𝑐 − (𝜇 + 𝜙 + 𝜅 +

𝜎)𝐼𝑐],                       

(20) 

𝑆∗(𝑅�̇�) =
𝑆∗(𝑅𝑐(𝑡)−𝑅𝑐(0))

𝑅𝑐
= 𝑆∗[𝜙𝐼𝑐 − 𝜇𝑅𝑐].                          

 
Further, the inverse SDM of Eq. (20) yields  

𝑆𝑐(𝑡) = 𝑆∗−1[𝑆𝑐𝑆∗(∏ − 𝛽𝑆𝑐𝐼𝑐 − 𝜇𝑆𝑐)]  

𝐼𝑐(𝑡) = 𝑆∗−1[𝐼𝑐𝑆∗(𝛽𝑆𝑐𝐼𝑐 − (𝜇 + 𝜙 + 𝜅 + 𝜎)𝐼𝑐)],

                                                              
𝑅𝑐(𝑡) = 𝑆∗−1[𝑅𝑐𝑆∗(𝜙𝐼𝑐 − 𝜇𝑅𝑐)].           

(21) 
 
Assuming the solution in Eq. (21) as infinite series 
of unknown function then: 
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∑ 𝑆𝑐𝑛
(𝑡)∞

𝑛=0 = 𝑆∗−1[𝑆𝑐𝑆∗[∏ − 𝛽 ∑ 𝐴𝑛
∗(𝑡)∞

𝑛=0 −

𝜇 ∑ 𝑆𝑐𝑛
(𝑡)]∞

𝑛=0 ] 

∑ 𝐼𝑐𝑛
(𝑡)∞

𝑛=0 =    

𝑆∗−1 [
𝐼𝑐𝑆∗[𝛽 ∑ 𝐴𝑛

∗(𝑡)∞
𝑛=0 − (𝜇 + 𝜙 + 𝜅 + 𝜎)

∑ 𝐼𝑐𝑛
(𝑡)]∞

𝑛=0
]         (22)           

  ∑ 𝑅𝑐𝑛
(𝑡)∞

𝑛=0 = 𝑆∗−1[𝑅𝑐𝑆∗[𝜙𝐼𝑐 − 𝜇𝑅𝑐]].                           

 

𝐴0
∗ = 𝑆𝑐0

𝐼𝑐0
, 

𝐴1
∗ = 𝑆𝑐0

𝐼𝑐1
+ 𝑆𝑐1

𝐼𝑐0
,                         (23) 

𝐴2
∗ = 𝑆𝑐0

𝐼𝑐2
+ 𝑆𝑐1

𝐼𝑐1
+ 𝑆𝑐2

𝐼𝑐2
.  

So that: 

𝑆𝑐0
= 0.87607  

𝑆𝑐1
=  𝑆−1[𝑆𝑐𝑆(∏ − 𝛽𝐴0

∗ − 𝜇𝑆𝑐 0
)]  

𝑆𝑐2
=  𝑆−1[𝑆𝑐𝑆(∏ − 𝛽𝐴1

∗ − 𝜇𝑆𝑐1
)]           

𝐼𝑐0
= 0.13610 

𝐼𝑐1
  𝑆−1[𝐼𝑐𝑆(𝛽𝐴0

∗ − (𝜇 + 𝜙 + 𝜅 + 𝜎)𝐼𝑐0
)]      (24) 

    

𝐼𝑐2
= 𝑆−1[𝐼𝑐𝑆(𝛽𝐴1

∗ − (𝜇 + 𝜙 + 𝜅 + 𝜎)𝐼𝑐1
)]  

𝑅𝑐0
= 0.67507 

 𝑅𝑐1
= 𝑆−1[𝑅𝑐𝑆(𝜙𝐼𝑐0

− 𝜇𝑅𝑐0
)] 

𝑅𝑐2
= 𝑆−1[𝑅𝑐𝑆(𝜙𝐼𝑐1

− 𝜇𝑅𝑐1
)]  

Further computation of Eq. (23) together with Eq. 
(24) yields the following series solution as: 

𝑆𝑐(𝑡) = 0.87607 − 3.0447𝑡 − 2.5649𝑡2 +

2.2699𝑡3+…                                               (25) 

𝐼𝑐(𝑡) = 0.13610 + 0.0654𝑡 + 0.3754𝑡2 +

0.6355𝑡3+…                                             (26)  

                                                                                         
𝑅𝑐(𝑡) = 0.67507 − 0.0388𝑡 + 0.0127𝑡2 +

0.0525𝑡3+…                                  (27) 

Moreover, the RK4 scheme is applied to Eq. 
(1). The RK4 scheme is given by: 

𝑦𝑛+1 = 𝑦𝑛  +
1

6
(k1 + 2 k2 + 2 k3 + k4).          (28) 

Where 

 𝑘1 = hf (xn, yn), 

𝑘2 = hf(xr + 1 2⁄ h,  yr  + 1 2⁄ 𝑘1),  

𝑘3 = hf(xr + 1 2⁄ h,  yr +1
2⁄ 𝑘2),                        (28) 

𝑘4= hf(xr  + h, yr + 𝑘3). 

and 

𝑆𝑐𝑛+1
 = 𝑆𝑐𝑛

 + 1

6
(𝑘1+ 2𝑘2+ 2k3 + k4) h, 

I𝑐𝑛+1
= 𝐼𝑐𝑛

 + 1

6
(l1 + 2l2 + 2l3 + l4) h,           (29)

                         
R𝑐𝑛+1

  = 𝑅𝑐𝑛
 + 1

6
(m1 + 2m2 + 2m3 + m4) h. 

and 

𝑘1= ∏ - β𝑆𝑐I𝑐 - µ𝑆𝑐,    

L1 = β𝑆𝑐Ic – (µ + ϕ + k + r) I𝑐  , (30) 
                                                       
M1 = ϕI𝑐 - µRc. 

and   

𝑘2= ∏ - β(𝑆𝑐𝑛
 + 𝑘1

ℎ

2 
 ) 

 (I𝑐𝑛
 + 𝑘1

ℎ

2 
 ) - µ(S𝑐𝑛

 +𝑘1
ℎ

2 
 ),  

L2 = β(𝑆𝑐𝑛
 + 𝑘1

ℎ

2 
 ) (I𝑐𝑛

 + 𝑘1
ℎ

2 
 )                       (31) 

– (µ + ϕ + k + r) (I𝑐𝑛
+ 𝑘1

ℎ

2 
 ),     

M2 = ϕ(I𝑐𝑛
+ 𝑘1

ℎ

2 
 ) - µ(R𝑐𝑛

 + 𝑘1
ℎ

2 
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and 

𝑘3= ∏ - β(𝑆𝑐𝑛
 + 𝑘2

ℎ

2 
 ) (I𝑐𝑛

 + 𝑘2
ℎ

2 
 ) 

 - µ(S𝑐𝑛
 + 𝑘2

ℎ

2 
 ),  

L3 = β(𝑆𝑐𝑛
 + 𝑘2

ℎ

2 
 ) (I𝑐𝑛

 + 𝑘2
ℎ

2 
 )        (32) 

 – (µ + ϕ + k + r) (I𝑐𝑛
+ 𝑘2

ℎ

2 
 ),  

   

M3 = ϕ(I𝑐𝑛
+ 𝑘2

ℎ

2 
 ) - µ(R𝑐𝑛

 + 𝑘2
ℎ

2 
). 

and 

K4 = ∏ - β(𝑆𝑐𝑛
 + 𝑘3

ℎ

2 
 ) (I𝑐𝑛

 + 𝑘3
ℎ

2 
 ) 

          

If n = 0  

𝑆𝑐𝑛1
 = 𝑆𝑐0

 + 1

6
(𝑘1+ 2𝑘2+ 2𝑘3+ 𝑘4)h, 

Ic𝑛1
 = I𝑐0

 + 1

6
(L1 + 2L2 + 2L3 + L4)h, 

𝑅𝑐𝑛1
 = R𝑐0

 + 1

6
(m1 + 2m2 + 2m3 + m4)h,     (34) 

𝑆𝑐𝑛2
 = 𝑆𝑐1

 + 1

6
(𝑘1+ 2𝑘2+ 2𝑘3+ 𝑘4)h, 

Ic𝑛2
 = I𝑐1

 + 1

6
(L1 + 2L2 + 2L3 + L4)h, 

𝑅𝑐𝑛2
 = R𝑐1

 + 1

6
(m1 + 2m2 + 2m3 + m4)h. 

 

4 Discussion of Results and Conclusion 
 

4.1  Discussion of Results 
In the course of simulation, the parameter and 
variable values given in Section 2 are adopted to 
obtain the numerical results in Table 1, by 
comparing SDM and RK4 method, while, the errors 
between the two methods are given in Table 2.

L4 = β(𝑆𝑐𝑛
 + 𝑘3

ℎ

2 
 ) (I𝑐𝑛

 + 𝑘3
ℎ

2 
 )            (33) 

 – (µ + ϕ + k + r) (I𝑐𝑛
+ 𝑘3

ℎ

2 
 ),        

M4 = ϕ(I𝑐𝑛
+ 𝑘3 

ℎ

2 
 ) - µ(R𝑐𝑛

 + 𝑘3 
ℎ

2 
 ). 

 

Table 1. Comparison between SDM and RK4 for Approximate Solutions of Model Eq. (1). 
Time(Months) 𝑺𝒄(SDM) 𝑺𝒄(RK4) 𝑰𝒄(SDM) 𝑰𝒄(RK4) 𝑹𝒄(SDM) 𝑹𝒄(RK4) 

1 2.4636 2.4640 1.2124 1.2315 0.7015 0.7020 
2 2.6863 2.6875 6.8525 6.8555 1.0683 1.0693 
3 29.9452 29.9463 20.8694 20.8703 2.0905 2.1001 
4 92.9325 92.9341 47.0761 47.0779 4.0831 4.0850 
5 205.2676 205.2685 89.2856 89.2871 7.3611 7.3630 
6 308.5699 308.5710 151.3109 151.3121 12.2395 12.2405 
7 632.4588 632.4599 236.9650 236.9668 19.0333 19.0372 
8 974.5537 974.5570 350.0609 350.0615 28.0575 28.0620 
9 1420.4740 1420.4770 494.4116 494.4120 39.6271 39.6352 
10 1983.8391 1983.8402 673.8301 673.8312 54.0571 54.0582 
11 2678.2684 2678.2715 892.1294 892.1301 71.6625 71.6637 
12 3517.3813 3517.3831 1153.1225 1153.1225 97.7583 97.7590 
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Table 2. Errors between RK4 and SDM approximate solutions for model Eq. (1). 
Time(Months) 𝑺𝒄(RK4 – SDM) 𝑰𝒄(RK4 – SDM) 𝑹𝒄(RK4 – SDM) 

1 0.0004 0.0011 0.0005 
2 0.0012 0.0030 0.0010 
3 0.0011 0.0009 0.0016 
4 0.0006 0.0018 0.0019 
5 0.0009 0.0011 0.0019 
6 0.0011 0.0012 0.0010 
7 0.0011 0.0018 0.0039 
8 0.0033 0.0006 0.0045 
9 0.0030 0.0004 0.0081 
10 0.0011 0.0011 0.0011 
11 0.0031 0.0007 0.0012 
12 0.0018 0.0075 0.0007 

 

The graphical representations in Figure 1 and 
Figure 2 depict the model fit for cumulative and 
active COVID-19 cases in Nigeria throughout the 
year 2020. Notably, a consistent upward trend is 
evident over time, attributed to a significant lack of 
adherence to COVID-19 protocols. This underscores 
the imperative for stringent enforcement of non-
pharmaceutical interventions to curb the rapid 
spread of the disease. Additionally, the examination 
of Table 1 and Table 2 reveals a harmonious 
agreement between the two numerical methods, 
displaying minimal errors. Furthermore, it is 
noteworthy that the Sumudu Decomposition Method 
(SDM) exhibits better performance in both 
efficiency and convergence when compared to the 
Runge–Kutta fourth-order (RK4) method, while 
Figure 3 and Figure 4 describes the effect of 
recovery rate 𝜙 on 𝑅𝑐𝑟 in 12 months the host 
community. It is observed that the curve converges 
to the disease – free and endemic equilibrium when 
𝑅𝑐𝑟 < 1 𝑎𝑛𝑑 𝑅𝑐𝑟 ≈ 10.84. When the recovery rate 
through treatment is increased, that is, 𝜙 = 0.8429, 
𝑅𝑐𝑟reduces but not below unity. This highlights the 
challenge of completely eradicating the virus 
through treatment alone. The relevance of umerical 
modeling techniques and recovery rate through 
treatment for the containment of the spread of 
COVID-19 has been shown in this work.  Though 
effective treatment is needed to ameliorate the 
impact of the virus, preventive measures is essential 
to reduce the spread due to the endemic nature of 
the disease.  

 
Fig. 3: Behavior of recovery rate 𝜙 = 0.1429 on 
𝑅𝑐𝑟 when 𝑅𝑐𝑟<1 and 𝑅𝑐𝑟 > 1 
 

 
Fig. 4: Behavior of recovery rate 𝜙 = 0.8429 on 
𝑅𝑐𝑟 when 𝑅𝑐𝑟<1 and 𝑅𝑐𝑟 > 1 
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5   Conclusion 
The compartmental model has been used in this 
study to analyze COVID-19 cumulative and active 
cases in Nigeria throughout the year 2020.  The 
simulations, based on fitted and estimated 
parameters from existing literature, showed a basic 
reproduction number 𝑅𝑐𝑟 of approximately 10.84. 
This finding reveals the endemic nature of COVID-
19 in Nigeria, with an average infection rate of at 
least 10 individuals. Furthermore, the investigation 
into the impact of the recovery rate on 𝑅𝑐𝑟 showed 
that an increase in the recovery rate through 
treatment can reduce𝑅𝑐𝑟, although it remains above 
unity. This suggests that treatment alone may not be 
sufficient to effectively combat the disease. The 
numerical implementation of the model equations 
using the Sumudu Decomposition Method (SDM) 
and the Runge–Kutta fourth-order (RK4) method 
demonstrated their efficiency, with SDM exhibiting 
better convergence. Consequently, health policy-
makers in Nigeria are advised to intensify the 
implementation of Non-Pharmaceutical 
Interventions (NPIs) recommended by the World 
Health Organization (WHO). This strategic scaling 
up of NPIs is crucial to mitigate the spread of 
COVID-19 and reduce 𝑅𝑐𝑟 below unity, ultimately 
aiming to eliminate the disease. Mathematically, this 
study suggests potential extensions into spatial, 
fractional order, stochastic, and optimal control 
problems. These avenues of research could further 
enhance our understanding of the dynamics of 
COVID-19 and contribute to the development of 
more effective strategies for disease control and 
prevention.  
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